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ÖZ

Geçtiğimiz yıllarda, nanotaşıyıcılar güvenli ve verimli ilaç dağıtımı ve salımı için ideal bir çözüm haline geldi. Bu, temel olarak nanomalzemelerin 
daha büyük ölçekli formlarıyla karşılaştırıldığında sergiledikleri olağanüstü özelliklerden kaynaklanmaktadır. Bu taşıyıcıların çeşitliliği yüksek 
biyouyumluluk nedeniyle daha popüler olup, özellikle kanser tedavilerinde daha fazla etkinlik sağlar. Son 50 yıl boyunca, nanokristal, lipozomal 
ve misel tasarımları bu malzemelerin ilaç dağıtımı ve salınımı için çok araştırılmıştır. Başarılı uygulamalar sadece terapötik gelişimde daha fazla 
odaklanma sağlamakla kalmadı, aynı zamanda farmasötik pazarda da mevcut yeni bir çözüm yarattı. Bu çalışmada, nanotaşıyıcılar araştırmaların 
kısa bir derlemesi ve ilaç tedavisi için ilaçların üstün yararlarını elde etmek için nanohidrojel, kitosan, grafen/grafen oksit ve katı lipid nanoparçacık 
tasarımları sunulmuştur. Bu malzemeler biyouymululuğu yüksek ve manipülasyonu kolay olmaları sebebi ile son yıllarda en çok tercih edilen 
nanotaşıyıcı malzemeleri olmuştur. İlaç dağıtımı ve salınmasında en fazla ilgi çeken bu nanotaşıyıcı malzemeleri, bugüne kadar olan gelişimleri 
özetlenmiştir. İlaç dağıtımı için nanotaşıyıcı ihtiyacının ve bu nano malzemelerin gelişim sürecinde mevcut durumun daha iyi anlaşılmasıyla, 
farmasötik teknolojilerinde hastalara daha iyi tedavi sağlama şansı artmaktadır. 

Anahtar kelimeler: Nanotaşıyıcı, ilaç dağıtımı, nanomalzemeler, kontrollü ilaç salımı, hedefleme

Over the past few years, nanocarriers have become an ideal solution for safe and efficient drug delivery and release. This is mainly due to the 
extraordinary characteristics that nanomaterials exhibit when compared with their larger scaled forms. A variety of these carriers are more popular 
due to their high biocompatibility, ensuring greater efficacy especially in cancer treatments. Nanocrystal, liposomal, and micelle designs of these 
materials as nanocarriers for drug delivery and release have been extensively researched throughout the past 50 years. Successful applications 
have not only ensured a greater focus on therapeutic development but also created a new solution available in the pharmaceutical market. Herein, 
a brief review of research studies focused on nanocarrier materials and designs to achieve superior benefits of drugs for disease treatments is 
presented. Nanohydrogels, chitosan, graphene oxide, and solid lipid nanoparticle nanocarrier designs and applications are selectively given due 
to the great attention they have gained from being highly biocompatible and easy-to-manipulate nanocarrier options from organic and inorganic 
nanocarrier materials. Each summary exhibits the progress that has been achieved to date. With greater understanding of the current state in 
the development process of these nanomaterials, there is a rising chance to provide better treatment to patients, which is a desperate need in 
pharmaceutical technologies.
Key words: Nanocarrier, drug delivery, nanomaterials, controlled drug release, targeting
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INTRODUCTION
Materials that have one or more dimensions lower than 100 nm 
are considered nanomaterials.1 To be more specific, in 2011 the 
European Commission defined a nanomaterial as follows:

“A natural, incidental or manufactured material containing 
particles, in an unbound state or as an aggregate or as an 
agglomerate and where, for 50% or more of the particles in the 
number size distribution, one or more external dimensions is in 
the size range 1 nm-100 nm.”2

Nanomaterials have great research and development/product 
development potential in medical applications. Some of these 
applications include DNA/RNA nanotechnology, diagnosis by 
molecular imaging, biosensing, nanomedicine, and nanocarriers 
for drug delivery.3 A considerable number of nanomaterials have 
been developed, produced, and utilized for these application 
fields, such as nanohydrogels, chitosan/starch/cellulose 
nanoparticles, graphene (GR)/GR oxide (GO) nanosheets, 
iron oxide nanoparticles, gold nanoparticles, cerium oxide 
nanoparticles, and carbon nanotubes/nanoparticles.

Nanomaterials exhibit extraordinary optical, electronic, and/or 
mechanical properties when compared with their greater scaled 
forms. They can differ in color, conductivity, reactivity, surface 
area to volume ratio, and surface tension from macro forms. Due 
to this, nanomaterials have attracted the attention of scientists 
for their potential utilization in vaccines, drug development, and 
drug delivery.4 Over many years, many nanomaterials have been 
adopted as nanocarriers, i.e. nanohydrogels, oil-in-water (O/W) 
emulsions, liposomes, and nanoparticles based on synthetic 
polymers or natural macromolecules.5 The very first studies 
were conducted by Couvreur et al.6 and Kreuter and Speiser.7 in 
the late 70s, where the team exploited polymeric nanocapsules 
as lysosomotropic carriers and adjuvants.

Drug nanocarriers usually serve two main purposes: 
targeted drug delivery to specific tissue, organ, or cells and 
controlled drug release. The foundation of drug delivery is 
based on biocompatible nanoparticles or nanocapsules and 
targeting molecules. Biocompatible materials are selected 
and incorporated to enhance the hydrophilicity of hydrophobic 
carrier systems or drugs. Targeting molecules are generally 
antibodies or avidin/biotins that directly target tissue, organs, 
or cells. Drug release features of nanocarrier systems are 
provided by the environmentally sensitive structure of the 
carrier. Controlling drug release ensures paramount therapeutic 
effect by releasing the delivered drug with high efficiency in 
the targeted area and preventing any healthy tissue damage 
that could be caused by some drugs such as chemotherapy 
agents.8 Nanocarriers that have been designed from polymer-
based nanoparticles are solid colloidal particles that are 
approximately 10-500 nm in size.4 Drug incorporation into 
nanocarriers is based on 5 methods: dissolution, entrapment, 
adsorption, attachment, or encapsulation.9 Herein a brief review 
of nanocarrier systems is given. A summary of the literature 
including easily manipulated popular nanomaterials that 
have been adopted as nanocarriers (nanohydrogels, chitosan 
(CS) nanoparticles, GR/GO nanocarriers, and solid lipid 

nanoparticles) is given. Nanohydrogels and CS nanoparticle 
derivatives are the most heavily rotated amphiphilic nanocarrier 
materials. GR/GO nanomaterials are favored nanocarriers since 
they are present in a wide range of carrier designs. Finally, solid 
lipid nanocarriers (SLNs) are currently the most promising and 
novel lipophilic drug carriers.10

NANOHYDROGEL CARRIERS
Nanohydrogels can be defined starting with the descriptions 
of macro-scaled hydrogels. Hydrogels are three-dimensional 
hydrophilic polymer chain networks that are crosslinked. 
These networks can consist of natural or synthetic polymers 
and display swelling behavior when introduced to water 
or physiological fluids. Moreover, they are able to revert to 
their initial state when removed from the presence of water/
biological fluids.11-13 Due to this unique behavior, hydrogels have 
gained attention and been adopted in biomedical applications 
such as drug delivery, drug release, and vaccine design.14

Drug delivery and drug release system designs that utilize 
hydrogels have been and are still considered appealing in 
medicine due to their crosslink-controlled pore structures. 
Moreover, physiochemically, hydrogels are very similar to 
the extracellular matrix of the human body. With also a very 
high content of water, hydrogels are known to have very 
high biocompatibility. A main disadvantage is their viscosity, 
which created an alternative solution: nanohydrogels. These 
submicron particles made excellent drug carriers that could 
easily be extruded through an injector needle. In addition, 
decreasing size ensures an increase in surface area that 
provides further bioconjugation.11,15

Nanogels, in the range of 10-100 nm size, are small enough to 
be used as systemic drug carriers. For designs that include 
clearance of nanogel carriers by kidney filtration the diameter 
is lower than 10 nm. Drug release to tissue, organs, or cells 
is through the meshes of nanohydrogels, which are typically 
between 5 and 100 nm in size.16 Mesh sizes in environmentally 
dependent designs such as temperature- and pH-sensitive 
ones change with the stimuli according to the crosslink bond 
concentration that forms or breaks.15 Regulating the breakages 
of crosslinking bonds that form the initial mesh size of the 
carriers will provide control of drug release acceleration. 
Other designs include utilization of the swelling capacity of 
nanohydrogels.17 As swelling continues, mesh sizes increase 
and gradually release the encapsulated drug.15 

Nanohydrogel carriers that are environmentally dependent 
include designs sensitive to pH, temperature, electric field, 
light, enzyme, calcium, glucose, redox, etc.18 In this paper, some 
of these designs are summarized according to their sensitivity 
features as below. From this summary, it can be stated that as 
nanohydrogel carriers there are several popular materials that 
are prominent when compared with others. In Table 1, materials 
that receive the greatest attention from scientists are listed. 
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Temperature-sensitive nanohydrogel carriers
Temperature-sensitive nanohydrogel carriers are systems that 
exhibit swelling behavior that is dependent on temperature 
changes and are a widely studied field.19 A temperature-
sensitive drug-release design was reported by Ichikawa and 
Fukumori20 in 1999. The design consists of a water-soluble 
hemostatic drug core inside a thermosensitive poly[N-
isopropylacrylamide (NIPAAm)] nanohydrogel containing an 
ethyl cellulose shell. Ichikawa and Fukumori20 stated that the 
mentioned shell could change and revert to its initial size with 
temperature changes between 30°C and 50°C in water and 
that nanohydrogels exhibit positive thermosensitive swelling. 
The drug release rate is reported to be not only temperature 
dependent but also nanohydrogel concentration dependent.20 
A very recent study introduced thermosensitive 5-fluorouracil 
(5-FU; a chemotherapeutic drug employed for solid tumor 
treatments) containing methyl cellulose (MC) nanohydrogels 
for decreased side effects of chemotherapy. In this 2018 study 
Dalwadi and Patel21 produced MC nanohydrogels by a tip probe-
sonicator method from MC hydrogels. 5-FU release depends on 
both temperature and its biodegradability. Within 48 h the drug 
is released in the injected area, preventing a cytotoxic drug 
burst in a very large area as in conventional chemotherapy.21 

pH- and/or ionic-strength-sensitive nanohydrogel carriers
pH and/or ionic strength sensitivity allows nanocarriers’ mesh 
size to be manipulated according to the environmental pH. 
Elsaeed et al.22 synthesized poly(NIPA-co-AAC) nanohydrogels 
by inverse microemulsion polymerization method in 2010. On 
average, the diameter of these nanohydrogels is reported to 
range between 60 and 80 nm. The team delivers a possible 
drug release methodology that is pH dependent through poly 
(NIPA-co-AAC) nanohydrogel by characterizing its swelling 
behavior between the pH values of 4.00 and 8.00 (ionic 
strength=0.4). That study shows that the nanohydrogels’ 
swelling capacity increased with environmental pH.22 In an 
earlier study, in 2004, Dufresne et al.23 reported pH-sensitive 
poly (N-isopropylacrylamide) derivative copolymers or 
poly(alkyl(meth)acrylate) diblock copolymers were produced 
as indomethacin (a nonsteroidal anti-inflammatory drug), 
fenofibrate (a drug for treating abnormal blood lipid levels), 
and doxorubicin (DOX) and aluminum chloride phthalocyanine 
carriers. PNIPAM copolymers were stated to be synthesized by 
free radical polymerization while the poly[alkyl(meth)acrylate] 
diblock copolymers were synthesized by atom transfer radical 
polymerization. The team carried out both in vitro and in vivo 
assays. Dufresne et al.23 refer to the PNIPAM derivatives 
as a potential safe alternative to Cremophor®EL, a common 
carrier for various poorly water-soluble drugs. Furthermore, 
poly[alkyl(meth)acrylate] derivative [polyethylene glycol (PEG)-
b-(EA-co-MAA)] nanoparticles were stated to be excellent 
carriers for hydrophobic drugs that could be used orally. The 
carrier system is reported to exhibit dissociation behavior with 
increasing pH.23

CHITOSAN NANOCARRIERS
Chitin is a long-chain polymer derivative [poly (b-(1-4)-N-
acetyl-D-glucosamine)] of glucose with significance as the 
raw material of CS nanocarriers (CSNs). When chitin is 
deacetylated up to about 50%, it transforms into CS, which 
has a linear backbone linked through glycosidic bonds.24,25 CS’s 
efficient bio-adhesiveness and permeabilization capacity make 
it one of the most popular nanocarrier materials amongst other 
hydrophilic polymers.26 Moreover, CS is a nanocarrier that has 
a high loading efficiency of drugs. Based on the protonation of 
-NH2 at the C-2 position of the D-glucosamine repeat, one of the 
most important characteristics of CS is its solubility in aqueous 
acidic media as given in Figure 1.24 Thus, CS nanocapsules 
provide an effective solution for the delivery of hydrophobic 
drugs.27 All the mentioned features of CS nanoparticles make it 
an excellent nanocarrier material.

Moreover, CS exhibits pH-sensitive behavior due to the 
percentage of its acetylated monomers and their distribution in 
the chains.28 This behavior is utilized for controlled drug release 
by scientists. A common example for this is drug delivery to 
tumor cells and controlling release since the pH of tumor cells 
is significantly lower than that of healthy cells.29 A summary of 
the literature that features CSNs as drug delivery systems is 
provided in Table 2 in chronological order. Production methods 
for CS carriers differ however, the most common method used 
being ionotropic gelation, which is based on the capability of 
polyelectrolytes to crosslink in the presence of counter ions.30

As can be seen in Table 2, Fernández‐Urrusuno et al.31 
proposed the use of CS nanoparticles as potential drug 
carriers for transmucosal delivery in 1999. In their design the 
team loads insulin into CS nanoparticles to be given nasally to 
conscious normoglycemic rabbits. It is reported that there was 
a 40% reduction in the serum glucose levels.31 Aktaş et al.34 
reported the use of PEG-grafted CS nanoparticles as peptide 
drug carriers. They observed nanoparticle formation through 
intermolecular hydrogen bonding in an aqueous solution. The 
incorporation and release of insulin were dependent on the 
degree of introduction of the PEG chain on CS and observed 
sustained release phenomenon over time.52,53 Pérez-Álvarez et 
al.51 reported one of the most recent studies in this field revealing 
the state of art in 2019. Their work exploits the designed CSN 
as a great candidate for polyoxometalate delivery into tumoral 

Figure 1. Chitosan monomer
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cells. CSN production is achieved by dissolving low molecular 
weight CS in 1% (v/v) acetic acid solutions for crosslinking in 
inverse microemulsion medium, which results in the attainment 
of nanometric CS gel particles. Utilizing the pH-sensitive 
characteristics the team managed to inhibit cytotoxic drug 
release.51

GRAPHENE AND GRAPHENE OXIDE 
NANOCARRIERS
Professor Andre Geim and Professor Kostya Novoselov made 
a groundbreaking disclosure by finally discovering a production 
method for GR in 2004. The research was outstanding since 
it had not been possible previously to produce a single layer 
of graphite (carbon atoms with sp2 bonds in the shape of 
honeycomb). Later, GR became known as the basic building 
block of graphitic materials such as spherical nanoparticles 
that are also known as 0D fullerenes, 1D carbon nanotubes, and 
3D graphite.54-58

Following the discovery, scientists began to reveal GR’s unique 
characteristics provided by its submicron dimension and 
the π-conjugation in its structure. GR is revealed to exhibit 
extraordinary thermal, mechanical, and electrical properties.57 
Further research provided a better understanding of the 
physical and chemical structure of GR’s surface, which has 
created interest in medical and pharmaceutical technologies as 
well as other fields of science. GR is researched and utilized 
for nanoscaffolds, chemical/biosensing, imaging, drug delivery 
and controlled drug release.59 In the area of nanomedicine and 
nanocarriers, GR and its composites are important due to its 
large surface area where every single atom is exposed on the 
surface (2600 m2 g-1), layer number, lateral dimension, surface 
chemistry, and purity.60-62 Hereby, GR could be considered a 
superior candidate as an ideal nanocarrier with the mentioned 
characteristics that allows a high drug load capacity.58

One of the most popular derivatives of GR is GO, GR with 
oxygen-containing functionalities (epoxide, carbonyl, carboxyl, 
and hydroxyl groups). GR and GO have a major difference 

that affects their drug delivery performance when used 
as nanocarriers: GO is highly hydrophilic, whereas GR is 
hydrophobic so that it requires surface modifications for use 
in biological fluids. Thus, any nanocarrier design that uses 
GR should take into consideration the possible impurities and 
negative effects such as cytotoxicity.61,63 This leads researchers 
to gravitate towards GO-containing designs rather than GR 
nanocarrier designs.

In Table 3, a summary of GR/GO nanocarrier designs is given. 
As can be seen, Hummer’s method for production is the most 
popular choice, where graphite oxidative exfoliation is applied 
with NaNO3. Although Hummer’s production method is usually 
opted for rather than other complicated methods, over the years 
it can be seen that nanocarrier designs have evolved into more 
complex systems that apply chemotherapy and photothermal 
therapy for treating cancer.

In 2008, Liu et al.87 published a study that demonstrates 
PEG-functionalized GO nanocarriers used as a noncovalent 
physisorption chemotherapy drug delivery system. The team 
reveals that the nanocarriers have an adequate in vitro cellular 
uptake capacity.87 A very recent study by Bullo et al.88 examined 
the state of the art in GO nanocarriers. GO is reported to be 
synthesized by Hummer’s method. GO is modified with PEG for 
higher biocompatibility and loaded with two chemotherapeutic 
drugs: protocatechuic acid and chlorogenic acid. The carrier is 
then coated with folic acid to target cancer cells since tumor 
surface membranes have a greater number of folate receptors. 
The final size of the nanocarrier system is stated to be 9-40 
nm with a median of 8 nm. The team reveals that drug release 
of this design took more than 100 h, which ensures a steady 
therapeutic effect.88

SOLID LIPID NANOPARTICLES
Nanocarriers designed with a polymer foundation have a 
certain advantage in terms of the wealth of possible chemical 
modifications, including the synthesis of block and comb 
polymers.89 Designs that use SLNs exploit this advantage by 
combining the advantages and avoiding the disadvantages of 

Figure 2. Molecular structure of graphene and graphene oxide 
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Table 1. Popular nanohydrogel materials utilized as nanocarriers

Nanohydrogel carrier material Structure

Xyloglucan

Glycerophosphate

Poly (N-isopropylacrylamide)

Poly (N-isopropylacrylamide-co-acrylic acid)

Poloxamer (Pluronic)

Poly (Organo phosphazene)
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Table 2. A literature summary of CSNs

Date Drug Nanocarrier design & advantages CS nanoparticle production Reference

1999 Insulin Blood glucose control 
nasal absorption 
pH selective release

Ionotropic gelation with Penta-
sodium tri-polyphosphate

31

2005 Epirubicin Chemotherapy 
chitosan-bound magnetic nanocarrier

Carboxymethylated Chitosan 
covalently bound onto Fe3O4 
nanoparticles

32

2005 BSA Carboxymethyl konjac glucomannan–chitosan nanoparticles Dropping method 33

2005 Z-DEVD-FMK Cerebral Ischemia Therapy 
CS-PEG-BIO-SA/OX26

Chitosan acetylation 13.7% 34

2005 Insulin Oral/Nasal Drug Carrier 
CS nanoparticles, CS nanocapsules and CS-coated lipid 
nanoparticles

Ionotropic gelation 35

2006 Triclosan 
Furoscmide 

Higher solubility in water 
hydroxypropyl cyclodextrin containing chitosan nanocarrier

Ionotropic gelation 36

2006 Protein complex P1 Transmucosal drug carrier 
glucomannan-coated chitosan nanoparticles

Ionotropic gelation 37

2006 Salmon calcitonin Oral drug carrier 
carrier for peptide drugs through the intestinal epithelium

Ionotropic gelation 38

2007 - Transmucosal drug carrier 
hydrophilic cyclodextrin-chitosan core and chitosan coating

Ionotropic gelation 39

2008 Indomethacin Ophthalmic Drug Delivery Ionotropic gelation by addition of 
TPP anions

40

2009 HP-b-CD complex 
simvastatin

Oral delivery of drugs that are insoluble in water Ionotropic gelation with Penta-
sodium tri-polyphosphate

41

2010 Bleomycin Chemotherapy 
Fe3O4 containing chitosan nanoparticles

Ionotropic gelation with Penta-
sodium tri-polyphosphate

42

2010 siRNA PEGylated Chitosan Nanocarriers 
Imidazole-modified chitosan-IAA nanoparticles

Complex coacervation of 
nonmodified chitosan or chitosan-
IAA with siRNA

43

2010 Glutathione Oral Drug Carrier 
Chitosan and Chitosan/cyclodextrin NPs

Ionotropic gelation 44

2010 Mesalazine Colon Specific Drug Delivery 
Superparamagnetic chitosan–dextran sulfate NPs

Ionotropic gelation 45

2011 Silver NPs Colon Cancer Apoptosis 
Chitosan-based nanocarrier of silver NPs

Ionotropic gelation with Penta-
sodium tri-polyphosphate

46

2011 Curcumin Hydrophobic drug delivery for cancer treatment 
Carboxymethyl chitosan nanocarriers

Ionic cross linking between 
carboxyl group

47

2014 100% iron saturated-
bovine lactoferrin

Osteoarthritis treatment - 48

2014 Rosmarinic acid Antioxidant delivery Ionotropic gelation with Penta-
sodium tri-polyphosphate

49

2015 Paclitaxel Chitosan based glycolipid-like nanocarrier 50

2019 Polyoxometalates Breast cancer therapy 
pH selective release

Crosslinked in inverse 
microemulsion medium

51

CSN: Chitosan nanocarriers
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Table 3. A literature summary of GR/GO nanocarriers

Date Drug Nanocarrier Nanocarrier design & 
advantages

GR or go 
synthesis

Nanocarrier size 
on average

Reference

2010 Camptothecin (CPT) 
Doxorubicin (DOX)

FA-GONS-p-amino 
benzenesulfonic acid

Sulfonic acid groups 
render stability in 
physiological solutions 
Target: human breast 
cancer cells

Hummer’s 
method

GONS (thickness) 
< 150 nm

 64

2011 Ellagic acid (EA) GONS-Pluronic 
F38(F38), GONS - 
Tween 80(T80), GONS–
Maltodextrin (MD)

High drug loading (For 
GO-T80, 1.22 g per 1 g)

Hummer’s 
method

GONS-F38 
(thickness)=6-7 nm 
GONS-T80 
(thickness)=7-8 nm 
GONS-MD 
(thickness) =5-6 nm 

65

2011 Doxorubicin (DOX) PEG-GONS Both chemotherapy 
and near infrared (NIR) 
photothermal therapy 
Lower systematic 
toxicity

Hummer’s 
method

- 66

2011 Tamoxifen Citrate 
(TmC)

Pyridinium bromide 
(PY+-Chol)-Graphene 
(GR)

Enhanced the apoptosis 
of cancer cells 

- PY+-Chol-GR 
(hydrodynamic 
diameter)=150-200 nm

67

2013 Doxorubicin (DOX) Polyethylene 
Glycol-Branched 
Polyethyleneimine-
Reduced GO 
(PEG-BPEI-rGO)

Photothermally 
controlled anti-cancer 
drug delivery
Higher cancer cell death

Reduction 
by hydrazine 
monohydrate

100-200 nm 68

2013 5-fluorouracil (5-FU) Fe3O4-GONS pH dependent 
chemotherapy
High drug loading 
capacity of up to 0.35 
mg mg-1

Hummer’s 
method

- 69

2013 Doxorubicin (DOX) PVP-GONS-FA pH sensitive nanocarrier 
Both chemotherapy 
and near infrared (NIR) 
photothermal therapy

Hummer’s 
method

GONS=100 nm 70

2013 Doxorubicin (DOX) FA-GONS-Chitosan 
(CHI)

High drug loading 
efficiency (0.98 mg/mg) 
& prolonged drug release 
rate 
pH sensitive drug release

Hummer’s 
method

- 71

2014 Doxorubicin (DOX) GO/integrin aVb3 
mono-antibody (Abs)/
polyethyleneimine 
(PEI)/citraconic 
anhydride functionalized 
poly(allylamine) (PAH-Cit)

Charge-reversal, target 
specific nanocarrier 
Drug release in acidic 
intracellular organelles

Hummer’s 
method

GO/PEI/PAH-Cit/
DOX=20-200 nm 

72

2014 Doxorubicin (DOX) Hyaluronic acid (HA)-
GONS

Targeted and pH 
sensitive drug delivery 
High loading efficiency 
of drug (42.9%)

Hummer’s 
method

GONS 
(lateral)=10-200 
nm

73



488 ÖZKAN et al. Mostly Used Nanocarriers in Drug Delivery and Drug Release

2014 Doxorubicin (DOX) PEG-Poly (allylamine 
hydrochloride) (PAH)- 
2,3-dimethylmaleic 
anhydride (DA)-GONS

pH sensitive drug 
release 
Both chemotherapy and 
photothermal therapy

Hummer’s 
method

PEG-PAH-DA-
GONS=70 nm

74

2015 Paclitaxel (PTX) PEG-GO Nontoxic chemotherapy 
carrier 
Increased biocompatibility 
and physiological stability

Hummer’s 
method

PEG-GO-PTX 
(lateral)=50-200 
nm

75

2015 Irinotecan (IRI) 
Doxorubicin (DI)

Poloxamer 188-GONS Photothermal 
therapy with dual 
chemotherapies in one 
system

Hummer’s 
method

GONS=200 nm 76

2015 Indomethacin (IMC) 
Doxorubicin (DOX)

poly(N-
isopropylacrylamide) 
(PNIPAM)-GO

Enhanced thermal 
stability 
Improved dispersibility in 
aqueous and cell medium

Hummer’s 
method

GONS=0.85 nm 
NIPAM-GONS=3.2 
nm

77

2016 Doxorubicin (DOX) Gold Nanoparticle 
(AuNP) - Folic Acid - 
GONS

Targeted chemotherapy 
and photothermal 
ablation 

- AuNP-FA-GONS 
(Hydrodynamic 
size)=188.2±7.2 nm 
AuNP-GO 
(diagonal)=135 nm

78

2018 Doxorubicin (DOX) 
Camptothecin (CPT)

Folic acid (FA)-
Graphene Oxide 
Nanosheet (GONS)

FA linked GONS for high 
affinity to 
folate receptor

Hummer’s 
method

2.7 nm 79

2018 Tetracycline (TC) Carboxymethylcellulose 
(CMC)-Zn-Based Metal-
Organic Framework 
(MOF-5)-GO

Efficient oral drug 
delivery 
Effective protection 
against stomach pH

Hummer’s 
method

CMC/MOF-5/GO 
(diameter)=344 nm

80

2018 Doxorubicin (DOX) Carboxymethylcellulose 
(CMC)-Zn-Based Metal-
Organic Framework 
(MOF-5)-GONS

Targeted delivery and 
controlled release of 
chemotherapy human 
blood cancer cell lines

Hummer’s 
method

 GONS 
(Thickness)=30 nm 
CMC/MOF-5/
GONS=80 nm

81

2019 Quercetin (QSR) 
Gefitinib (GEF)

Polyvinylpyrrolidone 
(PVP)-GO

High biocompatibility 
Enhanced anticancer 
activity within a dosage 
range

Hummer’s 
method

GO=166.5 nm 
PVP-GO=300-400 
nm

82

2019 Cis-
diamminedichloroplatinum 
(II) (CisPt)

Maghemiteγ-Fe2O3-GO Efficient Malignant 
glioma chemotherapy 
GONP accumulates in 
U87 human glioblastoma 
subcutaneous tumor 
xenografts 

Hummer’s 
method

GO (width)=80-100 
nm 
GO (thickness)=6.3 
nm

83

2019 Methotrexate (MTX) Polyethylene Glycol 
bis Amin (PEGA)- GO 
Magnetic NS (GOMNS) 

Magnetic Iron NPs 
Increased efficacy in 
chemotherapy with pH 
dependent drug release 
and biocompatibility

Hummer’s 
method

- 84

2019 5-Fluorouracil (5-FU) 
Curcumin (CUR) 

Chitosan-rGO Increased efficiency of 
chemotherapy against 
colon cancer

- - 85

2019 Doxorubicin (DOX) κ-Carrageenan (κ-Car)-
GONS-biotin

Targeted therapy for 
cervical cancer 
pH-sensitive drug release

Hummer’s 
method

κ-Car-GONS-biotin 
(thickness)=219 nm 

86
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other colloidal carriers. 

Lipids are defined as molecules that are hydrophobic or 
consisting of both hydrophilic and hydrophobic parts that are 
insoluble in water and soluble in organic solvents.90 IUPAC gave 
the following further detailed definition in 1995:

“A loosely defined term for substances of biological origin that are 
soluble in nonpolar solvents. They consist of saponifiable lipids, 
such as glycerides (fats and oils) and phospholipids, as well as 
nonsaponifiable lipids, principally steroids.”91

SLNs are developed by researchers as a substitute colloidal 
carrier with a spherical morphology for drug delivery and drug 
release.5 SLNs have an average size of between 150 and 300 
nm but could reach up to 1000 nm according to the surfactant 
used during production and are composed of roughly 0.1-30 
(% w/w) solid fat.92 Size and solid to liquid fat ratio affect the 
long-term stability, drug-loading capacity, and drug-release 
behavior of SLNs.93 As mentioned, SLNs have several favored 
assets such as low to no toxic effect on healthy tissue and ease 
of production in greater units of production, ability to load both 
lipophilic and hydrophilic therapeutic agents, and high drug load 
capacity.5 The most common use of SLNs as nanocarriers is for 
oral drug delivery. Other than this example, several drugs have 
been loaded using SLNs for drug delivery, such as doxorubicin 
and idarubicin,94 thymopentin,95 and camptothecin.96

DISCUSSION AND CONCLUSION 
Nanocarriers provide researchers with a highly applicable 
alternative method for targeted drug delivery and controlled drug 
release. The first and foremost reason that nanocarriers have 
become such a great focus in pharmaceutical technologies is that 
nanomaterials demonstrate extraordinary characteristics when 
compared with their larger scaled forms. These characteristics 
are summarized in this review as color, visible light, reactivity, 
surface area to volume ratio, conductivity, and surface tension. 
A variety of these carriers are more popular due to their high 
biocompatibility, ensuring greater efficacy especially in cancer 
treatments. Successful applications have not only ensured a 
greater focus on therapeutic development but also created a 
new solution available in the pharmaceutical market. In this 
paper, nanocarrier materials that have gained the most attention 
in drug delivery and release are summarized under the titles 
of nanohydrogels carriers, CSNs, GR and GO nanocarriers, 
and SLNs. Besides these nanomaterials there are also a great 
number of different nanocarrier designs that are not included in 
this review, such as gold nanocarriers,97 starch and/or cellulose 
nanocarriers,98 cerium oxide nanocarriers,99 and carbon nanotube 
incorporated nanocarriers.100 It is clear that, with further 
information gathered on nanocarriers for drug delivery and the 
current state in the development process of these nanomaterials, 
there is a high possibility to deliver better treatment to patients 
desperate in need of efficient treatment strategies.
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