

Fock Spaces for the *q*-Dunkl Kernel

Fethi Soltani*

Higher College of Technology and Informatics, Tunis, Tunisia Email: fethisoltani10@yahoo.com

Received November 26, 2011; revised January 4, 2012; accepted January 20, 2012

ABSTRACT

In this work, we introduce a class of Hilbert spaces $\mathcal{F}_{q,\alpha}$ of entire functions on the disk $D\left(0,\frac{1}{1-q}\right)$, 0 < q < 1, with

reproducing kernel given by the q-Dunkl kernel $E_{\alpha}(z;q^2)$. The definition and properties of the space $\mathcal{F}_{q,\alpha}$ extend naturally those of the well-known classical Fock space. Next, we study the multiplication operator Q by z and the q-Dunkl operator $\Lambda_{q,\alpha}$ on the Fock space $\mathcal{F}_{q,\alpha}$; and we prove that these operators are adjoint-operators and continuous from this space into itself.

Keywords: Generalized *q*-Fock Spaces; *q*-Dunkl Kernel; *q*-Dunkl Operator; *q*-Translation Operators

1. Introduction

Fock space \mathcal{F} (called also Segal-Bargmann space [1]) is the Hilbert space of entire functions

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 on \mathbb{C} such that

$$||f||_{\mathcal{F}}^2 := \sum_{n=0}^{\infty} |a_n|^2 n! < \infty.$$

This space was introduced by Bargmann in [2] and it was the aim of many works [1]. Especially, the differential operator D = d/dz and the multiplication operator by z are densely defined, closed and adjoint-operators on \mathcal{F} (see [2]).

In [3], Sifi and Soltani introduced a Hilbert space \mathcal{F}_{α} of entire functions on \mathbb{C} , where the inner product is weighted by the modified Macdonald function. On \mathcal{F}_{α} the Dunkl operator

$$\Lambda_{\alpha} f(z) := \frac{\mathrm{d}}{\mathrm{d}z} f(z) + \frac{2\alpha + 1}{z} \left[\frac{f(z) - f(-z)}{2} \right],$$

$$\alpha > -1/2,$$

and the multiplication by z are densely defined, closed and adjoint-operators.

In this paper, we consider the q-Dunkl kernel:

$$E_{\alpha}(x;q^{2}) := \sum_{n=0}^{\infty} \frac{x^{n}}{b_{n}(\alpha;q^{2})},$$

where $b_n(\alpha;q^2)$ are given later in Section 2. We dis-

cuss some properties of a class of Fock spaces associated to the q-Dunkl kernel and we give some applications.

In this work, building on the ideas of Bargmann and Cholewinski [4], we define the *q*-Fock space $\mathcal{F}_{q,\alpha}$ as the space of entire functions $f(z) = \sum_{n=0}^{\infty} a_n z^n$ on the disk $D\left(0, \frac{1}{1-q}\right)$ of center 0 and radius $\frac{1}{1-q}$, and

such that

$$\left\|f\right\|_{\mathcal{F}_{q,\alpha}}^2 := \sum_{n=0}^{\infty} \left|a_n\right|^2 b_n\left(\alpha;q^2\right) < \infty.$$

Let f and g be in $\mathcal{F}_{q,\alpha}$, such that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} c_n z^n$, the inner product is given by

$$\langle f, g \rangle_{\mathcal{F}_{q,\alpha}} = \sum_{n=0}^{\infty} a_n \overline{c_n} b_n (\alpha; q^2).$$

The q-Fock space $\mathcal{F}_{q,\alpha}$ has also a reproducing kernel $\mathcal{K}_{q,\alpha}$ given by

$$\mathcal{K}_{q,\alpha}(w,z) = E_{\alpha}(\overline{w}z;q^2); \quad w,z \in D\left(0,\frac{1}{1-q}\right).$$

Then if $f \in \mathcal{F}_{q,\alpha}$, we have

$$\langle f, \mathcal{K}_{q,\alpha}(w,.) \rangle_{\mathcal{F}_{q,\alpha}} = f(w), \quad w \in D\left(0, \frac{1}{1-q}\right).$$

Using this property, we prove that the space $\mathcal{F}_{q,\alpha}$ is a Hilbert space and we give an Hilbert basis.

Next, using the previous results, we consider the multiplication operator Q by z and the q-Dunkl operator $\Lambda_{q,\alpha}$ on the Fock space $\mathcal{F}_{q,\alpha}$, and we prove that these

Copyright © 2012 SciRes.

^{*}Author partially supported by DGRST project 04/UR/15-02 and CMCU program 10G 1503.

operators are continuous from $\mathcal{F}_{q,\alpha}$ into itself, and satisfy:

$$\begin{split} \left\| \Lambda_{q,\alpha} f \right\|_{\mathcal{F}_{q,\alpha}} &\leq C_{q,\alpha} \left| f \right|_{\mathcal{F}_{q,\alpha}}, \\ \left\| \mathcal{Q} f \right\|_{\mathcal{F}_{q,\alpha}} &\leq C_{q,\alpha} \left| f \right|_{\mathcal{F}_{q,\alpha}}, \end{split}$$

where $C_{q,\alpha}$ is a constant independent of f.

Then, we prove that these operators are adjoint-operators on $\mathcal{F}_{q,\alpha}$:

$$\left\langle Qf,g\right\rangle _{\mathcal{F}_{q,\alpha}}=\left\langle f,\Lambda_{q,\alpha}g\right\rangle _{\mathcal{F}_{q,\alpha}};\quad f,g\in\mathcal{F}_{q,\alpha}.$$

Lastly, we define and study on the Fock space $\mathcal{F}_{q,q}$, the q-translation operators:

$$T_z f(w) := E_\alpha \left(z \Lambda_{q,\alpha}; q^2 \right) f(w); \quad w, z \in D\left(0, \frac{1}{1-q}\right),$$

and the generalized multiplication operators:

$$M_z f(w) := E_\alpha \left(zQ; q^2 \right) f(w); \quad w, z \in D\left(0, \frac{1}{1-q}\right).$$

Using the continuous properties of $\Lambda_{q,\alpha}$ and Q we deduce also that the operators T_z and M_z , for

$$|z| < \frac{1}{(1-q)(2-q^{2\alpha+1})}$$
, are continuous from $\mathcal{F}_{q,\alpha}$ into

itself, and satisfy:

$$\begin{aligned} & \left\| T_z f \right\|_{\mathcal{F}_{q,\alpha}} \le E_{\alpha} \left(C_{q,\alpha} \left| z \right|; q^2 \right) \left\| f \right\|_{\mathcal{F}_{q,\alpha}}, \\ & \left\| M_z f \right\|_{\mathcal{F}_{\alpha,\alpha}} \le E_{\alpha} \left(C_{q,\alpha} \left| z \right|; q^2 \right) \left\| f \right\|_{\mathcal{F}_{\alpha,\alpha}}. \end{aligned}$$

2. Preliminaries and the q-Fock Spaces $\mathcal{F}_{q,\alpha}$

Let a and q be real numbers such that 0 < q < 1; the q-shifted factorial are defined by

$$(a;q)_0 := 1, \quad (a;q)_n := \prod_{i=0}^{n-1} (1-aq^i), \quad n = 1, 2, \dots, \infty.$$

Jackson [5] defined the q-analogue of the Gamma function as

$$\Gamma_q(x) := \frac{(q;q)_{\infty}}{(q^x;q)_{\infty}} (1-q)^{1-x}, \quad x \neq 0, -1, -2, \dots$$

It satisfies the functional equation

$$\Gamma_q(x+1) = \frac{1-q^x}{1-q} \Gamma_q(x), \quad \Gamma_q(1) = 1,$$

and tends to $\Gamma(x)$ when q tends to 1. In particular, for $n = 1, 2, \dots$, we have

$$\Gamma_q(n+1) = \frac{(q;q)_n}{(1-q)^n}.$$

The q-derivative $D_a f$ of a suitable function f (see [6]) is given by

$$D_q f(x) := \frac{f(x) - f(qx)}{(1 - q)x}, \quad x \neq 0,$$

and $D_q f(0) = f'(0)$ provided f'(0) exists. If f is differentiable then $D_q f(x)$ tends to f'(x) as

Taking account of the paper [3] and the same way, we define the q-Dunkl kernel by

$$E_{\alpha}\left(x;q^{2}\right) \coloneqq I_{\alpha}\left(x;q^{2}\right) + \frac{x}{\left(1+q\right)\left[\alpha+1\right]_{\alpha^{2}}}I_{\alpha+1}\left(x;q^{2}\right),$$

where $I_{\alpha}(x;q^2)$ is the *q*-modified Bessel function [7,8]

$$I_{\alpha}(x;q^2)$$

$$:= \Gamma_{q^2} (\alpha + 1) \sum_{n=0}^{\infty} \frac{x^{2n}}{(1+q)^{2n} \Gamma_{\alpha^2} (n+1) \Gamma_{\alpha^2} (n+\alpha+1)}.$$

Furthermore, the Dunkl kernel $E_{\alpha}(x;q^2)$ can be expanded in a power series in the form

$$E_{\alpha}\left(x;q^{2}\right) := \sum_{n=0}^{\infty} \frac{x^{n}}{b_{n}\left(\alpha;q^{2}\right)},\tag{1}$$

where

$$b_{2n}\left(\alpha;q^{2}\right) := \frac{\left(1+q\right)^{2n} \Gamma_{q^{2}}\left(n+1\right) \Gamma_{q^{2}}\left(n+\alpha+1\right)}{\Gamma_{q^{2}}\left(\alpha+1\right)},$$

and

$$b_{2n+1}\left(\alpha;q^{2}\right) := \frac{\left(1+q\right)^{2n+1}\Gamma_{q^{2}}\left(n+1\right)\Gamma_{q^{2}}\left(n+\alpha+2\right)}{\Gamma_{q^{2}}\left(\alpha+1\right)}.$$

If we put $U_n := \frac{1}{b_n(\alpha; q^2)}$, then

$$\frac{U_n}{U_{n+1}} \to \frac{1}{(1-q)^2}, \quad q \to 1^-.$$

Thus, the q-Dunkl kernel $E_{lpha}\left(x;q^{2}
ight)$ is defined on

$$D\left(0,\frac{1}{\left(1-q\right)^2}\right)$$
 and tends to the Dunkl kernel $E_{\alpha}(x)$

as $q \rightarrow 1^-$.

We consider the q-Dunkl operator operator $\Lambda_{q,q}$ de-

$$\Lambda_{q,\alpha}f(x) := D_q f(x) + \frac{\left[2\alpha + 1\right]_q}{x} \left[\frac{f(qx) - f(-qx)}{2}\right],$$

where

$$\left[2\alpha+1\right]_q := \frac{1-q^{2\alpha+1}}{1-q}.$$

The q-Dunkl operator tends to the Dunkl operator Λ_{α} as $q \rightarrow 1^-$.

Lemma 1. The function
$$E_{\alpha}(\lambda :; q^2), \lambda \in D\left(0, \frac{1}{1-q}\right)$$

is the unique analytic solution of the q-problem:

$$\Lambda_{q,\alpha} y(x) = \lambda y(x), \quad y(0) = 1. \tag{2}$$

Proof. Searching a solution of (2) in the form $y(x) = \sum_{n=0}^{\infty} a_n x^n$. Then

$$D_q y(x) = \sum_{n=1}^{\infty} a_n [n]_q x^{n-1}.$$

Replacing in (2), we obtain

$$\sum_{n=1}^{\infty} a_n \left[[n]_q + q^n [2\alpha + 1]_q \left(\frac{1 - (-1)^n}{2} \right) \right] x^n = \lambda \sum_{n=1}^{\infty} a_{n-1} x^n.$$

Thus,

$$a_n \left[[n]_q + q^n [2\alpha + 1]_q \left(\frac{1 - (-1)^n}{2} \right) \right] = \lambda a_{n-1}, \quad n = 1, 2, \dots.$$

Using the fact that

$$[2n+1]_q^3 + q^{2n+1}[2\alpha+1]_q = [2n+2\alpha+2]_q$$
, we deduce that

$$a_{2n} = \frac{\lambda}{[2n]_q} a_{2n-1}$$
 and $a_{2n+1} = \frac{\lambda}{[2n+2\alpha+2]_q} a_{2n}$.

We get

$$a_{2n+1} = \frac{\lambda^2}{[2n]_a [2n+2\alpha+2]_a} a_{2n-1}.$$

Since $[2n]_a = (1+q)[n]_{q^2}$, we deduce

$$a_{2n+1} = \frac{\lambda^2}{\left(1+q\right)^2 \left[n\right]_{a^2} \left[n+\alpha+1\right]_{a^2}} a_{2n-1}.$$

This proves that

$$a_{2n+1} = \frac{\lambda^{2n+1} \Gamma_{q^2} \left(\alpha + 1\right)}{\left(1 + q\right)^{2n+1} \Gamma_{q^2} \left(n + 1\right) \Gamma_{q^2} \left(n + \alpha + 2\right)},$$

and

$$a_{2n} = \frac{\lambda^{2n} \Gamma_{q^2} \left(\alpha + 1\right)}{\left(1 + q\right)^{2n} \Gamma_{q^2} \left(n + 1\right) \Gamma_{q^2} \left(n + \alpha + 1\right)}.$$

Therefore,

$$\begin{split} y\left(x\right) &= \Gamma_{q^{2}}\left(\alpha+1\right) \sum_{n=0}^{\infty} \frac{\left(\lambda x\right)^{2n}}{\left(1+q\right)^{2n} \Gamma_{q^{2}}\left(n+1\right) \Gamma_{q^{2}}\left(n+\alpha+1\right)} \\ &+ \Gamma_{q^{2}}\left(\alpha+1\right) \sum_{n=0}^{\infty} \frac{\left(\lambda x\right)^{2n+1}}{\left(1+q\right)^{2n+1} \Gamma_{q^{2}}\left(n+1\right) \Gamma_{q^{2}}\left(n+\alpha+2\right)} \\ &= I_{\alpha}\left(\lambda x; q^{2}\right) + \frac{\lambda x}{\left(1+q\right) \left[\alpha+1\right]_{c^{2}}} I_{\alpha+1}\left(\lambda x; q^{2}\right), \end{split}$$

which completes the proof of the lemma. **Lemma 2.** The constants $b_n(\alpha;q^2)$, $n \in \mathbb{N}$ satisfy the following relations:

1) $b_{n+1}(\alpha;q^2)$ $= \left| \left[n+1 \right]_q + q^{n+1} \left[2\alpha + 1 \right]_q \left(\frac{1 + \left(-1\right)^n}{2} \right) \right| b_n \left(\alpha; q^2 \right),$

2)
$$b_{2n+1}(\alpha;q^2) = (1+q)[\alpha+1]_{q^2} b_{2n}(\alpha+1;q^2)$$
,

3) $b_n(\alpha;q^2)$ $:= \frac{\left(1+q\right)^n \Gamma_{q^2}\left(\left[n/2\right]+1\right) \Gamma_{q^2}\left(\left\lfloor\frac{n+1}{2}\right\rfloor+\alpha+1\right)}{\Gamma_{q^2}\left(\alpha+1\right)},$

where $\lceil n/2 \rceil$ is the integer part of n/2. **Lemma 3.** For $k \in \mathbb{N}$, we have

$$\Lambda_{q,\alpha}z^{k} = \frac{b_{k}\left(\alpha;q^{2}\right)}{b_{k-1}\left(\alpha;q^{2}\right)}z^{k-1}, \quad k \geq 1.$$

Proof. Since

$$E_{lpha}\left(\lambda z;q^{2}
ight):=\sum_{k=0}^{\infty}rac{\left(\lambda z
ight)^{k}}{b_{k}\left(lpha;q^{2}
ight)},$$

then from Equation (2) we obtain

$$\sum_{k=1}^{\infty} \frac{\Lambda_{q,\alpha} z^k}{b_k\left(\alpha;q^2\right)} \lambda^k = \sum_{k=1}^{\infty} \frac{z^{k-1}}{b_{k-1}\left(\alpha;q^2\right)} \lambda^k.$$

This clearly yields the result.

Definition 1. Let $\alpha \ge -1/2$. The q-Fock space $\mathcal{F}_{\alpha,\alpha}$ is the prehilbertian space of entire functions

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 on $D\left(0, \frac{1}{1-q}\right)$, such that

$$||f||_{\mathcal{F}_{q,\alpha}}^2 := \sum_{n=0}^{\infty} |a_n|^2 b_n(\alpha; q^2) < \infty, \tag{3}$$

where $b_n\left(\alpha;q^2\right)$ is given by (1). The inner product in $\mathcal{F}_{q,\alpha}$ is given for

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 and $g(z) = \sum_{n=0}^{\infty} c_n z^n$ by

$$\langle f, g \rangle_{\mathcal{F}_{q,\alpha}} = \sum_{n=0}^{\infty} a_n \overline{c_n} b_n (\alpha; q^2).$$
 (4)

Remark 1. If $q \to 1^-$, the space $\mathcal{F}_{q,\alpha}$ agrees with the generalized Fock space associated to the Dunkl operator (see [3]).

Proposition 1. For $f, g \in \mathcal{F}_{q,q}$, we have

$$\left\langle f,g\right\rangle _{\mathcal{F}_{q,\alpha}}=f\left(\Lambda_{q,\alpha}\right)\tilde{g}\left(0\right),\quad \tilde{g}\left(z\right)=\overline{g\left(\overline{z}\right)}.$$

Proof. Given $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{F}_{q,\alpha}$ and $g(z) = \sum_{n=0}^{\infty} c_n z^n \in \mathcal{F}_{q,\alpha}$. Since from Lemma 3,

$$\Lambda_{q,\alpha}^{n} z^{k} = \frac{b_{k}\left(\alpha; q^{2}\right)}{b_{k-n}\left(\alpha; q^{2}\right)} z^{k-n}, \quad k \ge n, \tag{5}$$

we can write

$$g(z) = \sum_{n=0}^{\infty} \frac{\Lambda_{q,\alpha}^{n} g(0)}{b_{n}(\alpha; q^{2})} z^{n}.$$
 (6)

Using (4) and (6), we get

$$\langle f, g \rangle_{\mathcal{F}_{q,\alpha}} = \sum_{n=0}^{\infty} a_n \overline{\Lambda_{q,\alpha}^n g(0)} = \sum_{n=0}^{\infty} a_n \Lambda_{q,\alpha}^n \tilde{g}(0).$$

Thus

$$\langle f, g \rangle_{\mathcal{F}_{q,\alpha}} = f(\Lambda_{q,\alpha}) \tilde{g}(0),$$

which gives the desired result.

The following theorem proves that $\mathcal{F}_{q,\alpha}$ is a reproducing kernel space.

Theorem 1. The function $\mathcal{K}_{a,\alpha}$ given for

$$w, z \in D\left(0, \frac{1}{1-q}\right), by$$

$$\mathcal{K}_{q,\alpha}(w,z) = E_{\alpha}(\overline{w}z;q^2),$$

is a reproducing kernel for the q-Fock space $\mathcal{F}_{q,\alpha}$, that is:

1) For all
$$w \in D\left(0, \frac{1}{1-q}\right)$$
, the function

$$z \to \mathcal{K}_{q,\alpha}(w,z)$$
 belongs to $\mathcal{F}_{q,\alpha}$.

2) For all
$$w \in D\left(0, \frac{1}{1-q}\right)$$
 and $f \in \mathcal{F}_{q,\alpha}$, we have

$$\langle f, \mathcal{K}_{q,\alpha}(w,.) \rangle_{\mathcal{F}_{q,\alpha}} = f(w).$$

Proof. 1) Since

$$\mathcal{K}_{q,\alpha}\left(w,z\right) = \sum_{n=0}^{\infty} \frac{\overline{w}^n}{b_n\left(\alpha;q^2\right)} z^n;
z, w \in D\left(0, \frac{1}{1-q}\right),$$
(7)

then from (3), we deduce that

$$\left\|\mathcal{K}_{q,\alpha}\left(w,.
ight)
ight\|_{\mathcal{F}_{q,\alpha}}^{2}=\sum_{n=0}^{\infty}rac{\left|w
ight|^{2n}}{b_{n}\left(lpha;q^{2}
ight)}=E_{lpha}\left(\left|w
ight|^{2};q^{2}
ight)<\infty,$$

which proves 1).

2) If $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{F}_{q,\alpha}$, from (4) and (7), we deduce

$$\left\langle f, \mathcal{K}_{q,\alpha}\left(w,.\right)\right\rangle_{\mathcal{F}_{q,\alpha}} = \sum_{n=0}^{\infty} a_n w^n = f\left(w\right), \quad w \in D\left(0, \frac{1}{1-q}\right).$$

This completes the proof of the theorem.

Remark 2. From Theorem 1 2), for $f \in \mathcal{F}_{q,\alpha}$ and $w \in D\left(0, \frac{1}{1-\alpha}\right)$, we have

$$|f(w)| \le ||\mathcal{K}_{q,\alpha}(w,.)||_{\mathcal{F}_{q,\alpha}} ||f||_{\mathcal{F}_{q,\alpha}}$$

$$= \left[E_{\alpha}(|w|^2;q^2) \right]^{1/2} ||f||_{\mathcal{F}_{q,\alpha}}.$$
(8)

Proposition 2. The space $\mathcal{F}_{q,\alpha}$ equipped with the inner product $\langle .,. \rangle_{\mathcal{F}_{q,\alpha}}$ is an Hilbert space; and the set $\{\xi_n(.;q^2)\}_{\alpha\in\mathbb{N}}$ given by

$$\xi_n\left(z;q^2\right) = \frac{z^n}{\sqrt{b_n\left(\alpha;q^2\right)}}, \quad z \in D\left(0,\frac{1}{1-q}\right),$$

forms an Hilbert basis for the space $\mathcal{F}_{q,\alpha}$.

Proof. Let $\{f_n\}_{n\in\mathbb{N}}$ be a Cauchy sequence in $\mathcal{F}_{q,\alpha}$. We put

$$f = \lim_{n \to \infty} f_n$$
, in $\mathcal{F}_{q,\alpha}$.

From (8), we have

$$\left|f_{n+p}\left(w\right)-f_{n}\left(w\right)\right| \leq \left[E_{\alpha}\left(\left|w\right|^{2};q^{2}\right)\right]^{1/2}\left\|f_{n+p}-f_{n}\right\|_{\mathcal{F}_{q,\alpha}}.$$

This inequality shows that the sequence $\{f_n\}_{n\in\mathbb{N}}$ is pointwise convergent to f. Since the function

$$w \rightarrow \left[E_{\alpha}\left(\left|w\right|^{2};q^{2}\right)\right]^{1/2}$$
 is continuous on $D\left(0,\frac{1}{1-q}\right)$,

then $\{f_n\}_{n\in\mathbb{N}}$ converges to f uniformly on all compact set of $D\left(0,\frac{1}{1-q}\right)$. Consequently, f is an entire function

on
$$D\left(0, \frac{1}{1-q}\right)$$
, then f belongs to the space $\mathcal{F}_{q,\alpha}$.

On the other hand, from the relation (4), we get

$$\left\langle \xi_{n}\left(.;q^{2}\right),\xi_{m}\left(.;q^{2}\right)\right\rangle _{\mathcal{F}_{q,\alpha}}=\delta_{n,m},$$

where $\delta_{n,m}$ is the Kronecker symbol.

This shows that the family $\left\{ \xi_n \left(.; q^2 \right) \right\}_{n \in \mathbb{N}}$ is an orthonormal set in $\mathcal{F}_{q,\alpha}$.

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be an element of $\mathcal{F}_{q,\alpha}$ such

$$\langle f, \xi_n(.;q^2) \rangle_{\mathcal{F}_{q,\alpha}} = 0, \quad \forall n \in \mathbb{N}.$$

From the relation (4), we deduce that

$$a_n = 0, \quad \forall n \in \mathbb{N}.$$

This completes the proof.

Remark 3. 1) The set
$$\left\{ E_{\alpha}\left(\overline{w}.;q^{2}\right), w \in D\left(0,\frac{1}{1-q}\right) \right\}$$

is dense in $\mathcal{F}_{q,\alpha}$.

2) For all
$$z, w \in D\left(0, \frac{1}{1-q}\right)$$
, we have

$$E_{\alpha}\left(w\overline{z};q^{2}\right) = \left\langle E_{\alpha}\left(\overline{z}.;q^{2}\right), E_{\alpha}\left(\overline{w}.;q^{2}\right)\right\rangle_{\mathcal{F}_{\alpha}\alpha}$$

3. Operators on the Fock Spaces $\mathcal{F}_{q,\alpha}$

On $\mathcal{F}_{q,lpha}$, we consider the multiplication operators Q and N_q given by

$$Qf(z) := zf(z),$$

$$N_q f(z) := zD_q f(z) = \frac{f(z) - f(qz)}{1 - q}.$$

We denote also by $\Lambda_{q,\alpha}$ the q-Dunkl operator defined for entire functions on $D\left(0,\frac{1}{1-a}\right)$.

We write

$$\left[\Lambda_{q,\alpha},Q\right] = \Lambda_{q,\alpha}Q - Q\Lambda_{q,\alpha}.$$

Then by straightforward calculation we obtain.

Lemma 4.
$$\left[\Lambda_{q,\alpha}, Q\right] = B_q + W_{q,\alpha}$$
, where $B_z f(z) := f(qz)$,

$$W_{q,\alpha} := \frac{\left[2\alpha+1\right]_q}{2} \left[\left(q-1\right)B_q + \left(q+1\right)B_{-q}\right].$$

Remark 4. The Lemma 4 is the analogous commutation rule of [3]. When $q \to 1^-$, then $\Lambda_{q,\alpha}, Q$ tends to $I + (2\alpha + 1)B$, where I is the identity operator and B is the parity operator given by Bf(z) := f(-z).

Lemma 5. If $f \in \mathcal{F}_{q,\alpha}$ then $B_q f$, $N_q f$ and $W_{q,\alpha} f$ belong to $\mathcal{F}_{q,\alpha}$, and

1)
$$\|B_q f\|_{\mathcal{F}_{q,\alpha}} = \|B_{-q} f\|_{\mathcal{F}_{q,\alpha}} \le \|f\|_{\mathcal{F}_{q,\alpha}}$$

2)
$$||N_q f||_{\mathcal{F}_{q,\alpha}} \le \frac{1}{1-q} ||f||_{\mathcal{F}_{q,\alpha}}$$

3)
$$\|W_{q,\alpha}f\|_{\mathcal{F}_{q,\alpha}} \leq [2\alpha+1]_q \|f\|_{\mathcal{F}_{q,\alpha}}$$
.

Proof. Let
$$f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{F}_{a,\alpha}$$
, then

$$B_q f(z) = f(qz) = \sum_{n=0}^{\infty} a_n q^n z^n,$$

$$N_q f(z) = \frac{f(z) - f(qz)}{1 - a} = \sum_{n=0}^{\infty} a_n [n]_q z^n,$$

and from (3), we obtain

$$\begin{split} \left\|B_{q}f\right\|_{\mathcal{F}_{q,\alpha}}^{2} &= \sum_{n=0}^{\infty} \left|a_{n}\right|^{2} q^{2n} b_{n}\left(\alpha; q^{2}\right) \\ &\leq \sum_{n=0}^{\infty} \left|a_{n}\right|^{2} b_{n}\left(\alpha; q^{2}\right) = \left\|f\right\|_{\mathcal{F}_{q,\alpha}}^{2}, \end{split}$$

and

$$\left\|N_q f\right\|_{\mathcal{F}_{q,\alpha}}^2 = \sum_{n=0}^{\infty} \left|a_n\right|^2 \left(\left[n\right]_q\right)^2 b_n\left(\alpha; q^2\right).$$

Using the fact that $[n]_q \le \frac{1}{1-\alpha}$, we deduce

$$\left\|N_q f\right\|_{\mathcal{F}_{q,\alpha}}^2 \leq \frac{1}{\left(1-q\right)^2} \sum_{n=0}^{\infty} \left|a_n\right|^2 b_n\left(\alpha;q^2\right) = \frac{1}{\left(1-q\right)^2} \left\|f\right\|_{\mathcal{F}_{q,\alpha}}^2.$$

On the other hand from 1) we deduce that

$$\begin{split} & \left\| W_{q,\alpha} f \right\|_{\mathcal{F}_{q,\alpha}} \\ & \leq \frac{\left[2\alpha + 1 \right]_q}{2} \left[\left(1 - q \right) \left\| B_q f \right\|_{\mathcal{F}_{q,\alpha}} + \left(q + 1 \right) \left\| B_{-q} f \right\|_{\mathcal{F}_{q,\alpha}} \right] \\ & \leq \left[2\alpha + 1 \right]_q \left\| f \right\|_{\mathcal{F}_{q,\alpha}} \,, \end{split}$$

which completes the proof of the Lemma.

We now study the continuous property of the operators

 $\begin{array}{lll} \Lambda_{q,\alpha} & \text{and } Q \text{ on } \mathcal{F}_{q,\alpha} \,. \\ & \textbf{Theorem 2. } \textit{If } f \in \mathcal{F}_{q,\alpha} \ \textit{then } \Lambda_{q,\alpha} f \ \textit{ and } \textit{Qf belong} \\ \textit{to } \mathcal{F}_{q,\alpha} \,, \textit{and we have} \end{array}$

1)
$$\left\| \Lambda_{q,\alpha} f \right\|_{\mathcal{F}_{q,\alpha}} \le C_{q,\alpha} \left\| f \right\|_{\mathcal{F}_{q,\alpha}}$$

2)
$$\|Qf\|_{\mathcal{F}_{q,\alpha}} \le C_{q,\alpha} \|f\|_{\mathcal{F}_{q,\alpha}}$$
, where

$$C_{q,\alpha} \coloneqq \left(\left[2\alpha + 1 \right]_q + \frac{1}{1 - q} \right)^{1/2}.$$

Proof. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{F}_{q,\alpha}$ 1) From Lemma 3,

$$\Lambda_{q,\alpha} f(z) = \sum_{n=1}^{\infty} a_n \frac{b_n(\alpha; q^2)}{b_{n-1}(\alpha; q^2)} z^{n-1}$$

$$= \sum_{n=0}^{\infty} a_{n+1} \frac{b_{n+1}(\alpha; q^2)}{b_n(\alpha; q^2)} z^n.$$
(9)

Then from (9), we get

$$\left\|\Lambda_{q,\alpha}f\right\|_{\mathcal{F}_{q,\alpha}}^2 = \sum_{n=0}^{\infty} \left|a_{n+1}\right|^2 \frac{b_{n+1}\left(\alpha;q^2\right)}{b_{+}\left(\alpha;q^2\right)} b_{n+1}\left(\alpha;q^2\right).$$

Using Lemma 2 1), we obtain

$$\|\Lambda_{q,\alpha} f\|_{\mathcal{F}_{q,\alpha}}^{2}$$

$$= \sum_{n=0}^{\infty} |a_{n}|^{2} \left[[n]_{q} + q^{n} \left[2\alpha + 1 \right]_{q} \left(\frac{1 - \left(-1 \right)^{n}}{2} \right) \right] b_{n} \left(\alpha; q^{2} \right).$$
(10)

Using the fact that $[n]_q \le \frac{1}{1-q}$, we obtain

$$\begin{split} \left\| \Lambda_{q,\alpha} f \right\|_{\mathcal{F}_{q,\alpha}} &\leq C_{q,\alpha} \left[\sum_{n=0}^{\infty} \left| a_n \right|^2 b_n \left(\alpha; q^2 \right) \right]^{1/2} \\ &= C_{q,\alpha} \left\| f \right\|_{\mathcal{F}_{q,\alpha}}. \end{split}$$

2) On the other hand, since

$$Qf(z) = \sum_{n=1}^{\infty} a_{n-1}z^n, \qquad (11)$$

then

$$\|Qf\|_{\mathcal{F}_{q,\alpha}}^2 = \sum_{n=1}^{\infty} |a_{n-1}|^2 b_n(\alpha;q^2) = \sum_{n=0}^{\infty} |a_n|^2 b_{n+1}(\alpha;q^2).$$

By Lemma 2 1), we deduce

$$\|Qf\|_{\mathcal{F}_{a,o}}^2$$

$$= \sum_{n=0}^{\infty} |a_n|^2 \left[\left[n+1 \right]_q + q^{n+1} \left[2\alpha + 1 \right]_q \left(\frac{1+\left(-1\right)^n}{2} \right) \right] b_n \left(\alpha; q^2 \right). \tag{12}$$

Using the fact that $[n+1]_q \le \frac{1}{1-q}$, we obtain

$$\|Qf\|_{\mathcal{F}_{\sigma,\pi}} \le C_{q,\alpha} \|f\|_{\mathcal{F}_{\sigma,\pi}}.$$

We deduce also the following norm equalities.

Theorem 3. If $f \in \mathcal{F}_{q,\alpha}$ then

$$\begin{split} 1) \ \left\| \Lambda_{q,\alpha} f \right\|_{\mathcal{F}_{q,\alpha}}^2 &= \left\langle f, N_q f \right\rangle_{\mathcal{F}_{q,\alpha}} \\ &+ \frac{\left[2\alpha + 1 \right]_q}{2} \left\langle f, \left(B_q - B_{-q} \right) f \right\rangle_{\mathcal{F}_{q,\alpha}}, \end{split}$$

2)
$$\|Qf\|_{\mathcal{F}_{q,\alpha}}^2 = \langle f, N_q f \rangle_{\mathcal{F}_{q,\alpha}} + \|B_{\sqrt{q}} f\|_{\mathcal{F}_{q,\alpha}}^2 + \frac{q[2\alpha+1]_q}{2} \langle f, (B_q + B_{-q}) f \rangle_{\mathcal{F}_{q,\alpha}},$$

3)
$$\|Qf\|_{\mathcal{F}_{q,\alpha}}^2 = \|\Lambda_{q,\alpha}f\|_{\mathcal{F}_{q,\alpha}}^2 + \|B_{\sqrt{q}}f\|_{\mathcal{F}_{q,\alpha}}^2 + \langle f, W_{q,\alpha}f\rangle_{\mathcal{F}_{q,\alpha}}$$
.

Proof. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{F}_{q,\alpha}$

1) From (10), we get

$$\begin{split} & \left\| \Lambda_{q,\alpha} f \right\|_{\mathcal{F}_{q,\alpha}}^2 \\ &= \sum_{n=0}^{\infty} \left| a_n \right|^2 \left[\left[n \right]_q + q^n \left[2\alpha + 1 \right]_q \left(\frac{1 - \left(-1 \right)^n}{2} \right) \right] b_n \left(\alpha; q^2 \right) \\ &= \left\langle f, N_q f \right\rangle_{\mathcal{F}_{q,\alpha}} + \frac{\left[2\alpha + 1 \right]_q}{2} \left\langle f, \left(B_q - B_{-q} \right) f \right\rangle_{\mathcal{F}_{q,\alpha}}. \end{split}$$

2) On the other hand, by (12) and using the fact that $[n+1]_a = [n]_a + q^n$, we obtain

$$\begin{split} \left\| Qf \right\|_{\mathcal{F}_{q,\alpha}}^2 &= \sum_{n=0}^\infty \left| a_n \right|^2 \left[n \right]_q b_n \left(\alpha; q^2 \right) + \sum_{n=0}^\infty \left| a_n \right|^2 q^n b_n \left(\alpha; q^2 \right) \\ &\quad + \frac{q \left[2\alpha + 1 \right]_q}{2} \sum_{n=0}^\infty \left| a_n \right|^2 q^n \left(1 + \left(-1 \right)^n \right) b_n \left(\alpha; q^2 \right) \\ &\quad = \left\langle f, N_q f \right\rangle_{\mathcal{F}_{q,\alpha}} + \left\| B_{\sqrt{q}} f \right\|_{\mathcal{F}_{q,\alpha}}^2 \\ &\quad + \frac{q \left[2\alpha + 1 \right]_q}{2} \left\langle f, \left(B_q + B_{-q} \right) f \right\rangle_{\mathcal{F}_{q,\alpha}}. \end{split}$$

3) Follows directly from 1) and 2).

Proposition 3. The operators Q and $\Lambda_{q,\alpha}$ are adjoint-operators on $\mathcal{F}_{q,\alpha}$; and for all $f,g\in\mathcal{F}_{q,\alpha}$, we have

$$\langle Qf, g \rangle_{\mathcal{F}_{q,\alpha}} = \langle f, \Lambda_{q,\alpha} g \rangle_{\mathcal{F}_{q,\alpha}}.$$

Proof. Consider $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} c_n z^n$ in $\mathcal{F}_{q,\alpha}$. From (9) and (11),

$$\Lambda_{q,\alpha}g(z) = \sum_{n=0}^{\infty} c_{n+1} \frac{b_{n+1}(\alpha;q^2)}{b_n(\alpha;q^2)} z^n,$$

and

$$Qf(z) = \sum_{n=1}^{\infty} a_{n-1}z^n.$$

Thus from (4), we get

$$\begin{split} \left\langle Qf,g\right\rangle _{\mathcal{F}_{q,\alpha}} &= \sum_{n=1}^{\infty} a_{n-1}\overline{c_n}b_n\left(\alpha;q^2\right) \\ &= \sum_{n=0}^{\infty} a_n\overline{c_{n+1}}b_{n+1}\left(\alpha;q^2\right) = \left\langle f,\Lambda_{q,\alpha}g\right\rangle _{\mathcal{F}_{q,\alpha}}, \end{split}$$

which gives the result.

In the next part of this section we study a generalized translation and multiplication operators on $\mathcal{F}_{q,\alpha}$. We begin by the following definition.

Definition 2. For $f \in \mathcal{F}_{q,\alpha}$ and $w, z \in D\left(0, \frac{1}{1-q}\right)$,

we define:

• The q-translation operators on $\mathcal{F}_{q,\alpha}$, by

$$T_z f(w) := E_\alpha \left(z \Lambda_{q,\alpha}; q^2 \right) f(w) = \sum_{n=0}^\infty \frac{\Lambda_{q,\alpha}^n f(w)}{b_n(\alpha; q^2)} z^n. \tag{13}$$

• The generalized multiplication operators on $\mathcal{F}_{a,\alpha}$, by

$$M_z f(w) := E_\alpha \left(zQ; q^2 \right) f(w) = \sum_{n=0}^\infty \frac{Q^n f(w)}{b_n \left(\alpha; q^2 \right)} z^n. \tag{14}$$

For $w, z \in D\left(0, \frac{1}{1-q}\right)$, the function $E_{\alpha}\left(.; q^2\right)$ sa-

tisfies the following product formulas:

$$T_z E_{\alpha}(.;q^2)(w) = E_{\alpha}(z;q^2) E_{\alpha}(w;q^2),$$

$$M_z E_{\alpha}(.;q^2)(w) = E_{\alpha}(wz;q^2) E_{\alpha}(w;q^2).$$

Remark 5. If $q \to 1^-$ in (13), we obtain the generalized translation operators given in ([9], page 102).

Proposition 4. Let
$$f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{F}_{q,\alpha}$$
 and $z, w \in D\left(0, \frac{1}{1-q}\right)$. Then

1)
$$T_z f(w) = \sum_{n=0}^{\infty} a_n \sum_{k=0}^{n} \frac{b_n(\alpha; q^2)}{b_k(\alpha; q^2) b_{n-k}(\alpha; q^2)} w^{n-k} z^k$$
,

with

$$\begin{split} &\frac{b_{n}\left(\alpha;q^{2}\right)}{b_{k}\left(\alpha;q^{2}\right)b_{n-k}\left(\alpha;q^{2}\right)} \\ &= \frac{c\left(n,k;q^{2}\right)\Gamma_{q^{2}}\left(\alpha+1\right)\Gamma_{q^{2}}\left(\left[\frac{n+1}{2}\right]+\alpha+1\right)}{\Gamma_{q^{2}}\left(\left[\frac{k+1}{2}\right]+\alpha+1\right)\Gamma_{q^{2}}\left(\left[\frac{n-k+1}{2}\right]+\alpha+1\right)}, \end{split}$$

where

$$c(n,k;q^{2}) = \frac{\Gamma_{q^{2}}([n/2]+1)}{\Gamma_{q^{2}}([k/2]+1)\Gamma_{q^{2}}(\left[\frac{n-k}{2}\right]+1)}.$$

2)
$$M_z f(w) = \sum_{n=0}^{\infty} \left[\sum_{k=0}^{n} \frac{a_{n-k}}{b_k(\alpha; q^2)} z^k \right] w^n$$
.

Proof. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{F}_{q,\alpha}$.

1) From (13), we hav

$$T_{z}f\left(w\right) = \sum_{n=0}^{\infty} \frac{\Lambda_{q,\alpha}^{n}f\left(w\right)}{b_{n}\left(\alpha;q^{2}\right)}z^{n}; \quad w,z \in D\left(0,\frac{1}{1-q}\right).$$

But from (5), we have

$$\Lambda_{q,\alpha}^{n} f(w) = \sum_{k=n}^{\infty} a_{k} \frac{b_{k}(\alpha; q^{2})}{b_{k-n}(\alpha; q^{2})} w^{k-n}.$$

Thus we obtain

$$T_z f(w) = \sum_{n=0}^{\infty} a_n \sum_{k=0}^{n} \frac{b_n(\alpha; q^2)}{b_k(\alpha; q^2) b_{n-k}(\alpha; q^2)} w^{n-k} z^k.$$

On the other hand from Lemma 2 3), we get

$$\frac{b_{n}\left(\alpha;q^{2}\right)}{b_{k}\left(\alpha;q^{2}\right)b_{n-k}\left(\alpha;q^{2}\right)} = \frac{c\left(n,k;q^{2}\right)\Gamma_{q^{2}}\left(\alpha+1\right)\Gamma_{q^{2}}\left(\left[\frac{n+1}{2}\right]+\alpha+1\right)}{\Gamma_{q^{2}}\left(\left[\frac{k+1}{2}\right]+\alpha+1\right)\Gamma_{q^{2}}\left(\left[\frac{n-k+1}{2}\right]+\alpha+1\right)},$$

which gives the 1).

2) From (14), we have

$$M_z f(w) = \sum_{n=0}^{\infty} \frac{Q^n f(w)}{b_n(\alpha; q^2)} z^n; \quad w, z \in D\left(0, \frac{1}{1-q}\right).$$

But from (11), we have

$$Q^n f(w) = \sum_{k=n}^{\infty} a_{k-n} w^k.$$

Thus we obtain

$$M_z f(w) = \sum_{n=0}^{\infty} \left[\sum_{k=0}^{n} \frac{a_{n-k}}{b_k(\alpha; q^2)} z^k \right] w^n.$$

According to Theorem 2 we study the continuous property of the operators T_z and M_z on $\mathcal{F}_{q,\alpha}$

Theorem 4. If
$$f \in \mathcal{F}_{q,\alpha}$$
 and $|z| < \frac{1}{(1-q)(2-q^{2\alpha+1})}$,

then $T_z f$ and $M_z f$ belong to $\mathcal{F}_{q,\alpha}$, and we have

1)
$$\|T_z f\|_{\mathcal{F}_{q,\alpha}} \le E_{\alpha} \left(C_{q,\alpha} |z|; q^2 \right) \|f\|_{\mathcal{F}_{q,\alpha}}$$

2)
$$\|M_z f\|_{\mathcal{F}_{q,\alpha}} \le E_{\alpha} \left(C_{q,\alpha} |z|; q^2\right) \|f\|_{\mathcal{F}_{q,\alpha}}$$
,

where $C_{q,\alpha}$ are the constants of Theorem 2. **Proof.** From (13) and Theorem 2 1), we deduce

$$\begin{split} \left\| T_{z} f \right\|_{\mathcal{F}_{q,\alpha}} &\leq \sum_{n=0}^{\infty} \left\| \Lambda_{q,\alpha}^{n} f \right\|_{\mathcal{F}_{q,\alpha}} \frac{\left| z \right|^{n}}{b_{n} \left(\alpha; q^{2} \right)} \\ &\leq \sum_{n=0}^{\infty} \frac{\left(C_{q,\alpha} \left| z \right| \right)^{n}}{b_{n} \left(\alpha; q^{2} \right)} \left\| f \right\|_{\mathcal{F}_{q,\alpha}}. \end{split}$$

Since
$$|z| < \frac{1}{(1-q)(2-q^{2\alpha+1})}$$
, then $C_{q,\alpha} |z| < \frac{1}{(1-q)^2}$,

and therefore

$$||T_z f||_{\mathcal{F}_{\alpha,\alpha}} \le E_{\alpha} \left(C_{q,\alpha} |z|; q^2 \right) ||f||_{\mathcal{F}_{\alpha,\alpha}},$$

which gives the first inequality, and as in the same way

we prove the second inequality of this theorem. From Proposition 3 we deduce the following results. **Proposition 5.** For all $f, g \in \mathcal{F}_{a.a.}$, we have

$$\begin{split} \left\langle M_z f, g \right\rangle_{\mathcal{F}_{q,\alpha}} &= \left\langle f, T_z g \right\rangle_{\mathcal{F}_{q,\alpha}}, \\ \\ \left\langle T_z f, g \right\rangle_{\mathcal{F}_{q,\alpha}} &= \left\langle f, M_{\overline{z}} g \right\rangle_{\mathcal{F}_{q,\alpha}}. \end{split}$$

We denote by R_z the following operator defined on $\mathcal{F}_{a.\alpha}$ by

$$\begin{split} R_z &\coloneqq T_{\overline{z}} M_z - M_{\overline{z}} T_z = E_\alpha \left(\overline{z} \Lambda_{q,\alpha}; q^2 \right) E_\alpha \left(z Q; q^2 \right) \\ &- E_\alpha \left(\overline{z} Q; q^2 \right) E_\alpha \left(z \Lambda_{q,\alpha}; q^2 \right). \end{split}$$

Theorem 5. For all $f \in \mathcal{F}_{q,\alpha}$, we have

$$\left\| M_z f \right\|_{\mathcal{F}_{q,\alpha}}^2 = \left\| T_z f \right\|_{\mathcal{F}_{q,\alpha}}^2 + \left\langle f, R_z f \right\rangle_{\mathcal{F}_{q,\alpha}}.$$

Proof. From Proposition 5, we get

$$\begin{split} \left\| M_z f \right\|_{\mathcal{F}_{q,\alpha}}^2 &= \left\langle f, T_{\overline{z}} M_z f \right\rangle_{\mathcal{F}_{q,\alpha}} &= \left\langle f, \left(M_{\overline{z}} T_z + R_z \right) f \right\rangle_{\mathcal{F}_{q,\alpha}} \\ &= \left\| T_z f \right\|_{\mathcal{F}_{\alpha,\alpha}}^2 + \left\langle f, R_z f \right\rangle_{\mathcal{F}_{\alpha,\alpha}} \,. \end{split}$$

REFERENCES

[1] C. A. Berger and L. A. Coburn, "Toeplitz Operators on the Segal-Bargmann Space," *Transactions of the Ameri*can Mathematical Society, Vol. 301, No. 2, 1987, pp. 813-829. doi:10.1090/S0002-9947-1987-0882716-4

- [2] V. Bargmann, "On a Hilbert Space of Analytic Functions and an Associated Integral Transform, Part I," *Communications on Pure and Applied Mathematics*, Vol. 14, No. 3, 1961, pp. 187-214. doi:10.1002/cpa.3160140303
- [3] M. Sifi and F. Soltani, "Generalized Fock Spaces and Weyl Relations for the Dunkl Kernel on the Real Line," *Journal of Mathematical Analysis and Applications*, Vol. 270, No. 1, 2002, pp. 92-106. doi:10.1016/S0022-247X(02)00052-5
- [4] F. M. Cholewinski, "Generalized Fock Spaces and Associated Operators," SIAM Journal of Mathematical Analysis, Vol. 15, No. 1, 1984, pp. 177-202. doi:10.1137/0515015
- [5] G. H. Jackson, "On a q-Definite Integrals," *The Quarterly Journal of Pure and Applied Mathematics*, Vol. 41, No. 2, 1910, pp. 193-203.
- [6] T. H. Koornwinder, "Special Functions and q-Commuting Variables," Fields Institute Communications, Vol. 14, 1997, pp. 131-166.
- [7] A. Fitouhi, M. M. Hamza and F. Bouzeffour, "The q-j_α Bessel Function," *Journal of Approximation Theory*, Vol. 115, No. 1, 2002, pp. 144-166. doi:10.1006/jath.2001.3645
- [8] F. Soltani, "Multiplication and Translation Operators on the Fock Spaces for the q-Modified Bessel Function," *The Advances in Pure Mathematics (APM)*, Vol. 1, No. 2, 2011, pp. 221-227. doi:10.4236/apm.2011.14039
- [9] J. J. Betancor, M. Sifi and K. Trimèche, "Hypercyclic and Chaotic Convolution Operators Associated with the Dunkl Operator on C," *Acta Mathematica Hungarica*, Vol. 106, No. 1-2, 2005, pp. 101-116. doi:10.1007/s10474-005-0009-1