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Abstract 
The Response Surface Methodology (RSM) has been applied to explore the 
thermal structure of the experimentally studied catalytic combustion of stabi-
lized confined turbulent gaseous diffusion flames. The Pt/γAl2O3 and Pd/γAl2O3 
disc burners were situated in the combustion domain and the experiments 
were performed under both fuel-rich and fuel-lean conditions at a modified 
equivalence (fuel/air) ratio (Ø) of 0.75 and 0.25 respectively. The thermal 
structure of these catalytic flames developed over the Pt and Pd disc burners 
were inspected via measuring the mean temperature profiles in the radial di-
rection at different discrete axial locations along the flames. The RSM con-
siders the effect of the two operating parameters explicitly (r), the radial dis-
tance from the center line of the flame, and (x), axial distance along the flame 
over the disc, on the measured temperature of the flames and finds the pre-
dicted maximum temperature and the corresponding process variables. Also 
the RSM has been employed to elucidate such effects in the three and two 
dimensions and displays the location of the predicted maximum temperature. 
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1. Introduction 

Catalytic combustion of various hydrocarbon fuels over noble metals addresses 
the interaction between homogeneous and heterogeneous reactions and it is par-
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ticularly attractive for the latest power generation technologies aiming at miti-
gating greenhouse CO2 emissions [1]. Catalytic combustion methodologies are 
increasingly explored in the last years due to their enhanced combustion stability 
at very fuel-lean equivalence ratios and the resulting ultra-low NOx emissions 
[2] [3]. Catalytic-rich combustion is of interest not only for natural gas but also 
for hydrogen and syngas fuels. In this case the catalyst does not only have a 
prime catalytic partial oxidation function, but also acts as a preheater and stabi-
lizer for subsequent homogeneous combustion zone [4] [5]. Progress in catalytic 
combustion depends crucially on advances in catalyst technology and in mul-
ti-dimensional modeling for reactor design [6].  

Recently the catalytic combustion has been dealt with numerically. Lucci et al. 
[6] investigated the turbulent catalytic combustion of a fuel-lean hydrogen/air 
mixture by means of three-dimensional direct numerical simulation (DNS) in a 
platinum-coated plane channel. Schultze et al. [7] investigated experimentally 
and numerically employing two-dimensional model the hetero/homogeneous 
combustion of hydrogen/air mixture over Pt at stochiometries: 2.0 ≤ Ø ≤ 7.0 at 
1.0 bar ≤ p ≤ 5 bar. Moreover Schultze & Mantzaras [3] employed two-dimensional 
numerical simulations models to deal with the physicochemical processes during 
the fuel-lean and fuel rich catalytic combustion of hydrogen/air mixtures in pla-
tinum-coated channels. Zheng et al. [2] investigated experimentally and numer-
ically the homogeneous combustion of fuel-lean syngas mixtures over platinum 
at elevated pressures and preheats. Yan et al. [8] studied the numerical of effect 
of wall parameters on catalytic combustion characteristics of CH4/air in a heat 
recirculation micro-combustor made of different materials. Arani et al. [1] car-
ried out three-dimensional direct numerical simulations (DNS) with detailed 
heterogeneous and homogeneous chemistry and transport to investigate the 
turbulent combustion of fuel-lean hydrogen/air mixtures in a platinum-coated 
channel with prescribed wall temperatures. 

The present study analyzes mathematically through Response Surface Model-
ing (RSM) and optimization the previously reported experimental data of ther-
mal structure of catalytic stabilized confined turbulent gaseous diffusion flames 
over Pt/γAl2O3 and Pd/γAl2O3 catalytic disc burners under fuel-rich and 
fuel-lean conditions [9].  

The RSM has been utilized to study the effect of two different operating fac-
tors, specifically the radial distance from the center line of the flame (r) and axial 
distance lengthwise the flame over the disc (x) on the mean radial temperature 
profiles of the established stabilized flames. Also RSM has been utilized to dem-
onstrate such effects in the three and two dimensions and shows the location of 
the predicted optimum maximum temperature for the scrutinized catalytic disc 
burners under fuel-rich and fuel-lean conditions. 

2. Experimental  

Details of the experimental setup and the data investigated in this study have 
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been specified the previous work of [9]. 

2.1. Response Surface Methodology 

Response surface methodology (RSM) is an assembly of mathematical and sta-
tistical technique used for modeling and analyzing a process in which a response 
of interest is influenced by several variables and the aim is to optimize this re-
sponse [10] [11] [12] [13]. This technique is one of the major quantitative tools 
in industrial decision making as it gives better understanding of the process; it 
helps the process engineer to see the effect of the control variables simulta-
neously and the interactions among all the variables [10]. It generates a mathe-
matical model; its graphical perspective has led to the term Response Surface 
Methodology [14]. Graphic drawings of the shape of the surfaces allow a visual 
explanation of the functional relations between the response and the experi-
mental variables [11] [12]. RSM also permits the location of the optimum condi-
tions and sensitivity analyses of the optimum conditions to variations in the set-
tings of the experimental variables. This technique has many advantages such as: 
cost and time reduction, decreasing the number of tests and valuable in attaining 
maximum efficiency [15]. 

In the last decade, RSM has been extensively utilized for modeling and opti-
mization of several engineering processes and studies as optimization of media, 
process conditions, catalyzed reaction conditions, oxidation, production, fer-
mentation, biosorption of metals, thermal cracking of petroleum residue oil, 
water and waste water treatment, membrane systems, electronics, removal of 
nickel and lead from petroleum waste water chemical systems like distillation 
and in modeling and optimizing refinery operations [10] [16] [17] [18]. 

This RSM procedure includes the following steps [19]: 1) definition of inde-
pendent input variables and the desired output responses, and carrying out the 
required experiments, 2) performing regression analysis with the quadratic 
model of RSM, 3) calculate analysis of variance (ANOVA) for the independent 
input variables in order to find significant parameters that affect the responses, 
4) determination of the situation of the quadratic model of Response Surface 
Methodology and decide whether the model of RSM needs screening variables or 
not and finally, 5) optimization. 

2.2. Response Surface Models 

Assuming all variables to be to be independent; continuous; measurable and 
controllable by experiments with negligible errors, the correlation between the 
response y and independent variables 1 2, ,..., kξ ξ ξ  could be represented by the 
following equation [20]: 

( )1 2, ,..., ky f εξ ξ ξ= +                       (1) 

The form of the true response function f is unidentified and perhaps very 
complex and ε is a term that represents a random experimental error not ac-
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counted for in f assumed to have a zero mean. The variables 1 2, ,..., kξ ξ ξ  in Eq-
uation (1) are usually called the natural variables. The units of the natural inde-
pendent variables vary from one another. Even if some of the parameters have 
the same units, not all of these parameters will be tested over the same range. 
Before performing the regression analysis the variables are codified to eliminate 
the effect of different units and ranges in the experimental domain and allows 
parameters of different magnitude to be investigated more evenly in a range be-
tween −1 and +1 [14] [21] [22]. 

Below is the frequently used equation for coding: 

actual value meancoded value
half of range

−
=                   (2) 

Frequently, a low- or second-order polynomial model is proper [11] [12] [20]. 
The relationship between the coded variables and the response is modeled, in 
this study, by modifying the experimental data to a second-order polynomial, 
which is suitable for studying the interaction effects of process parameters on the 
response, according to the following equation [19]: 

12
10 1 1 2

k k k k
ii i ii i ij i ji i ji j

Y X X X Xβ β β β ε−
== = =<

= + + + +∑ ∑ ∑ ∑       (3) 

where, Y is the response variable; iX  and jX  are the coded input variables 
that affect the response variable and ε denotes the random error or uncertainties 
between predicted and measured values [22]. k is the number of variables, and  

0β , iβ , iiβ  and ijβ  are the regression constants of intercept, linear, quadrat-
ic and interaction terms, respectively [23] [24]. This flexible coded model permits 
the factor coefficients to become directly analogous to one another, which assists 
for the scale-free ranking of the relative significance of the factors [25]. 

In order to estimate the unknown parameters in model (3), a series of experi-
ments have been executed in each of which the response y is measured for iden-
tified settings of the control variables that result in a maximum or a minimum 
response over a certain region of interest [9]. 

Ordinary Least Squares (OLS) method that diminishes the variance of the 
balanced estimators of the coefficients has been performed to evaluate the coef-
ficients of the equation. It assumes that the random errors are identically distri-
buted with a zero mean and a common unknown variance and they are inde-
pendent of each other [14]. Removing unimportant coefficients for terms which 
did not affect the response, OLS method has been applied for the model without 
them. The final model contains only substantial parameters (with p-value < 
0.05) [26]. To guarantee that the equation fits the data well, the suitability of the 
“fitted” equations has been assessed through the following indicators [27] [28] 
[29] [30]. 

2.3. Regression Statistics 

Coefficient of determination R2: It is a measure of the ability of the regression 
equation to estimate the real response data. It also explains the overall predictive 
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capability of the model and confirms its goodness of fit [24]. 
Adjusted R2: It is an unbiased evaluation of the coefficient of determination. It 

reprimands the statistic R2 if redundant variables terms are included in the model. 
F-value is employed to assess the overall significance of the model. At a spe-

cific level of significance (α-value) the calculated value of F should be greater 
than the corresponding tabulated value [19] [31].  

Regression Significance F: A substantial correlation is considered to exist 
between the independent and dependent variables if this value < α = 0.05 [18]. 

p-value of each coefficient and the Y-intercept less than 0.05 designates 
that the corresponding variable has a considerable effect on the response with a 
fitting level of more than 95%. Coefficient with smaller p-value or greater mag-
nitude of |t-value| signifies more impact into the model equation [15] [32]. 

Confidence Limits are the 95% possibility that the real value of the coefficient 
lies amid the 95% Lower and Upper values. Thinner range is desirable. 

2.4. Prediction Statistics 

Predictive Error Sum of Squares (PRESS): It evaluates how the equation mod-
el predicts each experimental point in the design and how it is likely to forecast 
the response in a new experiment within the experimental domain. Small values 
are wanted [30] [33]. 

Predicted R-Squared ( 2
predR ): It is a measure of the extent of deviation in 

prediction of new data clarified by the model and it is calculated from PRESS. 
2
predR  and 2

adjR  should be within 0.20 of each other [14] [30] [33].  
Adequate precision statistic (Adeqval) is employed to evaluate the ratio of 

the signal to noise. A ratio greater than 4 is an indicator of suitable model varia-
tion and the model could be used to traverse the design space [19]. 

Coefficient of Variation (CV) designates the degree of accuracy with which 
experiments were implemented. Values below 10% might be considered out-
standing [10] [34]. 

Average absolute deviation (AAD) is a sign of the goodness of fit of the eq-
uation and a straight method for describing the deviations. The AAD is esti-
mated by the following equation: 

( ){ },exp , ,exp1 – *100n
i i cal iiAAD y y y n

=
 =  ∑            (4) 

where ,expiy  and ,i caly  are the experimental and calculated responses and n is 
the number of experimental runs [14] [15].  

2.5. Residuals Analysis  

Graphical residual analysis should be performed to legalize the assumptions in-
volved in the ANOVA of a normal residuals distribution (the normal probability 
plot vs studentzed residuals will be like a straight line) and homogeneity of the 
variance (structure less plot of studentized residuals vs. run time or the predicted 
response) [24] [33] [35]. 
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2.5.1. Application of RSM to the Present Work 
The following formulas have been employed to calculate the coded factors of (r) 
and (x): 

127.575,
97.5

xR r X −
= =                      (5) 

where: r: radial distance from the center line of the flame (mm); x: Axial distance 
along the flame over the disc (mm). 

In the present work the following equation has been applied employing the 
above formulas (5) for coding the factors: 

2 2
0 1 2 11 22 12Y R X R X R Xβ β β β β β= + ∗ + ∗ + ∗ + ∗ + ∗ ∗       (6) 

To establish the correlation between dependent response and independent va-
riables numerous mathematical models have been suggested. A suitable power 
transformation to the response data could be recognized using the Box-Cox me-
thod for normalizing the data or equalizing its variance [31] [33].  

2.5.2. Box-Cox Method (BC) 
An appropriate power transformation λ for the data is established on the rela-
tion *Y Y λ= . 

λ is calculated using the experimental given data such that ESS  is minimized 
(where E is the error between the given experimental response values and the 
analogous transformed ones *Y ). The following relation (7) has been employed 
to obtain Y λ : 

1

1 1 ,    0;

ln ,          0

Y if
Y g

Y g if

λ

λ λ λ
λ

λ

−

 −
≠= 

 × =

                  (7) 

where: g is the geometric mean of the experimental response vector. 
For a number of λ values the corresponding Y λ  and ESS  is calculated for 

these values to obtain a plot of ESS  versus λ. Because the range of ESS  values 
is large, this is performed by plotting the ( )Eln SS  versus λ values. The λ value 
of corresponding to the minimum ( )Eln SS  is selected and its 100(1 − α) per-
cent confidence interval is calculated. If the interval for λ do not include the val-
ue of one, then the conversion is applicable for the given response data. For de-
tails of this method refer to [33] [36]. 

This method has been exploited and the results are portrayed in Figures 
1(a)-(d) and Table 1. The values of the sqrt (T) of the mean experimental tem-
perature T dependent variable cited in [9] have been employed to represent the 
response Y in Equation (6).    

3. Results and Discussions 

The regression has been accomplished by means of Microsoft Excel 2010 and 
Matlab 8.1 to estimate the coefficients of Equation (6) for the coded factors 
along side with the statistical parameters which validate the results. Regression  
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Table 1. Values of BOX COX Plot. 

BOX COX Plot 
Flame Condition and Disc Type 

FR_Pt FL_Pt FR_Pd FL_Pd 

Risk Level α 0.05 0.05 0.05 0.05 

Best Lambda 0.6836 0.5622 0.5412 0.6152 

λ for Low Confidence 0.4417 0.5101 0.46354 0.52878 

λ for High Confidence 0.9754 0.6188 0.62388 0.70727 

Ln(RSSE) for Confidence Interval 14.373 13.273 13.494 13.493 

 

 
Figure 1. (a) BOX COX Plot for FR_Pt; (b) BOX COX Plot for FL_Pt; (c) BOX COX Plot 
for FR_Pd; (d) BOX COX Plot for FL_Pd. 
 
and Prediction Statistics and the Analysis of Variance which checks the signific-
ance and fitness of quadratic equation models have been depicted in Table 2. 
The very large F-values and a very small Significance F values implies that the 
equation models are highly significant for all terms in the polynomial equation 
within 95% confidence interval and are adequate to predict the responses. The 
high determination coefficient (R2 ≥ 0.95) indicates the accuracy of the deduced 
models. The high and very close agreement between the “ 2

predR ” values with the 
corresponding “ 2

adjR ” ones imply the real and good relation between the inde-
pendent and dependent variables together with the high degree of correlation 
between the measured and predicted data from the regression models. The ade-
quate precision values of (106 - 193) show good models discrimination and each 
of these models could be used to traverse the design space. The low values of 
PRESS and CV < 10 display the high accuracy; reliability and good consistency 
of the accomplished experiments and that the models were reproducible. Finally  
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Table 2. Regression and prediction statistics and analysis of variance for the catalytic-
flame stabilizing disc burners. 

ANOVA and Regression  
and Prediction Statistics 

Flame Condition and Disc Type 

FR_Pt FL_Pt FR_Pd FL_Pd 

Regression 
Statistics 

R2 0.9453 0.9812 0.9547 0.9588 

Adjusted R2 0.9446 0.9809 0.9536 0.9582 

Standard Error 1.526 0.9015 1.330 1.098 

A
na

ly
sis

 o
f V

ar
ia

nc
e Regression 

MS 2818.2 2867.6 1578.1 1872.8 

df 3 3 5 3 

Residual 
MS 2.328 0.8126 1.768 1.206 

df 210 203 212 200 

F 1210.7 3528.8 892.6 1552.6 

Significance F 3.20E−132 8.23E−175 3.07E−140 3.19E−138 

Pr
ed

ic
tio

n 
St

at
ist

ic
s PRESS 508.4 171.7 396.1 250.7 

2
predR  0.9432 0.9804 0.9521 0.9572 

Adeqval 118.9 193.6 106.0 132.2 

CV 6.056 4.156 6.522 4.984 

Average Absolute Deviation % 12.31 7.799 12.91 8.884 

 
the small values of (AAD) support the competence of the employed equations 
[10] [13] [18] [29] [37] [38]. These results indicate that the prediction of the 
temperature profile for any new data for the factors x & r within the investigated 
limits could be achieved employing the developed equation models. 

The values of only the important coefficients of Equation (6) beside the cor-
responding low values of p < α = 0.05, small Standard Error and large t-Stat are 
depicted in Table 3. The very small coefficients limits in comparison with their 
corresponding ones which mean that they do not span the zero as a value for the 
parameter ensures the reliability of recognized equations for prediction for new 
data [18]. The empty cells belong to the excluded non-significant coefficients. 
The positive sign in front of the model terms indicates synergistic effect while 
the negative sign indicates antagonistic effect of the independent variables [39].  

The quadratic terms in Equation (6) indicate the occurrence of curvatures. 
The negative signs for 2 2&R X  reveal that the quadratic curves are concave. 
This means that the temperature increases with an increase in X up to a maxi-
mum value beyond which the temperature decreases with further increase of the 
distance above the disk [21]. The temperature always decreases with the increase 
of radial distance from the center line of the flame. This is more pronounced for 
the case of FL Pt as it has the largest value of 2

1β  and ǀt-stat ǀ and the smallest 
p-value. The magnitude of the coefficients of the quadratic terms indicates the 
steepness of the curvature (Figures 7(a)-(d)) FL_Pt > FR_Pt > FR_Pd > FL_Pd 
[21].  
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Table 3. Estimated Regression Parameters for the Catalytic Flame Stabilizing Disc Burn-
ers. 2 2 2 2

0 1 2 1 2 12Y R X R X R Xβ β β β β β= + ∗ + ∗ + ∗ + ∗ + ∗ ∗ . 

Regression Parameters 
Flame Condition and Disc Type 

FR_Pt FL_Pt FR_Pd FL_Pd 

0β  

Coeff. 34.29 29.80 28.04 29.47 

±C.L. 0.3694 0.2216 0.3243 0.2734677 

Standard Error 0.1874 0.1124 0.1645 0.1387 

t-Stat 183.0 265.1 170.4 212.5 

p-value 1.55E−233 7.73E−260 8.20E−229 1.59E−237 

1β  

Coeff.   1.085  

±C.L.   0.3767  

Standard Error   0.1911  

t Stat   5.678  

p-value   4.44E−08  

2β  

Coeff. 3.999 5.176 6.106 4.153 

±C.L. 0.3339 0.2146 0.2997 0.2429157 

Standard Error 0.1694 0.1088 0.1520 0.1232 

t-Stat 23.61 47.56 40.17 33.71 

p-value 5.23E−61 5.10E−112 4.54E−101 1.99E−84 

2
1β  

Coeff. −12.49 −14.43 −10.41 −9.798 

±C.L. 0.6268 0.3925 0.5677 0.4740326 

Standard Error 0.3179 0.1991 0.2880 0.2404 

t Stat −39.30 −72.48 −36.14 −40.76 

p-value 9.41E−99 4.65E−147 1.41E−92 7.97E−99 

2
2β  

Coeff. −10.89 −6.548 −7.393 −8.382 

±C.L. 0.5699 0.3558 0.4957 0.4137794 

Standard Error 0.2891 0.1804 0.2515 0.2098 

t-Stat −37.68 −36.29 −29.40 −39.94 

p-value 2.12E−95 1.07E−90 9.79E−77 2.87E−97 

12β  

Coeff.   1.018  

±C.L.   0.5907  

Standard Error   0.2997  

t-Stat   3.397  

p-value   8.15E−04  

Experimental Max. Temp. 1275 1025 960 970 

Predicted Max. Temp. 1200.8 949.9 861.8 898.9 

% AD for Pred. Max. Temp. 5.82 7.32 10.23 7.334 

r for Max. Pred. Temp. 1.93E−05 1.13E−05 5.44 2.53E−05 

x for Max. Pred. Temp. 145.4 166.04 168.3 151.7 
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The evidence for the validity of the regression models and their high capabili-
ty to forecast the response has been affirmed in the high correlation between the 
experimental data and predicted values (R2 > 0.9) exposed in Figures 2(a)-(c) 
[29] [38]. The straight line of the normal probability plot of the studentized re-
siduals in Figures 3(a)-(d) implies the normal distribution of errors [24]. The 
structureless pattern in the plots of the studentized residuals versus run number 
or predicted response (Figure 4 & Figures 5(a)-(d)) indicate the satisfaction of 
the equation models and the absence of any violation of the independence or 
constant variance involved in the ANOVA assumptions [24] [33] [35]. 

3.1. Equation Models in Terms of Natural Factors 

OLS method also has been utilized to explore the relation between the response 
variable and the natural independent variables. The following equations have 
been attained for the fuel rich (FR) and fuel lean (FL) cases: 

For FR_Pt 

( ) 2 2sqrt 10.428 0.3332 2.221E 3 1.146E 3T x r x= + ∗ − − ∗ − − ∗     (8) 

For FL_Pt 

( ) 2 2sqrt 11.831 0.2287 2.57E 3 6.89E 4T x r x= + ∗ − − ∗ − − ∗      (9) 

For FR_Pd 

( ) 2

2

sqrt 7.414 3.28E 3 0.2609 1.85E 3

               7.78E 4 1.39E 4

T r x r

x r x

= − − ∗ + ∗ − − ∗

− − ∗ + − ∗ ∗
     (10) 

 

 
Figure 2. (a) Predicted Temp. vs Experimental Temp. for FR_Pt; (b) Predicted Temp. vs 
Experimental Temp. for FL_Pt; (c) Predicted Temp. vs Experimental Temp. for FR_Pd; 
(d) Predicted Temp. vs Experimental Temp. for FL_Pd. 

(a)                                                                (b)

(c)                                                                (d)
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Figure 3. (a) A polt of Studentized residuals for FR-Pt; (b) Normal polt of Studentized 
residuals for FL-Pt; (b) Normal polt of Studentized residuals for FR-Pd; (b) Normal polt 
of Studentized residuals for FL-Pd. 
 

 
Figure 4. (a) Studentized residuals vs Experiment Number for FR_Pt; (b) Studentized re-
siduals vs Experiment Number for FL_Pt; (c) Studentized residuals vs Experiment Num-
ber for FR_Pd; (d) Studentized residuals vs Experiment Number for FL_Pd.  
 

For FL_Pd 

( ) 2 2sqrt 9.703 0.2674 1.74E 3 8.82E 4T x r x= + ∗ − − ∗ − − ∗     (11) 

3.2. Response Surface Plots 

Matlab 8.1 has been employed to perform the Response Surface plots for the  
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Figure 5. (a) Studentized residuals vs Predicted Temperature for FR_Pt; (b) Studentized 
residuals vs Predicted Temperature for FL_Pt; (c) Studentized residuals vs Predicted 
Temperature for FR_Pd; (d) Studentized residuals vs Predicted Temperature for FL_Pd. 
 
predicted temperatures versus the actual natural variables of (r) and (x) for the 
above developed equation models (8)-(11) as exemplified in Figures 6(a)-(d) 
together with the corresponding experimental values. This graphical interpreta-
tion displays the interactions among the input variables and shows the best op-
erating conditions of a process along with the maximum response [38]. Most of 
the experimental values fall on the predicted Response Surface which supports 
the accuracy of the developed model equations. The two dimensional contour 
plots have been exposed in Figures 7(a)-(d) along with the corresponding 
maximum predicted responses. The curvature natures of these plots indicate the 
interaction of their independent variables [38].  

3.3. Optimization 

An optimization process has been performed for the above presented Equations 
(8)-(11) to estimate the maximum predicted temperature and the corresponding 
r and (x) values. This has been achieved with the aid of the provisional maxi-
mum values obtained from the RSM plots for initial guessing, and utilizing Mat-
lab 8.1. The Matlab implements a multidimensional unconstrained nonlinear 
optimization employing the Nelder-Mead simplex (direct search) method.  

Table 3 depicts the maximum predicted temperature together with the ana-
logous maximum experimental one. The small values of the % absolute deviation 
(AD) ≤ 10 for the forecasted maximum temperature from the conforming 
maximum experimental values supports the capability of the employed predic-
tive equations. 

4. Conclusion  

The response surface methodology (RSM) with the aid of Box-Cox method has  
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Figure 6. (a) Surface plot for FR_Pt; (b) Surface plot for FL_Pt; (c) Surface plot for 
FR_Pd; (d): Surface plot for FL_Pd.  
 

 
Figure 7. (a): Contour plot for FR_Pt; (b) Contour plot for FL_Pt; (c) Contour plot for 
FR_Pd; (d) Contour plot for FL_Pd. 
 
been exploited to establish the suitable relations for the effect of radial distance 
from the center line of the flame (r) and the axial distance above the disc (x) on 
the thermal structure (T) of the flames in the existence of the various catalytic 
stabilizing discs. The conventional least squares regression models showed out-
standing prediction for the experimental results with high values for R2 and 
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2
adjR  > 0.95, high values of calculated F-value; Adeqval, and small values of sig-

nificance F and AAD. Also good predictability for the response in a new experi-
ment would be anticipated as revealed from the small values of PRESS and high 
values of 2

predR . The response surface exemplified in the three dimensions de-
picted the response of the predicted variable T to the variation of the considered 
variable parameters r & x with the good agreement between the experimental 
and predicted results and displayed the location of the predicted maximum 
temperature. The established equation models can be utilized for the estimation 
of the temperature profile for any new data for the factors x & r within the ex-
plored limits. 
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