

Global comparison of gene expression between subcutaneous and intramuscular adipose tissue of mature Erhualian pig

W.X. Sun¹, H.H. Wang^{1,2}, B.C. Jiang¹, Y.Y. Zhao¹, Z.R. Xie¹, K. Xiong¹ and J. Chen¹

¹College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China ²Hangzhou Academy of Agricultural Sciences, Hangzhou, Zhejiang, China

Corresponding author: J. Chen Email: jiechen@njau.edu.cn

Genet. Mol. Res. 12 (4): 5085-5101 (2013) Received March 20, 2013 Accepted September 18, 2013 Published October 29, 2013 DOI http://dx.doi.org/10.4238/2013.October.29.3

ABSTRACT. Adipose tissue plays an important role in energy metabolism and related diseases. The content of intramuscular fat significantly influences the pork quality. In this study, the whole gene expression of dorsal subcutaneous (s.c.) adipose tissue and intramuscular (i.m.) adipose tissue isolated from longissimus dorsi muscle tissue were compared using Affymetrix Gene-Chip microarray technology. The result revealed that 1228 genes were more highly expressed in s.c. adipose tissue, whereas 965 genes were higher expressed in i.m. adipose tissue. We found that the s.c. adipose tissue had a stronger capacity of lipid metabolism and fatty acid metabolism compared with i.m. adipose tissue, and angiopoietinlike-4, neuronatin, neuron-derived orphan receptor-1 alfa, and chloride intracellular channel 5 may play important roles in the regulation of fat deposition between i.m. and s.c. adipose tissues.

Key words: Subcutaneous adipose tissue; Intramuscular adipose tissue; Lipid metabolism; Fatty acid metabolism

Genetics and Molecular Research 12 (4): 5085-5101 (2013)

INTRODUCTION

In livestock production, the content of intramuscular fat (IMF) plays an important role in the sensory quality of pork and is implicated in consumer acceptance (Fernandez et al., 1999; Webb and O'Neill, 2008). The aim of modern pig breeding is to produce lean meat with a reasonable IMF content. However, it is well documented that IMF content has decreased significantly as a result of long-term intensive selection for increased leanness and thin back fat (Hermesch et al., 2000). A decrease in back fat will lead to a reduction in IMF content, since there is a moderate positive correlation between IMF content and back fat thickness (Lo et al., 1992; Suzuki et al., 2005). This correlation is unfavorable, but reasonable, since both subcutaneous (s.c.) and intramuscular (i.m.) adipocytes share the same regulatory process of adipogenesis. Therefore, to produce lean pork with a reasonable IMF content remains a challenge for modern pig breeding research.

The profiles of adipocyte differentiation and metabolism might be different according to their locations. The difference of various adipose depots, such as s.c., i.m., visceral, and perirenal adipose tissue, has been compared in humans (Vohl et al., 2004) and cows (Pickworth et al., 2011). The growth and differentiation of adipocytes are different between fat and muscle tissues (Sun et al., 2004; Hausman and Hausman, 2006). Intramuscular adipocytes different from those in other depots because that they are distributed among muscle fibers. The IMF content might be influenced by muscle fiber. Adipocyte membrane interactions with the extracellular matrix and with neighboring myofibroblast might trigger a variety of responses within the adipocytes (Katz et al., 2000). Intramuscular adipogenesis can be specifically inhibited by myostatin, which is a muscle-specific secreted peptide (Rebbapragada et al., 2003). However, the whole gene comparison between i.m. and s.c. adipose tissues in mature pigs has not been done *in vivo*. The *in vitro* culture system might have erased such important signal responses, whereas the *in vivo* experiment can reflect the physiological process of the organism.

In this study, we conducted a transcriptional comparison between i.m. and s.c. adipose tissues using mature Erhualian pigs in order to investigate the molecular differences between the two fat tissues. The results can facilitate deeper insight into the specific regulatory mechanisms of i.m. adipogenesis.

MATERIAL AND METHODS

Tissue samples

Male Erhualian pigs at 7 months of age and about 60 kg were used in this experiment. The pigs were from Erhualian protected areas in Chang Zhou City, China. All procedures of the experiments were done according to "The Instructive Notions with Respect to Caring for Laboratory Animals", enacted by the Ministry of Science and Technology of the People's Republic of China. The pigs were exsanguinated after electric stunning. Dorsal s.c. adipose tissue and longissimus dorsi (LD) muscle tissue were separated immediately from the junction of the thoracic and lumbar vertebrae after sabotage, and stored in liquid nitrogen until RNA extraction and i.m. adipose tissue segregation. The i.m. adipose tissue was carefully segregated using ophthalmology tweezers and scalpels to avoid muscle fibers contamination. The isolation was completed on ice in 5 min in order to decrease the RNA degradation.

Genetics and Molecular Research 12 (4): 5085-5101 (2013)

RNA isolation

Total RNA was extracted from the s.c. and i.m. adipose tissues using Trizol reagent (Invitrogen, Carlsbad, USA), according to the manufacturer description. The absorbance values at 260 and 280 nm were checked to assess the RNA concentration and purity using the NanoDrop1000 Spectrophotometer (Thermo, USA). The A_{260}/A_{280} ratio was evaluated for protein impurities in the samples. The RNA integrity was checked by electrophoresis on 2% agarose gels (m/v).

Microarray assay

The gene chip of the Porcine Genome Array (Affymetrix, Santa Clara, USA), which includes 23,937 probes, containing 23,256 transcripts of 20,201 Sus scrofa genes, was used in the experiments. The total RNAs of s.c. and i.m. adipose tissues were individually hybridized with gene chips. Briefly, in the first-strand cDNA synthesis reaction, 10 mg total RNA was used for reverse transcription using a T7-oligo(dT) promoter primer. Then, the doublestranded cDNA was synthesized from the first-strand cDNA using Rnase H. After purification of the resulting DNA, an *in vitro* transcription reaction was done to produce biotin-labeled cRNA using the MEGA Script T7 Kit (Ambion, Inc., USA). After the biotin-labeled cRNA had been cleaned up and fragmented, the cRNA was hybridized to the probe array at 45°C for 16 h. Thereafter, the probe array was washed and stained on the fluidics station, and the microarrays were scanned using the GeneChip Scanner 3000 (Affymetrix). The Affymetrix Micro Array Suite 5.0-Specific Terms GCOS version 1.4 was used for the quantity analysis of the hybridization. The gene expression levels that had \geq 2-fold difference between s.c. and i.m. adipose tissues were checked and further analyzed. The microarray assay was carried out by Capital Bio Corporation. The Molecule Annotation System (http://bioinfo.capitalbio.com/ mas) was used to analyze the differentially expressed genes, using the Kyoto encyclopedia of genes and genomes (KEGG) public pathway resource and gene ontology (GO) consortium.

Real-time reverse transcription-polymerase chain reaction (RT-PCR)

RT-PCR was performed to confirm the microarray results. Total RNA was extracted from s.c. and i.m. adipose tissues as described above and total RNA was reverse transcribed using a revere transcription kit (TaKaRa, Dalian, China) according to the manufacturer protocols. The expression levels were checked for 13 genes: fatty acid synthase (FAS), leptin (LEP), adiponectin (ADIPOQ), peroxisome proliferator-activated receptor gamma (PPAR- γ), fatty acid-binding protein 5 (FABP5), fatty acid-binding protein 4, adipocyte (FABP4), lipoprotein lipase (LPL), glucose phosphate isomerase (GPI), cyclin D2 (CCND2), insulin-like growth factor 2 (IGF2), neuron-derived orphan receptor-1 alfa (NOR-1 α), triosephosphate isomerase 1 (TPI1), and transducer of ERBB2, 1 (TOB1). The β -actin gene (ATCB) was used as the invariant control. Primers were designed using Primer Premier 5.0 and are shown in Table 1. RT-PCR was performed using the Fast Start Universal SYBR Green Master (Ta-KaRa) with a 20- μ L reaction system, according to the manufacturer protocol, in an ABI 7300 instrument. The thermal conditions of RT-PCR were as follows: 95°C for 30 s, followed by 40 cycles of degenerating at 95°C for 5 s, and annealing and extension at 60°C for 1 min. The melting-curve analysis was performed in order to monitor the specificity of production. All

Genetics and Molecular Research 12 (4): 5085-5101 (2013)

experiments were repeated three times. The gene expression levels in the s.c. and i.m. adipose tissues were analyzed with the $2^{-\Delta\Delta CT}$ method.

Table 1. Primer sequences for RT-PCR.				
Gene symbol	Accession No.	Product size (bp)	Primer sequence (5' to 3')	
LPL	NM_214286	104	F: CCAATGGAGGCACTTT	
			R: ATGGGAGCACTTCACG	
FAS	NM_001099930	191	F: CATTCGGTGCGTCCTGGTG	
			R: AGGCGTGCTCCGTCTGCTT	
GPI	NM_214330	146	F: GAGTGGCGAATGGAAAGG	
			R: TGGAGACGAACCAGACCC	
CCND2	NM_214088	155	F: TTACCTGGACCGCTTCTTG	
			R: GAGGCTTGATGGAGTTGTCG	
TOB1	NM_001123205	130	F: CTCCCTTTGGTCACTCTG	
			R: CTGCGGCCACTATTCTT	
ADIPOQ	NM_214370	103	F: GCTGTACTACTTCTCCTTCCACATCA	
			R: CTGGTACTGGTCGTAGGTGAAGAGT	
FABP4	XM_001927334	126	F: CAGGAAAGTCAAGAGCACC	
			R: ATGATACATTCCACCACCAA	
FABP5	NM_001039746	132	F: GCACCAGTCCGCTTAT	
			R: TTCCCACTCCTACTTCCT	
IGF2	NM_213883	167	F: GTGGCATCGTGGAAGAGTGC	
			R: CCAGGTGTCATAGCGGAAGAAC	
LEP	NM_213840	155	F: ATGCGGTGTATTCTGGTTG	
			R: AGAGCCCTCAAGTCACTCA	
PPARG	NM_214379	204	F: ATTCCCGAGAGCTGATCCAA	
			R: TGGAACCCCGAGGCTTTAT	
TPI1	NM_001037151	117	F: GAACGGGCGAAAGAACA	
			R: TGCCTGGCGAAGTCAAT	
NOR-1	NM_214247	127	F: TTTTGGACGATGCTATCC	
			R: ACAACCCTTGGCTGTTC	
ACTB	DQ845171	220	F: TGCTGTCCCTGTACGCCTCTG	
			R: ATGTCCCGCACGATCTCCC	

Statistical analysis

Data are reported as means \pm SE. Differences of mRNA expression levels were analyzed by the independent-samples *t*-test (SPSS Inc., Chicago, IL, USA). P < 0.05 was considered statistically significant.

RESULTS

Differentially expressed genes

After quantifying all hybridization spots, the signal intensity was plotted logarithmically. Figure 1 shows the scatter plot of microarray signals of s.c. and i.m. adipose tissues. It shows that the expression levels of many genes were different between the two samples. According to the statistics, 60.08% (14,493/24,123) probes were checked out in the s.c. adipose tissue sample, and 65.44% (15,787/24,123) gene probes were inspected in the i.m. adipose tissue sample. The comparison of the two samples revealed that 1281 probes, representing 1228 transcripts, including 234 known genes (Table 2), were up-regulated (\geq 2 folds) in s.c. adipose tissue, whereas 1076 probes, representing 965 transcripts, including 172 recognized genes (Table 3), were up-regulated in i.m. adipose tissue (\geq 2 folds).

Genetics and Molecular Research 12 (4): 5085-5101 (2013)

Figure 1. Log-Log Scatter Plot of subcutaneous (s.c.) and intramuscular (i.m.) adipose tiusse. Red replaces higher expressed genes in s.c adipose tissue. Green replaces the higher expressed genes in i.m adipose tissue.

Results of GO and KEGG analyses

In order to clarify the different biological patterns of the two samples, significantly different genes in the s.c. and i.m. adipose samples were individually analyzed by GO and KEGG of the criterion P < 0.05.

The GO results (Table 4) showed that of the highly expressed genes in the s.c. sample, 49.25% were for biological processes, 35.15% for molecular function, 14.10% for cellular components, and 1.504% for other items; correspondingly, 49.16% were for biological processes, 31.76% for molecular function, 18.17% for cellular components, and 1.014% for other items in the i.m. sample. With regards the biological processes, the highly expressed genes in the s.c. adipose sample (Figure 2A) significantly belonged to fatty acid β -oxidation, fatty acid metabolism, lipid metabolism, and fatty acid oxidation. Corresponding, the highly expressed genes in the i.m. adipose sample (Figure 2B) were mainly implicated in negative regulation of fat cell differentiation, DNA methylation, glycolysis, and positive regulation of histone acetylation.

The genes that were significantly expressed in the s.c. and i.m. samples were analyzed in KEGG (Figure 3). Figure 3A shows that the highly expressed genes in s.c. fat belong to glycolysis/ gluconeogenesis, fatty acid metabolism, fatty acid elongation in mitochondria, glycerolipid metabolism, adipocytokine signaling pathway, Janus kinase/signal transducer and activator of transcription signaling pathway, and insulin signaling pathway. The highly expressed genes in i.m. fat were involved in the mitogen-activated protein kinase cascades signaling pathway, Wingless and INT-1 signaling pathway, adipocytokine signaling pathway, cell communication, cell cycle, insulin signaling pathway, and transforming growth factor- β signaling pathway (Figure 3B).

Genetics and Molecular Research 12 (4): 5085-5101 (2013)

Table 2. Highly expressed genes in subcutaneous adipose tissue. Gene title Gene symbol Representative public ID Ratio RBP7 CN155390 27.037 Retinol binding protein 7 LYZ NM_214392.1 12.564 Lysozyme Steroidogenic acute regulatory protein STAR NM 213755.1 12.445 Guanylate binding protein 1 GBP1 CO950381 9.214 CH242-37G9.2 Phosphoenolpyruvate carboxykinase 1 BX676168 9.069 Secretogranin V SCG5 M23654.1 7.572 Amelogenin AMELX NM 213906.1 7.162 Interleukin 15 IL15 NM 214390.1 6.873 Regulator of G-protein signaling 1 RGS1 AF139837.1 6.562 AY550037.1 Adipose differentiation-related protein ADRP 6.416 Kallikrein KLKB1 NM 214074.1 5.951 C-type lectin domain family 5, member A CLEC5A NM 213990.1 5.523 5.445 AOP3 CK451710 Aquaporin 3 Secretory leukocyte peptidase inhibitor SLPI NM 213870.1 5.438 Microseminoprotein, beta MSMB NM 213852.1 5.113 APOE Apolipoprotein E NM 214308.1 4.818 BI402591 Sulfotransferase family, cytosolic, SULT2A1 4.796 2A, dehydroepiandrosterone-preferring, member 1 4.743 Aldo-keto reductase family 1, member C4 AKR1C4 BI184598 Porcine inhibitor of carbonic anhydrase PICA NM 213847.1 4.733 LOC396881 Ficolin NM 213868.1 4.717 NM 214246.1 CES3 Carboxylesterase 4.674 LPL AY686760.1 4.652 Lipoprotein lipase Glycerol kinase GK CK457408 4.63 AMBN Ameloblastin NM 214037.1 4.601 CD86 molecule CD86 NM 214222.1 4.437 ADIPOO Adiponectin, C1Q, and collagen domain containing AY589691.1 4 4 1 7 ANGPTL4 Angiopoietin-like 4 BI183736 4 3 9 3 Acyl-Coenzyme A dehydrogenase, long chain ACADL NM 213897.1 4.374 Glycoprotein nmb GPNMB CN153410 4.29 Ras homolog gene family, member F RHOF CK455476 4.079 NM_213979.1 4 0 5 4 FBP Fructose 1,6-bisphosphatase Microsomal glutathione S-transferase 1 MGST1 NM 214300.1 4.023 Peptidoglycan recognition protein L pPGRP-LB NM 213738.1 3.911 Occludin OCLN CF368080 3.844 Chemokine ligand 2 NM 214214.1 CCL2 3.831 Growth hormone receptor GHR X54429.1 3.828 Phospholipase A2, group VII PLA2G7 BQ603958 3.815 BP454285 Insulin induced gene 1 INSIG1 3.714 LOC414908 Vascular endotheial growth factor 2 BI360137 3.635 PON3 BX667193 3.583 Paraoxonase 3 CD247 molecule CD247 CF367898 3.558 MyoD family inhibitor domain containing MDFIC BF075680 3.531 Secreted phosphoprotein 1 SPP1 NM 214023.1 3.529 LOC100127151 CN070334 Aquaporin 11 3.51 GTP binding protein overexpressed in skeletal muscle Z80109.1 GEM 3.478 Malic enzyme 1, NADP(+)-dependent, cytosolic ME1 CN163851 3.461 3B-HSD 3-beta-hydroxysteroid dehydrogenase/delta-5-delta-4 isomerase CO946466 3.46 Prostaglandin reductase 1 PTGR1 NM 214385.1 3.446 CN159092 Phosphogluconate dehydrogenase PGD 3 4 1 3 Monoglyceride lipase MGLL CN028971 3.387 Fatty acid synthase FAS CF180911 3.354 Methylmalonyl CoA epimerase MCEE CN166359 3.343 Guanine nucleotide binding protein, GNAI1 U11249.1 3.343 alpha inhibiting activity polypeptide 1 Enoyl Coenzyme A hydratase 1, peroxisomal ECH1 BI183989 3.321 Fatty acid binding protein 7, brain FABP7 CK463743 3.273 Complement component C9 LOC100037951 CF362312 3.265

Genetics and Molecular Research 12 (4): 5085-5101 (2013)

Continued next on the page

Table 2. Continued.

Gene title	Gene symbol	Representative public ID	Ratio
Lipase, hormone-sensitive	LIPE	AY686758.1	3.24
Adiponectin receptor 2	ADIPOR2	CN156813	3.215
MHC class II DR-alpha	SLA-DRA	AY285933.1	3.212
Ubiquitin carboxyl-terminal esterase L1	UCHL1	CO947028	3.199
Glutathione peroxidase 3	GPX3	BX671405	3.194
Protein phosphatase 1 catalytic subunit alpha isoform	LOC733611	BP157767	3.183
Microsomal glutathione S-transferase 3	MGST3	CK466828	3.18
Flavin containing monooxygenase 1	FMO1	NM_214064.1	3.175
3-oxoacid CoA transferase 1	OXCT1	NM_213938.1	3.151
Transketolase	TKT	CN163555	3.142
Dehydrogenase/reductase member 4	DHRS4	NM_214019.1	3.139
Chemokine ligand 4	CCL4	NM_213779.1	3.134
Protein phosphatase 2, regulatory subunit A, beta isoform	PPP2R1B	CN160205	3.122
Carboxylesterase I	CESI	CF365558	3.055
Feline leukemia virus subgroup C cellular receptor family, member 2	FLVCR2	CF1//239	3.053
Topoisomersae II	IOPOII SDAD (AOD) (NM_213884.1	3.027
1-acylgiycerol-3-phosphate O-acyltransferase 1	SBAB-049D0.0	BG608/54	3.025
ADP-fibosylation factor-like protein 4A	LUC 595121	BF194181	3.024
Call darth inducing DNA fragmentation fractor like officiation a	LOC100127171	NM_213773.1	2.977
VAD(D) L debudes energy guinene 1	LOC10012/1/1	BA0/5/00 DO601005	2.970
RAD(P)H dellydiogenase, quillone 1 Pibosomal protoin larga P1	DDI D1	AV550065 1	2.900
Clutemul eminementidese	KPLP1 ENDED	A1550005.1	2.934
Cutoobromo h5 tuno P	ENPEP CVD5D	NM_214017.1	2.939
Derovisome preliferator estivated recentor semme	PRAPC	A D007026 1	2.923
		CO986683	2.917
Cystatin B	CSTB	CN164516	2.909
Cytochrome P450 family 27 subfamily A polypentide 1	CVP27A1	CN153890	2.900
Chemokine recentor 1	CCR1	NM 001001621 1	2.9
2 4-dienovl CoA reductase 1	DECR1	BO602989	2.875
Renin binding protein	RENBP	D83766.1	2.857
Cytochrome b5 type A	CYB5A	NM 001001770.1	2.84
Lectin, galactoside-binding, soluble, 3	LGALS3	BX676137	2.837
PRA1 family protein-like protein	LOC595127	CF793094	2.836
Adrenomedullin	ADM	NM 214107.1	2.819
N-acetylneuraminate pyruvate lyase	NPL	NM 214071.1	2.811
Cystathionase	LOC733654	CN165749	2.805
G protein-coupled receptor 120	GPR120	BI402064	2.781
Coagulation factor V	F5	NM_214120.1	2.778
Translocator protein	TSPO	NM_213753.1	2.759
Killer cell lectin-like receptor subfamily K, member 1	KLRK1	NM_213813.1	2.758
v-myc myelocytomatosis viral oncogene homolog	MYC	NM_001005154.1	2.737
Solute carrier family 11, member 1	SLC11A1	U55068.1	2.725
Cell division cycle 2, G1 to S and G2 to M	CDC2	AJ687786	2.725
Hypothetical	LOC100152232	CF363286	2.724
Integral membrane protein	ITM2A	CK462331	2.722
Crystallin, zeta-like 1	CRYZL1	CN163225	2.718
Glutathione S-transferase omega	GSTO1	NM_214050.1	2.712
MHC class I antigen 1	SLA-1	AB105382.1	2.707
NK-lysin	NKL	BX672894	2.707
Glutathione reductase	GSR	CK461867	2.695
Quinoid dihydropteridine reductase	QDPR	BM189976	2.694
Branched chain keto acid dehydrogenase E1, beta polypeptide	BCKDHB	CO943570	2.677
Karyopnerin alpha 2	KPNA2	BG382957	2.656
Elastase, neutrophil expressed	ELANE	NM_214109.1	2.65
Cellular disintegrin precursor	ADAM-9	AJ081165	2.638
CD1 antigen	CDI.I	INIM_213831.1	2.635
DIG family, member 3	0100	DQ000270	2.029
		Continued next on	the page

Genetics and Molecular Research 12 (4): 5085-5101 (2013)

Table 2. Continued.

	Cana gymbal	Ronrogontativo nublio ID	Datia
	Gene symbol	Representative public ID	Katio
Haptocorrin	LOC396873	BX675338	2.625
Laminin, beta l	LAMBI	CN155839	2.605
GIP-binding protein SAK1a	LUC595115	CK449626	2.58
POIL protection of telomeres 1 homolog	P011 7000	BF/03953	2.578
Zona pellucida binding protein	SDAD 501C4 1	NM_214106.1	2.5/1
MHC class II histocompatibility antigen SLA-DRB1	SBAB-591C4.1	AB010/50.1	2.309
Paraoxonase 2	PUN2	AE052601 1	2.550
Leplin Lymphoauta antigan 06	LEP	AF052091.1 DV019592	2.33
Deroviredovin 5	DPDV5	DA910303	2.540
A avil Co A sympthetese short shoin family member 2	ACSS2	NW1_214144.1	2.542
Phytanovil CoA 2 hydroxylase	AC552 DHVH	CB475037	2.539
Electron transfer flavonrotein, beta polypentide	FTFR	CN158530	2.520
Tyrosine 3/5-monoovygenase activation protein, zeta polypentide	VWHA7	CN153545	2.524
Acyl-Coenzyme A oxidase 1 nalmitovl	ACOX1	BP447334	2.507
Long-chain 3-ketoacyl-CoA thiolase	LCTHIO	NM 213966 1	2.301
Progesterone recentor membrane component 1	PGRMC1	NM 213911 1	2.197
Cyclin B2	CCNB2	CK451027	2.479
Metallothionein	MTIA	NM_001001266.1	2.478
Sulfotransferase family cytosolic 1A phenol-preferring member 1	SULTIAI	NM 213765 1	2.47
Lectin galactoside-binding soluble 8	LGALS8	BF080287	2.461
Annexin A1	ANXA1	CO944050	2.46
Solute carrier family 26, member 11	SLC26A11	CK461723	2.44
Epoxide hydrolase	EPHX1	NM 214355.1	2.435
P450 oxidoreductase	POR	L33893.1	2.424
Propionyl Coenzyme A carboxylase, beta polypeptide	PCCB	NM 213901.1	2.423
DAZ associated protein 2	DAZAP2	BP169027	2.423
IgG heavy chain	LOC396781	NM 213828.1	2.422
Chemokine ligand 9	CXCL9	BX914993	2.422
Scavenger receptor class B, member 1	SCARB1	NM_213967.1	2.415
Hyaluronan synthase 3	HAS3	NM_001001268.1	2.41
DBF4 homolog	DBF4	CF796296	2.407
Fatty acid binding protein 4, adipocyte	FABP4	AU059657	2.403
Clathrin, light chain	CLTA	BQ600136	2.396
BH3 interacting domain death agonist	BID	BX923313	2.394
Soluble epoxide hydrolase	LOC414425	NM_001001641.1	2.39
Branched chain keto acid dehydrogenase E1, alpha polypeptide	BCKDHA	CF792961	2.389
Ubiquitin-conjugating enzyme E2, J1	UBE2J1	CF790105	2.384
Non-histone protein HMG2	HMGB2	NM_214063.1	2.384
Goosecoid protein	GCS	Y17718.1	2.382
D-aspartate oxidase	DDO	CO942555	2.381
Sterol-C4-methyl oxidase-like	SC4MOL	NM_213752.1	2.37
MHC class II, DQ alpha	SBAB-591C4.5	AY 285927.1	2.364
Lactate dehydrogenase B	LDHB	U0/180.1	2.358
Hypothetical protein LOC100153293	LUC100153293	B1184480	2.356
Granzyme H	GZMH DDOG1	BA923509	2.333
CD50 malagula complement regulatory protein	CD50	CN154800 NM 214170 1	2.35
Thyraid harmona recentor here 1	C EDDA D1	NM_2141/0.1	2.349
Hama hinding protein	C-EKDA-DI	CN150822	2.349
Transmembrane BAX inhibitor motif containing 6	TMBIM6	CK153822 CK451891	2.340
Ph protein	PH	NM 21/378 1	2.330
Glutathione perovidase 4	GPY4	BI183078	2.333
Malate dehydrogenase 1 NAD	MDH1	NM 213874 1	2.327
I vsosomal 9kDa H+ transporting ATPace V0 subunit e	LOC733646	CB472326	2.320
Thioltransferase	GLRX1	NM 214233 1	2.322
Sirtuin 3	SIRT3	CF365373	2.319
Nitrogen fixation 1-like protein	LOC100156145	CF360660	2 313
in open manon i nice protein	200100100110	0.00000	2.515

Genetics and Molecular Research 12 (4): 5085-5101 (2013)

Continued next on the page

Table 2. Continued.					
Gene title	Gene symbol	Representative public ID	Ratio		
CCAAT/enhancer binding protein , alpha	CEBPA	AF103944.1	2.313		
Superoxide dismutase 1, soluble	SOD1	CO992469	2.296		
Ring finger protein 114	RNF114	CO939849	2.296		
Cyclin B	CCNB1	BX671487	2.271		
Citrate synthase	CS	C94952	2.261		
FK506 binding protein 7	FKBP7	CN153356	2.26		
Six transmembrane epithelial antigen of the prostate 1	STEAP1	NM_214305.1	2.252		
Phosphate regulating endopeptidase homolog, X-linked	PHEX	AJ316616.1	2.247		
Cytochrome P450, family 39, subfamily A, polypeptide 1	CYP39A1	CN154029	2.236		
Neuronatin	NNAT	CK466245	2.234		
Myosin VI	MYO6	NM_214021.1	2.226		
Inhibitor of DNA binding 2	ID2	CK466212	2.226		
Caspase 8, apoptosis-related cysteine peptidase	CASP8	AJ663595	2.225		
Fc fragment of IgG, low affinity IIIb, receptor	FCGR3B	AF3/2455.1	2.223		
Hydroxysteroid (17-beta) dehydrogenase 4	HSD17B4	NM_214306.1	2.222		
Proteoglycan I precursor-like	LOC100049692	CK464602	2.203		
NADPH oxidase heavy chain subunit	GP91-PHOX	NM_214043.1	2.195		
B-cell translocation gene 1, anti-proliferative	BIGI	CB481644	2.193		
Heme oxygenase 1	HMOXI	X606//.1	2.192		
Giycoprotein, alpha-galactosyltransierase 1	GGIAI EADD5	L30335.1 DI400074	2.191		
Caucalin 2	CAV2	DE101227	2.100		
Cutoobroma D450 2A10	CAV2 CVD2A10	DF191227	2.100		
Cytochionic P430 2A19	CTP2A19 ICEDD2	A1260600.1 A1657201	2.162		
Mitogen activated protein kinase activated protein kinase 5	MADKADK5	AJ05/291 BI/00519	2.181		
ManQ mannosidase	MAN1A MAN1A	NM 213885 1	2.177		
Interleukin 1 recentor antagonist	IL IRN	BF441608	2.105		
H2A histone family member Z	H2AFZ	CN154655	2.163		
Acyl-CoA synthetase long-chain family member 1	ACSL1	BI118904	2.161		
Eukaryotic translation elongation factor 1 alpha 1	EEF1A1	CO994537	2.159		
Protein kinase inhibitor gamma	PKIG	NM 214371.1	2.146		
Protein kinase C theta	LOC100152637	CN163635	2.134		
Integrin, beta 2	ITGB2	NM_213908.1	2.127		
CD74 antigen	CD74	CO994913	2.126		
Solute carrier family 35, member A3	SLC35A3	CK462997	2.118		
Uteroferrin	UF	NM_214209.1	2.111		
ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4	ST8SIA4	BF712001	2.105		
Aldehyde reductase	ALR1	NM_213890.1	2.098		
Cellular FLICE-like inhibitory protein	C-FLIP	AY533020.1	2.089		
Isocitrate dehydrogenase 3 (NAD+) beta	IDH3B	BX667411	2.078		
Fibrinogen-like 2	FGL2	BP433439	2.069		
Phosphoenolpyruvate carboxykinase 2	PCK2	CF180618	2.067		
Peroxisomal D3,D2-enoyi-CoA isomerase	PECI	CN100255	2.005		
Hypothetical protein L OC100152540	FECANII L OC100152540	NM_213907.1 CN164067	2.001		
Cyclin-dependent kinase 5	LOC100132340	CE175515	2.055		
HUS1 checkpoint homolog	HUS1	CO946905	2.054		
Spermidine/spermine N1-acetyltransferase 1	SAT1	NM 214358 1	2.031		
Sphingosine-1-phosphate receptor 5	S1PR5	CF175881	2.044		
Peroxiredoxin 6	PRDX6	NM 214408 1	2.043		
Interferon gamma-inducible protein 30	IFI30	CK456242	2.041		
Polo-like kinase 2	PLK2	CN159550	2.04		
Ig gamma 2b chain constant region	IGG2B	M81771.1	2.039		
RAD18 homolog	RAD18	CK461304	2.038		
Hypothetical protein LOC100153935	LOC100153935	NM_214005.1	2.027		
Hypothetical protein LOC100158166	LOC100158166	BX671182	2.02		
Notch homolog 4	SBAB-649D6.4	CF360567	2.018		
Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 1	CITED1	BI183561	2.014		
Spermidine/spermine N1-acetyltransferase family member 2	SAT2	CN162887	2.012		
Galactose mutarotase	GALM	NM_214406.1	2.004		
UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 4	B4GALT4	CO956759	2.002		

Genetics and Molecular Research 12 (4): 5085-5101 (2013)

Table 3. Highly expressed genes in intramuscular adipose tissue.				
Gene title	Gene symbol	Representative public ID	Ratio	
Uroplakin 3	UPK3A	CK452028	0.5	
Prepro-beta-defensin 1	PBD-1	NM_213838.1	0.497	
Sorbin polypeptide	LOC396719	AF396456.1	0.497	
Cytochrome P450, family 7, subfamily B, polypeptide 1	CYP7B1	CK455462	0.496	
Carboxypeptidase E	CPE	CD571929	0.495	
Calpastatin	CASI	AJ583408.1	0.493	
Growin factor receptor-bound protein 10	GRB10 CD0	CF /95/35	0.491	
Glycoprotain hormones, alpha polypentide	CGA	NM_214400.1	0.491	
Sarcoglycan gamma	SGCG	CK456888	0.484	
Integrin, beta 3	ITGB3	NM 214002.1	0.482	
Thy-1 cell surface antigen	THY1	BX676685	0.481	
Thrombomodulin	THBD	BX676135	0.475	
NADH dehydrogenase 1, subcomplex unknown, 1, 6 kDa	NDUFC1	CK460082	0.474	
Insulin-like growth factor binding protein 5	IGFBP5	NM_214099.1	0.474	
Cyclin D2	CCND2	NM_214088.1	0.469	
Follistatin	FST	NM_001003662.1	0.464	
Calcium/calmodulin-dependent protein kinase II gamma	CAMK2G	U/29/2.1	0.463	
NDRG2	LUC /80451	B1182507	0.462	
Heat shock 105 kDa/110 kDa protein 1	U7 HSPH1	CO993113	0.462	
Odd homeobox 1 protein	OB1	NM 213792 1	0.433	
Insulin-like growth factor 2	IGF2	NM 213883.1	0.446	
Myocyte enhancer factor 2A	MEF2A	BX917896	0.445	
Glutathione peroxidase 2	GPX2	CF365816	0.439	
Thrombospondin 1	THBS1	BQ601960	0.438	
Biglycan	BGN	BF193177	0.433	
Protein phosphatase 1, regulatory subunit 12A	PPP1R12A	BI183395	0.431	
EGF-like-domain, multiple 8	SBAB-649D6.3	BE232302	0.429	
Beta-defensin 2	PBD-2	NM_214442.1 CV 464002	0.424	
Glyceraldehyde-3-nhosnhate dehydrogenase	GAPDH	AE017079 1	0.42	
LIM and cysteine-rich domains 1	LMCD1	CA779262	0.412	
Inter-alpha inhibitor H4	ITIH4	NM 001001537.1	0.412	
Bone morphogenetic protein receptor, type IB	BMPR1B	CO950299	0.412	
ATG4 autophagy related 4 homolog D	ATG4D	CK453932	0.411	
Inhibitor of kappa light polypeptide gene enhancer in	IKBKG	BX925233	0.404	
B-cells, kinase gamma				
P311 protein	P311	BQ598577	0.4	
Activating transcription factor 4	AIF4	CF /926/8	0.397	
CD200 molecule	CD200	CK45/958 DI200997	0.396	
Complement component 3	CD209	NM 214009 1	0.379	
Cofilin 2	CFL2	BM083222	0.374	
Neuropeptide Y receptor Y1	NPY1R	NM 214288.1	0.374	
Prostamide/PG F synthase	LOC100134955	CF179637	0.373	
TIMP metallopeptidase inhibitor 1	TIMP1	NM_213857.1	0.368	
Fibronectin	FN1	BF709509	0.367	
Vascular smooth muscle alpha-actin	ACT-4	BX670904	0.366	
Tenascin C	TNC	NM_214230.1	0.364	
Nebulin-related anchoring protein	NKAP ICEDD2	CK459919	0.352	
Chamaking ligand 2	CYCL2	NM_214005.1 DE079671	0.347	
Isocitrate dehydrogenase 2 (NADP ⁺) mitochondrial	IDH2	CN159777	0.345	
TrkB protein	TRKB	BP171877	0.339	
PROCR-like	LOC654289	BX922318	0.339	
Protein kinase inhibitor alpha	PKIA	NM 214204.1	0.338	
Carnitine palmitoyltransferase 1B	CPT1B	AY181062.1	0.338	
Collagen, type VI, alpha 1	COL6A1	CN162503	0.336	
Serpin peptidase inhibitor, clade E, member 1	SERPINE1	NM_213910.1	0.335	
Nicotinamide phosphoribosyltransferase	NAMPT	BX666697/	0.33	
	DSIN	D90053.1	0.327	

Genetics and Molecular Research 12 (4): 5085-5101 (2013)

Continued next on the page

Table 3. Continued.

Gene title	Gene symbol	Representative public ID	Ratio
Cadherin 1. type 1. E-cadherin	CDH1	BO604786	0.324
Stanniocalcin 1	STC1	BI400766	0.323
Calcineurin A protein	LOC396603	BI118300	0.318
Phospholamban	PLN	NM 214213.1	0.316
Parathyroid hormone-like hormone	PTHLH	NM 213916.1	0.315
Calcium/calmodulin-dependent protein kinase II delta	CAMK2D	NM 214381.1	0.305
Glucose phosphate isomerase	GPI	NM 214330.1	0.296
TEA domain family member 4	TEAD4	CF176015	0.293
Heat shock protein 70.2	SBAB-707F1.4	NM 213766.1	0.289
Sarcoplasmic/endoplasmic-reticulum Ca(2+) pump gene 2	SERCA2	X15073.1	0.284
Claudin 7	CLDN7	CK450245	0.272
Dickkopf homolog 3	DKK3	CO949346	0.267
Mitogen-activated protein kinase 12	MAPK12	BI360380	0.265
Zinc finger, AN1-type domain 5	ZFAND5	CN160422	0.264
Collagen, type I, alpha 1	COL1A1	AF201723.1	0.263
CD55 molecule, decay accelerating factor for complement	CD55	NM_213815.1	0.256
Maternally expressed 3	MEG3	CK451038	0.255
Stearoyl-CoA desaturase 5	SCD5	CN153640	0.251
Filamin A, alpha	FLNA	CN166104	0.243
Heat shock protein 70	HSP70	X68213.1	0.243
Monoamine oxidase B	MAOB	NM_001001864.1	0.241
Triosephosphate isomerase 1	TPI1	CN160134	0.23
Transferrin	TF	BX919174	0.23
Chloride intracellular channel 5	CLIC5	BX666230	0.229
Solute carrier family 16, member 3	SLC16A3	BX676033	0.226
Tenascin-X	SBAB-514B12.2	CF359969	0.221
Feline leukemia virus subgroup A receptor	LOC100155620	BE014165	0.22
Fibromodulin	FMOD	CN163410	0.215
Smooth muscle protein 22-alpha	SM22A	CK466398	0.213
Calcium channel, voltage-dependent, alpha 2/delta subunit 1	CACNA2D1	NM_214183.1	0.208
ATPase, Na ⁺ /K ⁺ transporting, beta 1 polypeptide	ATP1B1	CO950644	0.206
Dnaj homolog, subfamily A, member 4	DNAJA4	NM_214339.1	0.199
Neuron-derived orphan receptor-1 alfa	NOR-1	NM_214247.1	0.197
C1q and tumor necrosis factor related protein 3	C1QTNF3	BQ599486	0.194
Phospholipase C, delta 4	PLCD4	NM_214052.1	0.192
Myosin regulatory light polypeptide 9	MYL9	CK455118	0.189
Transforming growth factor, beta 3	TGFB3	NM_214198.1	0.187
Protein phosphatase 1, regulatory subunit 14A	PPP1R14A	NM_214337.1	0.184
Cardiac muscle alpha actin 1	ACTC1	CO939491	0.169
Pyruvate kinase, muscle	PKM2	CN166623	0.168
Iransducer of ERBB2, 1	TOBI	BQ598689	0.165
AlPase inhibitory factor 1	ATPIFI	AJ604/25	0.165
Integrin beta 1 binding protein 2	IIGBIBP2	BX924523	0.154
Keratin 8	KR18	BX66/006	0.153
Phosphoglucomutase I	PGMI	AF091607.1	0.15
Four and a nair LIM domains 3	FHL3	NM_213946.1	0.149
	PIF-BEIA	D89546.1	0.148
Cretile as intermediate laser metain	CUL21	AY 512007.1	0.142
Cartilage intermediate layer protein,	CILP	083114.1	0.141
Collogon true VI. olube 2	COLGA	DI192225	0.126
Collageii, type vi, aipila 5	CNINI	DI162333	0.130
Callagan type VIII alpha 1	COLONI	A E 054801 1	0.129
Tronomyosin 2	TDM2	CE190220	0.124
Protoolinid protoin 1	DI D1	PO601666	0.122
Amylase alpha 2B	AMV2B	NM 214195 1	0.122
Tumor necrosis factor recentor superfamily member 12A	TNEP SE12A	BE710/00	0.114
Bridging integrator 1	RIN1	CN162285	0.114
Fat-inducing transcript 1	FIT1	CF180497	0.098
Une-45 homolog B	LINC45R	CN069994	0.09
Reticulon 2	RTN2	CF179996	0.087
Na K-ATPase alpha 2 subunit	LOC396828	BX673191	0.077
	200570020	D10/01/1	0.077

Genetics and Molecular Research 12 (4): 5085-5101 (2013)

Continued next on the page

Table 3. Continued.

Gene title	Gene symbol	Representative public ID	Ratio
Oculocutaneous albinism II	OCA2	NM 214094.1	0.063
Myogenic factor 6	MYF6	AY188502.1	0.063
ADP-ribosyltransferase 3	ART3	AJ291435.1	0.051
Titin	TTN	CF359670	0.047
Calpain 3	CAPN3	AF148955.1	0.045
Tropomyosin 1	TPM1	CN165926	0.042
Adenylosuccinate synthase like 1	ADSSL1	CK456903	0.038
Titin-cap	TCAP	BM190107	0.032
Troponin C	TNNC1	CK449959	0.032
Phosphofructokinase, muscle	PFKM	CK466479	0.028
Muscle-specific intermediate filament desmin	LOC396725	NM 001001535.1	0.026
COX8H protein	COX8H	BX921027	0.024
Myosin, heavy chain 7, cardiac muscle, beta	MYH7	U75316.1	0.019
Epidermal growth factor	EGF	NM 214020.1	0.018
Troponin I	TNNI1	NM 213912.1	0.015
Skeletal alpha actin	LOC100154254	BM190097	0.013
Myosin, light chain 1, alkali; skeletal, fast	MYL1	NM 214374.1	0.011
Calsarcin 1	LOC733663	CF178743	0.011
Popeye domain containing 3	POPDC3	CF180347	0.011
Myosin light chain, phosphorylatable, fast skeletal muscle	MYLPF	AJ604745	0.007
Myosin, heavy chain 4, skeletal muscle	MYH4	AB025260.1	0.007
Xin actin-binding repeat containing 1	XIRP1	BI596265	0.007
Ryanodine receptor 1	RYR1	M91451.1	0.007
Beta actin	LOC396797	L20459	0.007
Troponin C type 2	TNNC2	NM 001001862.1	0.006
Myosin binding protein H	MYBPH	BX676336	0.006
Creatine kinase, muscle	CKM	AF165173.1	0.006
Peroxisome proliferator activated receptor gamma,	PPARGC-1	AB106108.1	0.006
coactivator 1 alpha			
Myosin light chain 2V	MLC2V	NM 213791.1	0.006
Creatine kinase, mitochondrial 2	CKMT2	BX667443	0.006
Xin actin-binding repeat containing 2	XIRP2	NM 214396.1	0.005
Sarcolipin	SLN	BX676059	0.005
Phosphorylase, glycogen, muscle	PYGM	CF179951	0.005
Enolase 3	ENO3	AJ301332	0.005
Myoglobin	MB	NM 214236.1	0.005
Cardiac ankyrin repeat protein	CARP	NM 213922.1	0.005
Actin-binding Rho activating protein	ABRA	BX667447	0.005
Troponin T type 3	TNNT3	AB176599.1	0.004
Phosphoglycerate mutase 2	PGAM2	BX667605	0.004
Troponin I	TNNI2	AJ604638	0.004
Alpha-actinin-2-associated LIM protein	LIM	NM 001001637.1	0.004
Myozenin 1	MYOZ1	BX675224	0.003
Troponin T type 1	TNNT1	AB118908.1	0.003
Small muscle protein, X-linked	SMPX	BX664815	0.002
Myotilin	MYOT	BM190434	0.002
Adenosine monophosphate deaminase 1	AMPD1	AJ604865	0.002

Table 4. Gene Ontology results of differentially expressed probes of subcutaneous (s.c.) and intramuscular (i.m.) (Figure 2 B) adipose tissues.

Classification	Content (%)	
	s.c. adipose tissue	i.m. adipose tissue
Biological process	49.25	49.16
Molecular function	35.15	31.76
Cellular component	14.10	18.07
Other items	1.50	1.01

Genetics and Molecular Research 12 (4): 5085-5101 (2013)

Figure 2. Biological process analyzed of genes that changed two-fold ≥ 2 folds in subcutaneous (A) and intramuscular adipose tissue (B) by Gene Ontology analysis (P values < 0.05).

Figure 3. Significant pathways analyzed of genes that changed two-fold ≥ 2 folds in subcutaneous (A) and intramuscular adipose tissue (B) by KEGG analysis (P values < 0.05).

Genetics and Molecular Research 12 (4): 5085-5101 (2013)

RT-PCR

In order to validate the microarray chips results, 13 randomly selected genes were analyzed using RT-PCR. As Figure 4A showed, FAS, LEP, ADIPOQ, PPAR- γ , intramuscular FABP5, FABP4, and LPL were more highly expressed in s.c. adipose tissue. On the contrary, GPI, CCND2, IGF2, NOR-1, TPI1, and TOB1 were more highly expressed in i.m. adipose tissue. The RT-PCR results were in accordance with the chips results (Figure 4B).

Figure 4. Microarry results conformed by RT-PCR. A. RT-PCR results of the genes selected. B. Comparison between RT-RCR and microarry results.

DISCUSSION

From the GO biological process analysis, we found that fatty acid oxidation, fatty acid β -oxidation, fatty acid metabolism, and lipid metabolism occurred in higher levels in s.c. adipose tissue. The KEGG results revealed that fatty acid elongation in mitochondria, fatty acid metabolism, and glycerolipid metabolism were significantly more highly expressed in s.c. adipose tissue. These results imply that s.c. adipose tissue has different abilities of lipid metabolism and fatty acid metabolism compared with i.m. adipose tissue.

LPL and FAS are the rate-limiting enzymes of triglyceride accumulation in adipose tissue (Weinstock et al., 1997; Ranganathan et al., 2006). FABP4 and FABP5, which are strongly

Genetics and Molecular Research 12 (4): 5085-5101 (2013)

associated with fat accumulation, are key mediators of lipid metabolism and intracellular transport (Gorbenko et al., 2006; Ma et al., 2010). Hormone-sensitive lipase (HSL), catalyzing the triglycerides and diglycerides to form glycerol and fatty acids, is a key enzyme in the lipolysis process (Haemmerle et al., 2002; Holm, 2003). FABP4 regulates metabolism by affecting the activities of HSL and PPAR- γ , and has a higher expression in the NIH 3T3-L1 induction process (Gorbenko et al., 2006). Apolipoprotein E (APOE), which can improve the content of free fatty acid and triglyceride in adipose tissue (Huang et al., 2006), had a 4.8-fold higher expression than that in i.m. adipose tissue. In this study, LPL, FAS, FABP4, FABP5, HSL, and APOE were more highly expressed in s.c. adipose tissue, which implied that s.c. adipose tissue has a stronger lipogenic and lipolytic capacity. This higher level of lipogenic metabolism in s.c. tissue was coincidence with a previous report, in that s.c. adipocytes exhibit stronger lipogenesis in the process of preadipocyte differentiation to mature adipocytes in neonatal pigs (Zhou et al., 2010), as well as in mature adipoctyes of 210-day female pigs (Gardan et al., 2006).

Enoyl coenzyme A hydratase 1 peroxisomal (ECH1) and 2,4-dienoyl CoA reductase 1, mitochondrial (DECR1) are the rate-limiting enzymes in β -oxidation of fatty acid (Castro-Chavez et al., 2003). Our results revealed that the expression levels of HSL, ECH1, and DECR1 in s.c. adipose tissue were 3.24-, 3.321-, and 2.875-fold of those in i.m. adipose tissue, respectively. In the s.c. depot, ADIPOQ and adiponectin receptor 2 (ADIPOR2) are both highly expressed. ADIPOR2 positively regulates energy dissipation and fatty acid oxidation by activation of the PPAR- α pathway (Yamauchi et al., 2007). Thus, s.c. adipose tissue was more sensitive to adiponectin, and had a stronger ability of energy dissipation. Therefore, the high expression of ECH1, DECR1, ADIPOQ, and ADIPOR2 may imply that the s.c. adipose tissue also has a stronger capacity of fatty acid β -oxidation compared with i.m. adipose tissue. Adipose differentiation-related protein (ADRP) increases the uptake of long-chain fatty acids (Gao and Serrero, 2000) and its expression can increase the accumulation of neural lipid droplets (Londos et al., 1999). Our results also showed a high level of ADRP in s.c. adipose tissue. These implicate that s.c. adipose tissue has higher abilities for fatty acid uptake compared with i.m. adipose tissue.

In summary, the s.c. adipose tissue had a stronger ability for lipid metabolism and fatty acid metabolism than i.m. adipose tissue. Besides the biological process differences in different fat depots, angiopoietin-like-4 (ANGPTL4), neuronatin (NNAT), neuron-derived orphan receptor-1 alfa (NOR-1), and chloride intracellular channel 5 (CLIC5) may also participate in the metabolism differences between s.c. and i.m. adipose tissues.

ANGPTL4 and NNAT were highly expressed in s.c. adipose tissue compared with i.m. adipose tissue. ANGPTL4 is strongly up-regulated in the differentiation of 3T3-L1, and regulates the deposition of lipid and energy homeostasis (Lei et al., 2011) by suppressing fat accumulation (Mandard et al., 2006) and advancing fatty acids oxidation (Backhed et al., 2007). Compared with i.m. adipose tissue, the expression level of ANGPTL4 in s.c. adipose tissue was about 3.4-fold higher. The imprinted gene NNAT can promote adipogenesis in 3T3-L1 cells by enhancing the phosphorylation of cyclic AMP-response element-binding protein (Suh et al., 2005). NNAT expression is also influenced by leptin as a hypothalamic target (Vrang et al., 2010). The research of NNAT is mainly in the nervous system, and little about it in adipose tissue is known.

NOR-1 and CLIC5 were highly expressed in i.m. adipose tissue compared with s.c. adipose tissue. NOR-1, as a nuclear receptor of the unclear receptor 4A, regulates the metabolism of glucose and lipid in skeletal muscle, liver, and adipose tissues (van Tiel and de Vries,

Genetics and Molecular Research 12 (4): 5085-5101 (2013)

2012), and is a target of β -adrenergic signaling in skeletal muscle (Pearen et al., 2006). NOR-1 inhibits adipogenesis of 3T3-L1 or 3T3-F442A pre-adipocytes (Chao et al., 2008), and NOR-1 gene transcription is regulated by liver X in adipocytes (Kumar et al., 2009). The specific function of CLIC5 is poorly understood (Bradford et al., 2010). Recent research found that CLIC5 had higher expression in lean-type pig than in obese-type pig, and was negatively related with i.m. fat content (Li et al., 2010). CLIC5 inhibits the differentiation of adipocytes and promotes the proliferation of 3T3-L1 (Li et al., 2010). NOR-1 and CLIC5 were significantly more highly expressed in i.m. adipose tissue. Therefore, ANGPTL4, NNAT, NOR-1, and CLIC5 can be candidate genes for the difference in lipid metabolism between s.c. and i.m. adipose tissues.

ACKNOWLEDGMENTS

Research supported by National Natural Science Foundation of China (#31272423). This research was also supported by the Fundamental Research Funds for the Central Universities (#KYZ201113).

REFERENCES

- Backhed F, Manchester JK, Semenkovich CF and Gordon JI (2007). Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. U. S. A. 104: 979-984.
- Bradford EM, Miller ML, Prasad V, Nieman ML, et al. (2010). CLIC5 mutant mice are resistant to diet-induced obesity and exhibit gastric hemorrhaging and increased susceptibility to torpor. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298: R1531-R1542.
- Castro-Chavez F, Yechoor VK, Saha PK, Martinez-Botas J, et al. (2003). Coordinated upregulation of oxidative pathways and downregulation of lipid biosynthesis underlie obesity resistance in perilipin knockout mice: a microarray gene expression profile. *Diabetes* 52: 2666-2674.
- Chao LC, Bensinger SJ, Villanueva CJ, Wroblewski K, et al. (2008). Inhibition of adipocyte differentiation by Nur77, Nurr1, and Nor1. *Mol. Endocrinol.* 22: 2596-2608.
- Fernandez X, Monin G, Talmant A, Mourot J, et al. (1999). Influence of intramuscular fat content on the quality of pig meat - 1. Composition of the lipid fraction and sensory characteristics of m. longissimus lumborum. *Meat Sci.* 53: 59-65.
- Gao J, Ye H and Serrero G (2000). Stimulation of adipose differentiation related protein (ADRP) expression in adipocyte precursors by long-chain fatty acids. J. Cell Physiol. 182: 297-302.
- Gardan D, Gondret F and Louveau I (2006). Lipid metabolism and secretory function of porcine intramuscular adipocytes compared with subcutaneous and perirenal adipocytes. *Am. J. Physiol. Endocrinol. Metab.* 291: E372-E380.
- Gorbenko O, Filonenko V and Gout I (2006). Generation and characterization of monoclonal antibodies against FABP4. *Hybridoma* 25: 86-90.
- Haemmerle G, Zimmermann R, Hayn M, Theussl C, et al. (2002). Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J. Biol. Chem. 277: 4806-4815.
- Hausman GJ and Hausman DB (2006). Search for the preadipocyte progenitor cell. J. Clin. Invest. 116: 3103-3106.
- Hermesch S, Luxford BG and Graser H-U (2000). Genetic parameters for lean meat yield, meat quality, reproduction and feed efficiency traits for Australian pigs. *Livest. Prod. Sci.* 65: 249-259.
- Holm C (2003). Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. *Biochem. Soc. Trans.* 31: 1120-1124.
- Huang ZH, Reardon CA and Mazzone T (2006). Endogenous ApoE expression modulates adipocyte triglyceride content and turnover. *Diabetes* 55: 3394-3402.
- Katz BZ, Zamir E, Bershadsky A, Kam Z, et al. (2000). Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions. *Mol. Biol. Cell* 11: 1047-1060.
- Kumar N, Wang H, Liu D and Collins S (2009). Liver X receptor is a regulator of orphan nuclear receptor NOR-1 gene transcription in adipocytes. *Int. J. Obes.* 33: 519-524.
- Lei X, Shi F, Basu D, Huq A, et al. (2011). Proteolytic processing of angiopoietin-like protein 4 by proprotein convertases modulates its inhibitory effects on lipoprotein lipase activity. J. Biol. Chem. 286: 15747-15756.

Genetics and Molecular Research 12 (4): 5085-5101 (2013)

- Li FN, Yin JD, Ni JJ, Liu L, et al. (2010). Chloride intracellular channel 5 modulates adipocyte accumulation in skeletal muscle by inhibiting preadipocyte differentiation. J. Cell Biochem. 110: 1013-1021.
- Lo LL, McLaren DG, McKeith FK, Fernando RL, et al. (1992). Genetic analyses of growth, real-time ultrasound, carcass, and pork quality traits in Duroc and Landrace pigs: II. Heritabilities and correlations. J. Anim. Sci. 70: 2387-2396.
- Londos C, Brasaemle DL, Schultz CJ, Segrest JP, et al. (1999). Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. *Semin. Cell Dev. Biol.* 10: 51-58.
- Ma X, Ren X, Han P, Hu S, et al. (2010). SiRNA against Fabp5 induces 3T3-L1 cells apoptosis during adipocytic induction. *Mol. Biol. Rep.* 37: 4003-4011.
- Mandard S, Zandbergen F, van Straten E, Wahli W, et al. (2006). The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J. Biol. Chem. 281: 934-944.
- Pearen MA, Ryall JG, Maxwell MA, Ohkura N, et al. (2006). The orphan nuclear receptor, NOR-1, is a target of betaadrenergic signaling in skeletal muscle. *Endocrinology* 147: 5217-5227.
- Pickworth CL, Loerch SC, Velleman SG, Pate JL, et al. (2011). Adipogenic differentiation state-specific gene expression as related to bovine carcass adiposity. J. Anim. Sci. 89: 355-366.
- Ranganathan G, Unal R, Pokrovskaya I, Yao-Borengasser A, et al. (2006). The lipogenic enzymes DGAT1, FAS, and LPL in adipose tissue: effects of obesity, insulin resistance, and TZD treatment. J. Lipid. Res. 47: 2444-2450.
- Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ, et al. (2003). Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. *Mol. Cell Biol.* 23: 7230-7242.
- Suh YH, Kim WH, Moon C, Hong YH, et al. (2005). Ectopic expression of neuronatin potentiates adipogenesis through enhanced phosphorylation of cAMP-response element-binding protein in 3T3-L1 cells. *Biochem. Biophys. Res. Commun.* 337: 481-489.
- Sun D, Zhu X, Qiao S, Fan S, et al. (2004). Effects of conjugated linoleic acid levels and feeding intervals on performance, carcass traits and fatty acid composition of finishing barrows. Arch. Anim. Nutr. 58: 277-286.
- Suzuki K, Irie M, Kadowaki H, Shibata T, et al. (2005). Genetic parameter estimates of meat quality traits in Duroc pigs selected for average daily gain, longissimus muscle area, backfat thickness, and intramuscular fat content. J. Anim. Sci. 83: 2058-2065.
- van Tiel CM and de Vries CJ (2012). NR4All in the vessel wall. J. Steroid Biochem. Mol. Biol. 130: 186-193.
- Vohl MC, Sladek R, Robitaille J, Gurd S, et al. (2004). A survey of genes differentially expressed in subcutaneous and visceral adipose tissue in men. *Obes. Res.* 12: 1217-1222.
- Vrang N, Meyre D, Froguel P, Jelsing J, et al. (2010). The imprinted gene neuronatin is regulated by metabolic status and associated with obesity. *Obesity (Silver Spring)* 18: 1289-1296.
- Webb EC and O'Neill HA (2008). The animal fat paradox and meat quality. Meat Sci. 80: 28-36.
- Weinstock PH, Levak-Frank S, Hudgins LC, Radner H, et al. (1997). Lipoprotein lipase controls fatty acid entry into adipose tissue, but fat mass is preserved by endogenous synthesis in mice deficient in adipose tissue lipoprotein lipase. Proc. Natl. Acad. Sci. U. S. A. 94: 10261-10266.
- Yamauchi T, Nio Y, Maki T, Kobayashi M, et al. (2007). Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. *Nat. Med.* 13: 332-339.
- Zhou G, Wang S, Wang Z, Zhu X, et al. (2010). Global comparison of gene expression profiles between intramuscular and subcutaneous adipocytes of neonatal landrace pig using microarray. *Meat Sci.* 86: 440-450.

Genetics and Molecular Research 12 (4): 5085-5101 (2013)