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ABSTRACT

In this work, we introduce a class of Hilbert spaces 7, , of entire functions on the disk D(o,li
—-q
reproducing kernel given by the g-Dunkl kernel Ea<z;q2). The definition and properties of the space F, , extend

], 0<g<1,with

naturally those of the well-known classical Fock space. Next, we study the multiplication operator Q by z and the
g-Dunkl operator A, on the Fock space 7, ,; and we prove that these operators are adjoint-operators and continu-

ous from this space into itself.
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1. Introduction

Fock space F (called also Segal-Bargmann space [1])
is the Hilbert space of entire functions
f(z)=2.",a,z" on C suchthat

||f||2f = Zo|an|2 nl< oo,

This space was introduced by Bargmann in [2] and it
was the aim of many works [1]. Especially, the differen-
tial operator D =d/dz and the multiplication operator
by z are densely defined, closed and adjoint-operators on
F (see[2]).

In [3], Sifi and Soltani introduced a Hilbert space F,
of entire functions on C, where the inner product is
weighted by the modified Macdonald function. On F,
the Dunkl operator

Aaf(2)1=%f(2)+ 2a2+1{f(2)—2f(—2)}’

a>-1/2,

and the multiplication by z are densely defined, closed
and adjoint-operators.
In this paper, we consider the g-Dunkl kernel:

E, (x;q2)2= i il

n=0b, (a;qz)’

where b, (a;4°) are given later in Section 2. We dis-
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cuss some properties of a class of Fock spaces associated
to the g-Dunkl kernel and we give some applications.

In this work, building on the ideas of Bargmann and
Cholewinski [4], we define the g-Fock space F,, as
the space of entire functions f(z)=>." a,z" on the

n=0"n
disk D{O,ij of center 0 and radius L and
1-g 1-¢q
such that

an (a;q2)<oo.

2 <
VL, =3

Let fand g be in %, ,, such that f(z)=>" a,z"

n=0"n

and g(z)=>" c,z", the inner product is given by

<f7g>fw = gaan” (a;qz).

The g-Fock space 7, , has also a reproducing kernel
K,. givenby

q

an

,Cq,a (W,Z)ZEa (v_vZ;qz); w,z eD(O,éJ.

Thenif feF, ,, wehave

1
<f'ICq,a (W,.)>]__[“Z =f(W), WGD(O,EJ
Using this property, we prove that the space F, , isa
Hilbert space and we give an Hilbert basis.
Next, using the previous results, we consider the mul-
tiplication operator Q by z and the g-Dunkl operator

A,, on the Fock space 7, ,, and we prove that these
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operators are continuous from 7  into itself, and sat-
isfy:
L

lorl,,, <Coalf
q.a

where C,, isa constant independent of 1.
Then, we prove that these operators are adjoint-op-
eratorson F, . :

(08, ~(fihas), § fge

Lastly, we define and study on the Fock space 7, ,,
the g-translation operators:

Foa

Fqa!

o o meenfocL)

and the generalized multiplication operators:
sz(w) =E, (zQ;qz)f(w); W,z € D[O,li].
—-q
Using the continuous properties of A , and O we
deduce also that the operators 7, and M _, for
A<
(1-g)(2-4"")

itself, and satisfy:
71l < (Coulelia®) AL,

o SE(Coalelia® )11

, are continuous from 7 into

.1

re

2. Preliminaries and the g-Fock Spaces F ,

Let @ and ¢ be real numbers such that 0< g <1; the
g-shifted factorial are defined by

n-1

(a;q)02=l, (a;q)n :=H(l—aqi), n=12,--, 0.

i=0

Jackson [5] defined the g-analogue of the Gamma
function as

r, (x) = M(l—q)lﬂ , x#0,-1,-2,--
(qx ; q)m
It satisfies the functional equation

X

1-¢9
1-¢
and tends to I'(x) when g tends to 1”. In particular, for
n=12,---, we have

Fq(x+1):

r,(x). T,0)=1

(¢:9),
(1-q)"

r, (n+1):
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The g-derivative D, f of a suitable function 1" (see
[6]) is given by
S (x)= /()

(1-q)x
and D, f(0)=/'(0) provided f'(0) exists.

If fis differentiable then D,_f(x) tendsto f'(x) as
qg—->1.

Taking account of the paper [3] and the same way, we
define the g-Dunkl kernel by

, x#0,

qu(x) =

E, (x;qz):: 1, (x;q2)+ le(x;qz),

X
(1+ q)[a+1]q2
where 7, (x;g”) is the g-modified Bessel function [7.8]
given by
1, (x;qz)

© 2n

X

=T, (a+1))] - .
¢ (1+9)" T (41T, (n+a+1)
Furthermore, the Dunkl kernel E, (x;¢”) can be ex-
panded in a power series in the form

E, (xq¢%)= wx—n, 1
L (xnd’) Z%@(Mqﬂ )
where
1+¢)" T, (n+1)T , (n+a+1
(gt )= T T (T (v
r. (a+1)
and
1+¢q PR ()T, (n+a+2
bty oLl 2
T (a+1)
If we put U, 'z; then
n " bﬂ(a;qz)’
Y, —>; q—>1
Un+1 (1_q)2,

Thus, the g-Dunkl kernel E, (x;qz) is defined on

D[O,#)ZJ and tends to the Dunkl kernel E_ (x)
1-q

as g—1.
We consider the g-Dunkl operator operator A, de-
fined by

Aq’af(x) = qu(x)+ [Za +1]q |:f(qx)_f(—qx):|,

X 2

where
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1_ 2a+1
[2a+1] = 4
q 1_q

The g-Dunkl operator tends to the Dunkl operator A,
as g—1.
Lemma 1. The function E, (/1.;(]2 ) , Ae D{O,li],
-9
is the unique analytic solution of the q-problem:

Aoy (¥)=2y(x), »(0)=1. @)

Proof. Searching a solution of (2) in the form
y(x)=>" a,x".Then

D,y(x)=>a, [n]q X"

Replacing in (2), we obtain

n=1

ian {[n]q +q" [2a +l]q (1_(2_1)" ]] X" = ﬂga,klx".
Thus,

a, [[n]q +q" [Za +1]q [@H =la,,, n=12,--

Using the fact that
[2n +1]q +¢""*2a +1]q =[2n+2a+ 2]q, we deduce that

#a
[2n+2a+2] "
q

—/1 d
Aoy = " ay, and a,, , =

AZ
‘et " on] [on+2a+2] 0

Since [Zn]q =(1+ q)[n]q2 , We deduce
/12
l+q)2 [n]qz [n+a+l]

Aopsy = ( Aypq

qZ
This proves that
2n+1
A r. (a+1)

T L P, (n4 )T, (nrat2)
g g
and
) AT, (a+1)
2 (1+ q)z" r, (n +1)qu (n+a+1) '
Therefore,
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) ) . (lx)Zn
y(x)=Tp(a 1),12:(;(1+q)2" Lp(n+)L, (n+a+1)
(lx)2n+l

r. (n+l)qu (n+a+2)

+T, (a+1)i

= (1+ q)2n+1

Ax

=1, (ﬂx;qz)+m

Ia+l (ﬂ’X;qz)’

which completes the proof of the lemma. O
Lemma 2. The constants b, (a;qz), neN satisfy
the following relations:

1) b, (“;qz)
- [[n +1], +q"" [2a +1], (ﬁﬂbn (a;qz),

2) b, (a;qz) =(1+g)[a +1]q2 b,, (a +1;q2) ,
3) b,(e:q*)

(1+q)" T, ([7/2] +1)rq2 ([”;1} ta +1j

qu (a+1)

where [n/2] is the integer part of n/2.
Lemma 3. For keN , we have

Aqvazkzﬂ;qz)zkl, k1.
bk—l(a;q )
Proof. Since
L2y % (}“Z)k
E, (/lz,q )._Z;)bk (a;qz)'

then from Equation (2) we obtain

Z—A‘“’Zk PII STy

k:lbk<a;q2) 3 1bk71(0(;q2)

This clearly yields the result. O
Definition 1. Let a >-1/2. The g-Fock space Z,,
is the prehilbertian space of entire functions

f(z):Z::oanZ" on D{O,lij,such that
—-q

/1 “b,(a:4*) <0, @3)

a

n

2 : i
Foa
q.a e

where b, (a;q®) is given by (1),
The inner productin 7, , is given for

f(2)=2 a2 and g(z)=2" cz" by

APM



172 F. SOLTANI

(/&) Zan“( ?). (4)

Remark 1. If ¢ —1", the space 7, , agrees with
the generalized Fock space associated to the Dunkl
operator (see [3]).

Proposition 1. For f,geF,,

(1.8); =1(A,.)&(0), &(z)=g(2)

Proof. Given f(z)=3 ,a,z" €7, and
g(z)=2  cz" €F,, . Since from Lemma 3,

A" gt = bk (a;qz) N

, we have

(@) o ®
we can write
g(z)::_oozf(;—g;c(,?;f' ®)
Using (4) and (6), we get
(fg), Zan A;,8(0)= Za,,Aqag( )-
Thus
(f.2);,, =1 (,.)2(0),
which gives the desired result. O
The following theorem proves that 7, , is a repro-

ducing kernel space.
Theorem 1. The function K,

w, z ED(O,LJ, by

given for

1-q
ICW (w,z) =K, (v_vz;qz),

is a reproducing kernel for the g-Fock space 7, ,, that
is:

1) Forall we D(O,lij , the function
—-q
z—>K,,(wz) belongsto F, .

and feF _,wehave

q.a’

2)Forall we D[O —]
q

(f,/cq'a(w,.)» = f(w).
Proof. 1) Since

()i

z, WED( LJ
q

then from (3), we deduce that

U]

Copyright © 2012 SciRes.

)<oo,

, from (4) and (7), we

30| .
el =5 (g =5

which proves 1).

I f(z)=)",a,z" €F,

deduce
1
e . = , D|0,—|.
<f W(W )> - %aw ( ) we ( 1_qj
This completes the proof of the theorem. O

Remark 2. From Theorem 1 2), for f'eF, , and

we D(O,ij , we have
1-¢q

HCE A

Fg.a
1/2
= [Ea (|w|2 g )} 115,

Proposition 2. The space 7, , equipped with the in-
ner product (,.)_ is an Hilbert space; and the set

{66,

£ (54°)=——

—_ Z eD[O,LJ,
b,(a:4?) 1-q

forms an Hilbert basis for the space 7, ,
Proof. Let {f,}  be a Cauchy sequence in F,,
We put

}—q,a

given by

neN
f=limf inZF .
n—ow !

From (8), we have

Fro ()= £, ()| | B (of" qzﬂl/z

This inequality shows that the sequence {f,} s
pointwise convergent to /- Since the function
2 2 /2 . . 1
w—)[Ea (|w| 'q )J is continuous on D|0,— |,
1-g
then {fn}”gN converges to f uniformly on all compact

.f;z+p _f;a

Fg.a

set of D(O,li]. Consequently, £ is an entire function
—-q

on D(O !

1-¢

On the other hand, from the relation (4), we get

(&(:a%).8, (-:q2)>fw =8,

where ¢, is the Kronecker symbol.
This shows that the family {é‘n(.;qz)} | s an or-

j then f belongs to the space 7, ,

thonormal setin 7, .
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Let f(z)=>" a,z" be an element of 7, , such
that

(£.6,(:a%)), =0, ¥neN.

From the relation (4), we deduce that
a,=0, VnelN

This completes the proof. O
Remark 3. 1) The set {Ea (w:q*), we D(OLJ}
1-¢
isdensein F, .

2)Forall z,we D(O,lij , We have
—-q

Ea(wE;q2)=<Ea(E.;qz),Ea(v_v.;qz»f .

3. Operators on the Fock Spaces F, ,

On F, ., we consider the multiplication operators O and
N, given by

Qf(z) = zf(z),

N, f(z)=2D, f(z)z%{;(qz).

We denote also by A, the g-Dunkl operator defined

for entire functions on D(O,lij .
—-q
We write

[A,..Q]=A,,0-0A,,.

Then by straightforward calculation we obtain.
Lemmad. [A,,.0|=B,+W,,, where

qu(z) = f(qz),

W, = [2“2”]‘1 [(4-1)B, +(¢+1)B, ]

Remark 4. The Lemma 4 is the analogous commuta-
tion rule of [3]. When ¢ —1",then [A,,,Q] tends to
I+(2a+1)B, where I is the identity operator and B is
the parity operator given by Bf(z):=f(-z).

Lemma 5. If feF, , then B f, N, f and W, f
belong to .7-;,0[ , and

D 8,11, =811, <

2 [v.7,,
3 I, f||

Proof. Let f(z) = ano a,z" eF,,, then

Copyright © 2012 SciRes.

and from (3), we obtain

"qu";a = §|an|2 q”'b, (a;qz)

< ;lanlz b(ea®) =71,

and

Vrly,, =2l ([

1,) b (a:d?).

Using the fact that [n]q < % , We deduce
-9

2
<
v, <

[ 8 (e

1 a
(1—q) n=0

P

173

On the other hand from 1) we deduce that

I#,..11,.
< [20(;1]:; |:(1—C])| ;

<[2a+1] |/l .

) +(q+1)|

which completes the proof of the Lemma.
We now study the continuous property of the operators

A,, andQon F .

q,a

to }" , and we have
1) ||AM N, <Cu

2) ||Qf||fl < CM ||f||fq , where

1 \"?
Cq o = ([20{ +1]q +EJ .

Proof. Let f(z) = Z:;O az"eF,,.

1) From Lemma 3,

R ((aqq))zu
:Zj n+l(a q )z"

Then from (9), we get
2 o0
||A17vaf }—q,a :; a

Using Lemma 2 1), we obtain

n+l

2 bn+l (a! q2 )

b, (a;

b ()

b

qz) n+l

(a;qz).

J’cq,a:|

O

Theorem 2. If feF,, then A,,f and Of belong

©)
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AT,
. (- (10)
-3 anzl[n]q+q" [2a+1]q[1 (21) Hb (:0?)

Using the fact that [n]q < % we obtain
—-q

. /2
<o Sl i)

= (jq,a

A s

2) On the other hand, since

01 (2)=Y a,,7", (11)

n=1

then

0
; = :E:
F =

q.a =l

By Lemma 2 1), we deduce

a, 2 b, (a; qz) =

Sof balaie’).

a,|’ [[n +1], +¢"" [2a+1], (1+(2_1)" ]]bn (a;qz).

(12)

n=0

Using the fact that [n +1]q < % , We obtain
-9

<C
Foa =0

We deduce also the following norm equalities.
Theorem 3. If f e F,, then

D A,

=(1N,]),,

[Za;l]q <f,(Bq —B,q)f>f '

q.a

), o

+%<f,(3q +B“1)f>fw ,

o I8,
]:q,a_ T fqa

+ ”B
q

HIWuf ), -

Proof. Let f(z)=>"a,z"€F,,.
1) From (10), we get

Copyright © 2012 SciRes.

q.a

= :O a, ? [[n]q +q"[2a +1]q (1_(2_1))1

[Za +l]q
2

]]b,, (@)

(£ (8,-8.)1)

:< f.N, f>fw + L

2) On the other hand, by (12) and using the fact that
[n +1]q = [n]q +¢", we obtain

- Bftdalee)
q[2a+l] ©

T B )

=<f,qu>fW +||B

+%<f,(8q+3q)f>

a

n

al’ q"b, (a;qz)

n

~Fq,a

3) Follows directly from 1) and 2). O

Proposition 3. The operators Q and A, are ad-
Joint-operators on F,,; and for all f,geF, , , we
have

<Qf’g>fw :<f’AWg>f «

Proof. Consider f(z)=Y." a,z" and

g(z)=3",¢z" in %, FFo?n(Q)and(ll),

2
Aq,ag(Z) = ch+1 Mz"

n=0 bn (a,qz)

and
Qf(z) = z a, z".
n=1
Thus from (4), we get

(o > ;“—1 ( )

which gives the result. O

In the next part of this section we study a generalized
translation and multiplication operators on 7, ,. We
begin by the following definition.

a,Con n+1(a q ):<f!Aq,ag>]_.q‘a ’

Definition 2. For feF, , and wze D(O,li),
—-q
we define:
e The g-translation operatorson 7, ,, by
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E, (27, i) f (w) = io/;q(“a—fgzv))

e The generalized multiplication operatorson 7, ,, by

E,(20:4%) f (w)

T.f(w)= 2. (13)

Sy QI g
S

For w,ze D[O,LJ , the function E,(.q°) sa-
1-¢q
tisfies the following product formulas:

T.E, (.;qz)(w) =E, (z;qz)Ea (w;qz),

)(w) =E, (wz;qz)Ea (w;qz).
Remark 5. If ¢ —>1" in (13), we obtain the general-

ized translation operators given in ([9], page 102).
f(z)=>" a,"€F,, and

sz(w) =

M.E,(:q"

Proposition 4. Let

z,weD[O,L]. Then
1-¢

b\a;
1) Tzf(W)=Zf:oanZZ:ob (a' 2() ( PR

with

B r. ([n/Z] +1) |
L. ([k/2]+1)r, ([”;k}rlj

2) sz(W) = Z:_Olzz_oﬁzﬁw" .

Proof. Let f(z)=>" a,z"€F,,.
1) From (13), we have

Tf(w)- ZA—f(f))z w2 eD{O,ﬁj.

n=0 b, (a;q

But from (5), we have
o b oz;q2
SO L A
k=n bk—n (a,q )

Thus we obtain

Copyright © 2012 SciRes.

blad)
0.y b(wd )b (ad)
On the other hand from Lemma 2 3), we get
b, (a;qz)
b (e )b, o (i)

c(n,k;qz)qu (a+1)rq2 qn;l}r +1j

5 )

which gives the 1).
2) From (14), we have

I.1(w)=]

i Ms

But from (11), we have
an(W) = Z ak—nwk
k=n
Thus we obtain

sz<w>:i[i“"—z)zk]w"- m

n=0| k=0 b, (a;q

According to Theorem 2 we study the continuous
property of the operators 7, and M. on F_,.
.
(1_q)(2_q2a+1)

and we have

Theorem 4. If feF,, and |7|<
then T f and M_f belongto F,,,
Fga <E, (CM |Z|;q2)

) <E,(C,, |Z|;q2)

where C,, are the constants of Theorem 2.
Proof. From (13) and Theorem 2 1), we deduce

o0
<2
%o n=0

|z["

Fq.a bn (a;qz)

ANyt

Since |z| <

and therefore

Fg.a <k, (CM |Z|;q2)

which gives the first inequality, and as in the same way
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we prove the second inequality of this theorem. O
From Proposition 3 we deduce the following results.
Proposition 5. Forall f,g e F,, , we have

(M.1.8), =(/Tg), .

(.1.8),  =(/M.g),
We denote by R_ the following operator defined on
F . by

9,2

R LM, M1 E, (2, id? ) E, (i)
~E,(20:4°)E, (zA, ,:4)-

Then, we prove the following theorem.
Theorem 5. Forall feF,,, we have

(L ] ) VY W M

Proof. From Proposition 5, we get

AL =(f M), =(f(MT.+R) 1),

q.a

LA +(f RS, - O
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