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Abstract 
Soybean and sunflower are summer annuals that can be grown as an alterna-
tive to corn and may be particularly useful in organic production systems for 
forage in addition to their traditional use as protein and/or oil yielding crops. 
Rapid and low cost methods of analyzing plant forage quality would be help-
ful for nutrition management of livestock. We developed and validated cali-
bration models using Near-infrared Reflectance Spectroscopic (NIRS) analysis 
for 27 different forage quality parameters of organically grown sunflower and 
soybean leaves or reproductive parts. Crops were managed under conven- 
tional tillage or no-till with a cover crop of wheat before soybean and rye- 
crimson clover before sunflower. From a population of 120 samples from both 
crops, covering multiple sampling dates within the treatments, calibration 
models were developed utilizing spectral information covering both visible 
and NIR region of 61 - 85 randomly chosen samples using modified partial 
least- squares (MPLS) regression with internal cross validation. Within MPLS 
protocol, we compared nine different math treatments on the quality of the 
calibration models. The math treatment “2,4,4,1” yielded the best quality 
models for all but starch and simple sugars (r2 = 0.699 - 0.999; where the 1st 
digit is the number of the derivative with 0 for raw spectra, 1 for first deriva-
tive, and 2 for second derivative, the 2nd digit is the gap over which the deriv-
ative is calculated, the 3rd digit is the number of data points in a running av-
erage or smoothing, and the 4th digit is the second smoothing). Prediction of 
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an independent validation set of 28 - 35 samples with these models yielded 
excellent agreement between the NIRS predicted values and the reference val-
ues except for starch (r2 = 0.8260 - 0.9990). The results showed that the same 
model was able to adequately quantify a particular forage quality of both crops 
managed under different tillage treatments and at different stages of growth. 
Thus, these models can be reliably applied in the routine analysis of soybean 
and sunflower forage quality for the purposes of livestock nutrient manage-
ment decisions. 
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1. Introduction 

Soybean (Glycine max) and sunflower (Helianthus annuus L.) are summer an-
nuals which are grown for feeding farm animals throughout the USA. Interest in 
forage soybean production has increased recently with the development of suc-
cessful breeding programs [1] [2] [3]. Forage soybean can be used in ruminant 
diets because it has high protein content, above average energy content and good 
nutrient digestibility similar to that of alfalfa (Medicago sativa L.) [4]. Forage 
soybean could be used to replace alfalfa in areas where alfalfa production is li-
mited due to unfavorable soil and environmental conditions [5]. Soybean grown 
as forage can help diversify cropping systems. Mixing forage soybean with tall 
fescue (Festuca arundinacea Schreb) resulted in increased forage yield and fo-
rage crude protein content compared with tall fescue alone [6]. Forage soybean 
can reduce potential risk during unfavorable weather conditions that limit fo-
rage availability from other crops or grain harvest [6] [7]. 

Sunflower is grown primarily as an oil crop but is also used as a confectionary 
and bird feed, as a garden ornamental, or as an ensilage crop [8]. Breeding of 
high oil varieties and hybrids has resulted in increased world production [9]. In 
2016, close to 554,000 ha of sunflower was harvested in the USA with 45% and 
36% coming from North and South Dakota, respectively [10]. Sunflower shows 
characteristics of drought tolerance, resistance to low and high temperatures, 
relative independence of latitude, altitude, and photoperiod, and adapts well in 
different climatic conditions [11]. It is a deep rooted crop and can extract water 
and nutrients from deep in the soil profile. Its resilience adds to the usefulness of 
sunflower in crop rotations.  

Sunflower seeds (main source of oil, meal, confectionary or bird feed) repre- 
sent only about a third of the dry matter content of the whole plant and the re-
maining two thirds can be a potential source of livestock silage or direct grazing 
forage [12]. When the plant fails to produce adequate seed due to environmental 
conditions or other factors, the whole plant can be used as silage or grazed. Sun-
flower has greater protein and energy content than corn [11] and the feeding 
value for sunflower silage is 90% to 95% that of corn silage [12]. Increasing de-
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mand for sunflower byproducts, i.e., oil for human consumption or feedstock for 
biodiesel and sole or blended feed, presents an opportunity for growers inter-
ested in diversifying and/or complementing an existing cropping system [9]. 

Global demand for livestock products has increased over the past 20 years as 
diets in many countries have increased the consumption of meat. During this 
period there has also been an even greater increase in demand for organic meat 
in the USA due to increasing awareness of benefits of organic products by con-
sumers. Meeting this consumer demand for organic meat has placed a premium 
on quality sources of organic grain and forage for livestock feed.  

Rapid and low cost methods of accurately determining forage quality would 
be advantageous for producers in determining the value of the forage (nutrition-
al and commercial). A non-destructive spectroscopic sensing technique such as 
near infrared spectroscopy (NIRS) has been shown to be a suitable analytical 
technique for this purpose as compared to traditional laboratory analysis using 
wet chemistry which is expensive and time consuming [13]. Limited data is 
available for NIRS analysis of sunflower and soybean crops grown under organic 
production methods. In this study, we developed and validated NIRS calibration 
models for 27 forage quality parameters for organically grown soybean and sun-
flower. The goal of this study was to provide low cost analytical option with 
rapid turn-around for the organic growing systems that would include soybean 
and sunflower in the southern United States. 

2. Materials and Methods 
2.1. Samples and Sample Preparation 

The samples used to develop the validate NIRS calibration equations in this 
study came from field research conducted at the University of Georgia, Ponder 
Farm, near Tifton, GA (31.511˚N, 83.644˚W). The objective was to evaluate til-
lage and crop management effects on organic production in a rotation of wheat- 
soybean-rye/crimson clover-sunflower. The soil is Tifton loamy sand (Fine- 
loamy, kaolinitic, thermic Plinthic Kandiudults) and covers extensive areas of 
agricultural land in Georgia. The experiment had four replications arranged as a 
split-split plot design with tillage serving as whole plot, consisting of conven-
tional tillage and no-till, and crop rotation serving as the split plot. Both cover 
and summer crops were grown each corresponding season. Irrigation was used 
to avoid crop failure in case of drought. The 120 samples came from the 2013 
summer season. For soybean, 48 samples came from leaves at 31 and 52 days af-
ter planting and from leaves and reproductive parts at 73 days after planting, 
equally split between the two tillage treatments. For sunflower, 72 samples came 
from leaves and reproductive parts at 25, 46, and 67 days after planting and from 
reproductive parts only at 88 days after planting, with 44 coming from conven-
tional tillage and 28 from no-till treatments. 

Samples were weighed, placed in a forced-air oven and dried at 65oC until 
constant weight. Samples were then ground using a Wiley-type mill with a 1 mm 
screen and stored at room temperature until used first for collecting NIR spectra 
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and then for laboratory analyses of various parameters of interest as described 
below. We collected NIR spectra of all 120 samples, but the limited amount of 
samples prevented us from performing the laboratory analyses on all 120 sam-
ples for all 27 parameters.  

2.2. Analyses of Samples by Laboratory Reference Methods 

Dry matter content of the ground and screened samples was determined follow-
ing the Association of Official Analytical Chemist (AOAC) method 930.15 [14] 
by drying approximately 2 g of sample in a forced-air drying oven at 135˚C ± 
2˚C for 2 h with freely circulating air. Total nitrogen, and sulfur were analyzed 
by a combustion CNS elemental analyzer (model “LECO CNS 2000”, LECO 
Corporation, Michigan) following a dry combustion method [15] [16] based on 
the original method described by Dumas [17]. We used 0.2 g of the dried and 
ground sample for this analysis. Crude protein content of the samples was cal-
culated by multiplying the total nitrogen content by 6.25. The ash content of the 
samples was determined based on ASTM standard D3174-97 for coal and coke 
[18].  

The analyses of NDF and ADF were carried out on an Ankom200/220 Fiber 
Analyzer (ANKOM Technology, NY) using F57 filter bags (ANKOM Technolo-
gy, NY), constructed from chemically inert and heat resistant filter media, capa-
ble of being heat sealed closed and able to retain 25 µm particles while permit-
ting rapid solution penetration [19] [20]. The protocols are based on the basic 
principles of the methods 5.1 and 4.1 of National Forage Testing Association 
[21] [22]. The lignin and ash contents in ADF residue were determined follow-
ing the method described by ANKOM Technology [23]. Finally, the contents of 
hemicellulose and cellulose were estimated from NDF, ADF, lignin, and ash fol-
lows: 

%Hemicellulose %NDF %ADF= −  

( )%Cellulose %ADF %Lignin %Ash= − +  

Non Fibrous Carbohydrates (NFC) was estimated using the following equa-
tion (NRC, 2001): 

( ) ( )NFC % of DM 100 NDFn CP FAT Ash= = − + + +  

where NDFn is “nitrogen free NDF”, it was estimated as: 

NDFn NDF 0.93= ×  

Nonstructural carbohydrates (NSC) are starch, water soluble carbohydrates 
(WSC), and ethanol soluble carbohydrates (ESC). We followed the methods de-
scribed by Karkalas [24] and Holm et al. [25] for starch analysis. The extraction 
of WSC and ESC was carried out according to protocol reported by Smith [26]. 
The carbohydrate content in both extracts was then analyzed colorimetrically 
following the phenol-sulfuric acid procedure as described by Dubois et al. [27] 
using a spectrophotometer based on sucrose standard. According to Harris [28], 
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the WSC includes simple sugars plus fructans, whereas the ESC includes simple 
sugars with negligible fructans. The total NSC is the sum starch and WSC. 

Determination of the contents of ten different minerals namely, calcium (Ca), 
potassium (K), magnesium (Mg), phosphorous (P), aluminum (Al), boron (B), 
copper (Cu), iron (Fe), manganese (Mn), and Zinc (Zn) were carried out by mi-
crowave digestion followed by ICP analysis. The samples were digested following 
EPA Method 3052 [29] and the solutions evolved after digestion were analyzed 
for various elements following EPA Method 200.8 [30] by Inductively Coupled 
Plasma-Optical Emission Spectrometer(ICP-OES) (Spectro Arcos FHS16, Ger-
many). The results were reported as percent or parts per million (mg∙kg−1). Cali-
bration standards were from a certified source. Independent laboratory perfor-
mance checks were also run with acceptable deviations for recoveries set at 100% 
± 5%. 

2.3. Packing and Scanning by Near-Infrared Spectrometer  

We used a NIR System model 6500 near-infrared scanning monochromator 
(FOSS North America, Eden Prairie, Minnesota) in the reflectance mode for 
scanning the samples. The instrument had a combination of silicon and lead sul-
fide detectors. Approximately 5-g subsamples of homogenized samples were 
packed in ring cups (Part# IH-0386, FOSS North America, Eden Prairie, Min-
nesota) that had approximately 10 mm depth. A transport module held the 
packed cup dropped down into the instrument where 32 successive scans were 
made. The scanning wavelength covered both visible and NIR regions ranging 
from 400 to 2498 nm. Each scanning recorded reflectance energy reading at 2- 
nm intervals. An internal standard ceramic disk served as the control, which was 
scanned 16 times before and after each batch of samples. The reflectance energy 
readings were referenced to the corresponding readings from the internal stan-
dard and recorded as the logarithm of the reciprocal of reflectance (log 1/R, R = 
reflectance).  

2.4. Development and Validation of Calibration Models 

The basic protocols used to develop and validate the calibration models in this 
study have been elaborately described earlier by Rushing et al. [31]. However, 
this study has some important differences with the earlier study [31] as de-
scribed and discussed adequately hereunder paying due attention to be brief but 
giving the full opportunity to the other researchers to follow the protocol for 
their future studies (if needed). 

The “log 1/R” readings recorded at 2 nm interval covering both visible and 
NIR regions (400 - 2498 nm wavelength) were used to develop calibration equa-
tions for a total of 27 constituents. The score program of WinISI software per-
formed necessary mathematical processing and statistical analysis on the NIR 
spectra of the 120 samples and selected spectral outlier samples before calibra-
tion and validation. We used the principal components regression (PCR) analy-
sis of the sample spectra for scoring. The score algorithm calculated the values of 
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two Mahalanobis distances, “global-H (GH)” and “neighboring-H (NH)” [32], 
ranked the spectra based on GH and NH values, and excluded the spectral out-
liers if GH > 3.0 or NH < 0.6. Such exclusion of GH and NH outlier samples 
helped in the development of accurate and robust prediction equations [33]. 
Following exclusion of spectral outliers, the remaining qualified sample set was 
randomly divided into two subsets using WinISI software. The first subset con-
tained around two-thirds of the total samples and was used for calibration and 
cross validation. The second subset had about one-third of the total and was 
used for independent validation. The independent validation sample set allowed 
validation of the NIRS calibration models for prediction accuracy, using random 
samples truly different from the ones utilized for development of the calibration 
models [34]. 

We used the protocol as outlined in the global program in WinISI software 
manual for development and validation of NIRS calibration models. The spectral 
data recorded at 2 nm interval bracketing the entire visible (400 - 1100 nm) and 
NIR (1100 - 2498 nm) regions were used for both calibration and validation ex-
ercise. Modified Partial Least Squares (MPLS) regression method was used to 
develop the calibration models [35] because the MPLS is often considered more 
stable and accurate than the standard PLS algorithm for agriculture applications 
of NIRS [36]. The MPLS is a stepwise protocol where the residuals (at each wa-
velength) obtained after each factor is calculated are standardized (i.e., divided 
by the standard deviations of the residuals) before calculating the next factor 
[37]. Cross validation was carried out simultaneously during calibration model 
development. It followed the “leave-one-out crossvalidation” procedure as de-
scribed by Saeys et al. [38], where the calibration set is partitioned into two sub-
groups several times by selecting every fifth sample in the calibration set and 
holding it for use as a validation during calibration development. That means, in 
each step of this procedure, the calibration subgroup included 80% of the sam-
ples and the validation subgroup included the remaining 20%. Each validation 
group is then validated using the calibration models developed based on the 
other samples; finally, the validation errors are combined into a single overall 
standard error of cross validation (SECV). For all 27 constituents of this study, 
there were five such cross validation steps. As a result, every sample in the entire 
set was used in the validation procedure and this allowed us to develop the most 
robust calibration models. During each cross validation step, the model outliers 
were rejected based on their spectral differences (H statistic) as described above. 
Such internal cross validation allowed the calibration protocol to select the 
minimum number of PLS terms in each model and to avoid overfitting of the 
equations [36]. 

Standard normal variate and detrending (SNVD) were used as pretreatment 
of the spectra for scatter correction. The structure of SNVD used in this study 
was appropriate to give a spectrum with zero mean and a variance equal to one 
through removal of additive baseline and multiplicative signal effects. The 
SNVD transformation of the raw spectral data reduced the interference of phys-
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ical characteristics such as particle size and path length of sample to the spectra 
[39] [40]. In this study, we evaluated nine different SNVD mathematical treat-
ments such as 0,4,4,1; 1,4,4,1; 2,4,4,1; 0,5,5,1; 1,5,5,1; 2,5,5,1; 0,10,5,1; 1,10,5,1; 
and 2,10,5,1, where the first digit is the number of the derivative (0 for raw spec-
tra, 1 for first derivative, and 2 for second derivative), the second digit (4, 5, or 
10) is the gap over which the derivative is calculated, the third digit (4 or 5) is 
the number of data points in a running average or first smoothing, and the 
fourth digit (1) is the number of data points in the second smoothing. Thus, 
the mathematical treatment “2,4,4,1”represents second derivative treatment of 
the spectra used to optimize calibrations and a gap of 4 (i.e., 4 × 2 nm = 8 nm, 
the spacing over which the derivative was calculated) with first smoothing at 4 
data points, and avoidance of second smoothing. The use of derivative algo-
rithms on the raw spectra (log 1/R) gave an increased complexity of spectra 
and assisted in a clear separation between peaks, which overlapped in the raw 
spectra [41]. 

On the developed models, we carried out a further elimination process and 
removed the compositional outliers from the calibration sample set if the differ-
ence between predicted and laboratory-measured values exceeded three times 
original SECV [42] [43]. It is believed that the compositional outliers are the 
samples with poor quality laboratory-measured values that do not correlate well 
with the spectral features of the samples [42] [43] [44]. After exclusion of the 
compositional outliers, the final calibration models were developed, which were 
able to give NIRS-predicted values within three standard deviations from the 
mean difference when compared with the associated laboratory-measured values 
for each sample included in the model. 

Several standard criteria were used to judge the quality of a calibration model. 
These were lower standard error of calibration (SEC) and higher coefficient of 
determination for calibration (R2). The ability of a model to cross validate itself 
was evaluated based on the lower value of standard error of cross validation 
(SECV) and the higher value of associated 1 − variance ratio statistics (1 − VR) 
(the coefficient of determination in cross validation steps) derived from the 
overall outcomes of all five cross validation steps. Furthermore, we used the fol-
lowing two ratios to evaluate the quality of the models [45] [46]: 
1) RPDc, SD ÷ SECV, the ratio of standard error of cross validation to deviation 

(SD, standard deviation of reference data in calibration set). 
2) RPIQc, IQ ÷ SECV, the ratio of standard error of cross validation to in-

ter-quartile distance (IQ, inter-quartile distance in reference data in the cali-
bration set). 
Randomly selected independent validation sample sets, kept aside from the 

calibration sample set, were predicted by the calibration models. The predicted 
results were then compared with the corresponding laboratory-measured values. 
Only the models developed using 2,4,4,1 mathematical treatment were evaluated 
by independent validation sets because these models gave better calibration de-
velopment statistics as compared to those given by the other mathematical 
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treatments. During comparison of the predicted values with the corresponding 
laboratory-measured values, the compositional outlier samples were also re-
moved from the validation set if the difference between predicted and laborato-
ry-measured values exceeded three times original SECV [42] [43]. Once the 
compositional outliers were removed, all remaining samples in the validation set 
gave NIRS-predicted values within three standard deviations from the mean dif-
ference when compared with the associated laboratory-measured values. We 
used lower standard error of prediction (SEP), lower bias-corrected SEP [SEPC], 
and higher r2 for better prediction performance of a model. We also used the 
following two ratios to evaluate the success of independent validation of the 
models [45] [46]: 
1) RPDv, SD ÷ SEP, the ratio of performance (SEP) to deviation (SD of the ref-

erence data in the independent/external validation set). 
2) RPIQv, IQ ÷ SEP, the ratio of performance (SEP) to inter-quartile distance 

(IQ of the reference data in the independent/external validation set). 
The R2 and r2 indicate the percentage of the variance in the Y variable (various 

quality attributes) that is accounted for by the X variable (spectral characteris-
tics, log(1/R)) during calibration and independent validation, respectively. On 
the other hand, the RPDc or RPIQc and RPDv or RPIQv are measures of the 
coefficient of variation (CV) and represent the factor, by which the prediction 
accuracy increases compared to using the mean composition for the samples in-
cluded in the calibration and validation sets, respectively. Thus, they provide the 
average errors of prediction during cross validation and independent validation, 
respectively. Consequently, the RPDc or RPIQc and RPDv or RPIQv relate cali-
bration and validation performance to the range of measurements and are in 
wide use as a quality indicator of the calibration [47] [48].  

3. Results and Discussion 
3.1. Laboratory Reference Data for Various Constituents 

The descriptive statistics for 27 different parameters used in the calibration and 
validation sets are shown in Table 1 and Table 2, respectively. The mean values 
in the calibration and validation sets were similar. For example, the mean values 
were 89.61% versus 89.58% for DM, 18.42% versus 17.80% for CP, 5.60% versus 
5.32% for fat, 23.79% versus 23.97% for ADF, 33.51% versus 32.85% for NDF, 
5.54% versus 5.82% for lignin, 1.63% versus 1.49% for Ca, 2.55% versus 2.68% 
for Mg, and so on in the calibration and validation sets, respectively. Likewise, 
the median, SD, Q1, Q3, and IQ of the validation sample set were more or less 
similar to those of the calibration sample set in most cases. In addition, most of 
the observed results are in agreement with the results reported by other re-
searchers for soybean and sunflower [49] [50] [51]. The similarities of various 
statistics between calibration and validation sets suggest that the calibration 
models to be developed could reliably be applied to the validation set, without 
extrapolation from models [52]. 
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Table 1. Descriptive statistics for the 27 constituents of sunflower and soybean plant 
samples used in for the development of NIRS calibration models. 

Constituent Na Range Mean 
Median  

(Q2) 
Q1b Q3c SDd IQe 

Moisture (%) 59 7.09 - 11.97 10.39 10.70 9.95 11.01 1.09 1.06 

DM (%) 59 88.03 - 92.91 89.61 89.30 88.99 90.05 1.09 1.06 

Protein (%) 80 7.05 - 30.45 18.42 15.72 12.00 25.69 7.10 13.69 

Fat (%) 76 0.35 - 32.94 5.60 2.06 1.35 4.82 8.61 3.47 

Ash (%) 56 5.67 - 24.87 11.78 10.20 9.33 12.73 4.37 3.40 

ADF (%) 79 17.74 - 31.98 23.79 23.58 21.81 25.40 3.06 3.59 

NDF (%) 80 27.01 - 42.46 33.51 33.81 31.24 35.90 3.39 4.66 

Lignin (%) 81 3.32 - 10.07 5.54 5.19 4.34 6.58 1.57 2.25 

Cellulose (%) 80 11.10 - 27.27 18.20 18.52 16.00 20.03 3.15 4.03 

Hemicellulose (%) 79 5.40 - 14.54 9.84 9.86 8.44 11.40 2.02 2.97 

NFC (%) 57 14.01 - 46.75 29.14 27.81 22.99 34.19 8.03 11.21 

Starch (%) 73 0.10 - 0.90 0.41 0.40 0.20 0.50 0.21 0.30 

WSC (%) 73 2.60 - 16.10 5.64 5.30 4.40 6.40 2.06 2.00 

ESC (%) 66 0.60 - 7.90 3.06 2.90 2.10 3.70 1.28 1.60 

NSC (%) 76 0.60 - 16.90 5.94 5.65 4.68 6.73 2.24 2.05 

Ca (%) 82 0.75 - 3.97 1.63 1.37 1.20 1.74 0.73 0.54 

K (%) 84 1.69 - 3.85 2.55 2.48 2.22 2.84 0.54 0.63 

Mg (%) 80 0.29 - 0.64 0.46 0.46 0.42 0.49 0.07 0.08 

P (%) 82 0.20 - 0.70 0.39 0.37 0.32 0.45 0.11 0.13 

N (%) 82 1.13 - 4.87 2.92 2.51 1.92 4.15 1.14 2.23 

S (%) 81 0.13 - 0.37 0.24 0.23 0.20 0.28 0.05 0.08 

Al (mg/kg) 81 12.60 - 527.40 161.65 109.80 50.00 208.60 146.83 158.60 

B (mg/kg) 82 26.60 - 92.80 57.26 57.40 48.60 69.40 15.00 20.80 

Cu (mg/kg) 83 4.20 - 22.40 10.68 10.20 7.80 13.00 4.02 5.20 

Fe (mg/kg) 81 52.60 - 654.60 186.17 145.60 88.60 289.30 131.71 200.70 

Mn (mg/kg) 80 26.60 - 267.40 94.19 77.50 53.85 121.55 55.04 67.70 

Zn (mg/kg) 82 20.00 - 76.00 40.15 36.40 30.20 47.60 13.38 17.40 

aN, Number qualified samples included in the final calibration set (see Materials and Methods for details). 
bQ1, first quartile. cQ3, third quartile. dstandard deviation of mean. einter-quartile distance (IQ = Q3 − Q1). 
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Table 2. Descriptive tatistics for the 27 constituents of sunflower and soybean plant samples used in the monitoring (validation) 
of NIRS calibration models. 

Constituent N Range Mean 
Median 

(Q2) 
Q1a Q3b SDc IQd 

Average 
GHe 

Average 
NHe 

Moisture (%) 28 7.24 - 11.67 10.42 10.64 10.25 11.22 1.13 0.97 1.118 0.829 

DM (%) 28 88.33 - 92.76 89.58 89.37 88.79 89.76 1.13 0.97 1.118 0.829 

Protein (%) 34 7.41 - 31.00 17.80 16.47 12.94 21.87 7.07 8.93 1.077 0.758 

Fat (%) 30 0.29 - 33.50 5.32 1.90 1.32 4.71 8.75 3.39 1.085 0.747 

Ash (%) 26 6.29 - 22.08 11.96 10.55 9.59 13.15 4.15 3.56 1.151 0.882 

ADF (%) 34 12.26 - 30.75 23.97 23.48 21.16 26.80 3.67 5.64 1.111 0.805 

NDF (%) 33 25.30 - 46.68 33.61 32.85 29.99 35.89 5.13 5.90 1.043 0.655 

Lignin (%) 34 2.73 - 11.10 5.82 4.92 4.41 6.91 2.14 2.50 1.111 0.805 

Cellulose (%) 34 11.42 - 26.15 18.15 18.40 15.49 19.88 3.63 4.39 1.111 0.805 

Hemicellulose (%) 33 6.70 - 15.93 10.10 9.61 8.68 10.98 2.41 2.30 1.113 0.806 

NFC (%) 27 17.76 - 50.08 30.85 28.47 23.43 37.84 9.16 14.41 1.142 0.879 

Starch (%) 26 0.20 - 1.00 0.44 0.40 0.30 0.50 0.24 0.20 1.073 0.785 

WSC (%) 31 2.60 - 14.20 5.40 4.80 4.10 5.40 2.42 1.30 1.043 0.731 

ESC (%) 29 1.30 - 11.30 3.74 3.50 2.50 4.40 2.10 1.90 1.056 0.751 

NSC (%) 31 3.00 - 15.20 5.77 5.10 4.60 5.60 2.59 1.00 1.043 0.731 

Ca (%) 32 0.69 - 2.96 1.49 1.34 1.11 1.64 0.58 0.53 1.128 0.826 

K (%) 34 1.68 - 3.91 2.68 2.59 2.18 3.17 0.63 0.99 1.102 0.790 

Mg (%) 33 0.32 - 0.32 0.44 0.44 0.37 0.49 0.09 0.12 1.115 0.811 

P (%) 35 0.20 - 0.62 0.39 0.37 0.31 0.47 0.11 0.16 1.103 0.786 

N (%) 34 1.19 - 4.96 2.88 2.76 2.08 3.65 1.13 1.57 1.077 0.786 

S (%) 34 0.14 - 0.37 0.23 0.23 0.20 0.26 0.06 0.06 1.119 0.790 

Al (mg/kg) 33 13.60 - 383.40 158.75 126.30 49.20 276.30 125.77 227.10 1.051 0.724 

B (mg/kg) 33 28.60 - 86.80 57.10 55.40 49.20 67.00 14.32 17.80 1.168 0.661 

Cu (mg/kg) 35 4.40 - 16.80 10.54 10.20 8.10 12.70 3.07 4.60 1.103 0.786 

Fe (mg/kg) 33 48.60 - 457.00 181.79 175.80 92.80 240.00 105.38 147.20 1.051 0.724 

Mn (mg/kg) 34 29.20 - 259.00 90.92 72.30 54.10 126.30 55.17 72.20 1.113 0.801 

Zn (mg/kg) 35 23.00 - 62.20 36.61 33.80 28.10 43.80 10.72 15.70 1.103 0.786 

aQ1, first quartile. bQ3, third quartile. cSD, standard deviation of mean. dIQ, inter-quartile distance (IQ = Q3 − Q1). eWinISI software calculated the average 
GH and NH values from the individual GH and NH values of all samples included in the validation set. 
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3.2. Spectroscopic Analysis 

An average raw NIR reflectance spectrum of the samples is shown in Figure 
1(a). The second derivative was calculated from the log(1/R) spectra at gaps of 4 
data points (8 nm) and a smoothing over segments of 4 data points (2,4,4,1) with 
scatter correction (SNVD). The derivative form of an average spectrum is shown 
in Figure 1(b). 

In the average raw spectrum (Figure 1(a)), the main absorption bands were 
observed over several wavelengths such as 1436-1464, 1720, 1926, 2100 - 2136, 
2302 - 2344, and 2488 nm. The overlaid raw spectra for all 120 samples shown in 
Figure 2 reflect the fact that they belong to same population despite they were 
for various plant parts of two different species. The second-derivative spectra 
generally show a trough corresponding to each peak in the original spectra, re-
moving the overlapping peaks and baseline effects [53]. The chemical interpreta-
tions with regards to various functional groups responsible for absorption/re- 
flection of NIR radiation at various wavelengths have been described by Work-
man and Weyer [54]. The second derivative of an average spectrum (Figure 
1(b)) showed absorption bands at 1398 nm related to C-H bands of methylene  
 

 
(a) 

 
(b) 

Figure 1. Raw spectrum (log 1/R; (a) and second derivative (2,4,4,1 + SNVD; (b) of NIRS 
average spectrum of a sunflower/soybean plant sample. 
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Figure 2. Overlaid raw spectra (log 1/R) of all 120 sunflower and soybean plant samples. 
 
(-CH2) group associated with aliphatic and aromatic hydrocarbons; 1454 nm re-
lated to O-H stretching first overtone of starch, C-H bending of methylene 
(-CH2) of hydrocarbons and O-H stretching of starch; 1480 nm related to N-H 
stretching first overtone of -NH2C=O; 1526 nm related to N-H stretching first 
overtone of -NH2R; and 1742 nm related to S-H stretching first overtone of thiol 
group associated with thiols. The bands at 1780 nm was related to C-H stret-
ching first overtone of cellulose and H-O-H deformation and bending of cellu-
lose, 1794 nm was related to O-H bending of water, 1962 nm was related to O-H 
stretching and O-H bending combination band of starch, 2099 nm was related to 
O-H bending or C-O stretching third overtone of starch or cellulose, 2186 nm 
was related to N-H bending second overtone of protein, C-H stretching or C=O 
bending of protein, 2280 and 2348 nm were related to C-H stretching or -CH2 
deformation-bending of starch, and 2304 nm was related to C-H bending second 
overtone of protein. 

As an analytical method, the NIRS is based on the magnitude of absorp-
tion/reflection of NIR radiation at a specific wavelength or within a specific re-
gion of wavelength by the samples of various natural products. The assignment 
of main absorption bands in the second derivative of an average spectrum to 
various probable functional groups, as described above, was done according to 
literature compiled by Workman and Weyer [55], which showed a good agree-
ment with the information for the functional groups in the spectrum given by 
WinISI software. The wavelength specific absorption/reflection of NIR radiation 
usually depends on the presence and abundance of some specific functional 
groups of various organic compounds in the samples. However, it is often diffi-
cult to accurately determine what wavelength(s) or region(s) in the near-infrared 
spectrum carried the most quantitative information about the contents of natu-
ral compounds being analyzed even though the NIRS technique works fairly well 
in many cases. It also evident in the literature that the chemical interpretation 
for absorption/reflection of NIR radiation, at a specific wavelength, often varies 
according to what experimental materials and chemical components are being 
considered NIR analysis [41] [55] [56]. Nevertheless, the NIRS technique has 
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successfully been employed for determining the contents of various natural 
compounds in food, feed, biomass, and other natural products even without 
pinpointing chemical information regarding prominent functional groups re-
lated to the near-infrared spectrum [32] [44] [50] [55] [56] [57] [58] [59]. 

3.3. Calibration Models: Effect of Various  
Mathematical Treatments  

Initially, nine different math treatments (0,4,4,1; 1,4,4,1; 2,4,4,1; 0,5,5,1; 1,5,5,1; 
2,5,5,1; 0,10,5,1; 1,10,5,1; and 2,10,5,1) were used to develop calibration models 
for each of the 27 different parameters leading to a total of 243 models. The ac-
curacy of each of these calibration models was evaluated based on the coeffi-
cients of determination (R2) for predicted versus measured compositions in cali-
bration phase and the ratio of standard deviation of data set (SD) to standard 
error of cross validation (SECV), RPDc.  

According to Williams [60], a value for R2 between 0.50 and 0.65 indicates 
that more than 50% of the variance in Y is accounted for by variance in X, so 
that discrimination between high and low concentrations can be made (qualita-
tive prediction); a value for R2 between 0.66 and 0.81 indicates “approximate” 
quantitative predictions, whereas, a value for R2 between 0.82 and 0.90 reveals 
“good” prediction; calibration models having a value for r2 above 0.91 are consi-
dered to be “excellent”. The RPDc is the factor by which the prediction accuracy 
has been increased compared to using the mean composition for all samples in 
the calibration set. A wide variety of interpretations of RPDc values to indicate 
the quality of calibrations are found in the literature [38] [43] [47] [60] [61] [62] 
[63] [64]. Williams [60] suggested five levels of prediction accuracy based on 
RPDc values: (1) a value for the RPDc below 1.5 indicates that the calibration is 
not usable; (2) a value between 1.5 and 2.0 reveals a possibility to distinguish 
between high and low values; (3) a value between 2.0 and 2.5 makes “approx-
imate” quantitative prediction; (4) a value between 2.5 and 3.0 suggests “good” 
quantitative prediction; and (5) a value greater than 3.0 indicates “excellent” 
quantitative prediction. Using both R2 and RPDc, we categorized the 243 cali-
bration models according to two different categorization schemes as follows:  

Categorization Scheme 1 
Excellent: R2 > 0.90 and RPDc > 3; Good: 0.81 < R2 < 0.90 and 2.5 < RPDc < 

3; Approximate: 0.66 < R2 < 0.80and 2.0 < RPDc < 2.5; and Poor: R2 < 0.66 and 
RPDc < 2.0, according to Saeys et al. [38] and Zornoza et al. [62]. 

Categorization Scheme 2 
Category A: RPDc > 2.0 and R2 > 0.80; Category B: RPDc, 1.4 - 2.0 and R2, 

0.50 - 0.80; and Category C: RDPc < 1.4 and R2 < 0.50, according to Chang et al. 
[42]. 

Use of underivatized raw spectra (for example, 0,4,4,1 math treatment) gener-
ally gave inferior quality calibration models as compared to when first (for ex-
ample, 1,4,4,1) and second (for example, 2,4,4,1) derivatives of the raw spectra 
were used in calibration development (Table 3). According to the categorization  
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Table 3. Effects of various math treatments on the distribution of 27 NIRS calibration 
models of sunflower and soybean plant samples under various categories. 

Math  
Treatment 

Excellent  
r2 > 0.90 

and RPDc > 3.0 

Good 
0.80 < r2 ≤ 0.90 and  

2.5 < RPDc ≤ 3.0 

Approximate 
0.65 < r2 ≤ 0.80  

and 2.0 < RPDc ≤ 2.5 

Poor 
r2 ≤ 0.65 

and RPDc ≤ 2.0 

 Number of Calibration Model Under Various Categories 

0,4,4,1 4 7 7 9 

1,4,4,1 11 9 6 1 

2,4,4,1 18 2 5 2 

0,5,5,1 4 7 6 10 

1,5,5,1 11 7 7 2 

2,5,5,1 14 8 3 2 

0,10,5,1 4 7 6 10 

1,10,5,1 10 6 9 2 

2,10,5,1 12 7 3 5 

 

Category-A 
r2 > 0.80 

and 
RPDc > 2.0 

Category-B 
r2: 0.50 - 0.80 

and 
RPDc: 1.4 - 2.0 

Category-C 
r2 < 0.50 

and 
RPDc < 1.4 

 

0,4,4,1 13 13 1  

1,4,4,1 23 3 1  

2,4,4,1 21 4 2  

0,5,5,1 13 13 1  

1,5,5,1 23 3 1  

2,5,5,1 23 3 1  

0,10,5,1 13 13 1  

1,10,5,1 22 4 1  

2,10,5,1 21 5 1  

 
Scheme 1, the math treatment 2,4,4,1 generally resulted in more improved dis-
tribution of the 27 calibration models than any other math treatments. However, 
this math treatment yielded “poor” calibration models for starch and ESC, whe-
reas an “approximate” quantitative model for ESC was obtained by applying 
1,4,4,1 math treatment. In contrast, with the categorization Scheme 2, the math 
treatment 1,4,4,1 placed higher number of calibration models in category-A than 
2,4,4,1. There was no change in such distribution with 1,5,5,1 versus 2,5,5,1 math 
treatments and a slight change with 1,10,5,1 versus 2,10,5,1 math treatments. 
The categorization Scheme 1 is more comprehensive than the Scheme 2. There- 
fore, only the calibrations developed using 2,4,4,1 math treatment were further 
evaluated using the independent validation set. None of the math treatments 
produced an acceptable calibration model for starch. 

Table 4 depicts the calibration and cross validation statistics such as coeffi-
cient determinations (R2 and 1-VR) and standard errors (SEC and SECV) along 
with the RPDc for a selected set of models developed using different math treat- 
ments. 
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Table 4. Effects of various math treatments on some important NIRS calibration devel-
opment statistics for some selected parameters of sunflower and soybean plant samplesa. 

Math Treatment SEC R2 SECV 1-VR RPDc 

DM (%) 

1,4,4,1 0.233 0.955 0.347 0.903 4.72 

2,4,4,1 0.309 0.920 0.388 0.877 3.53 

1,5,5,1 0.236 0.954 0.345 0.905 4.66 

2,5,5,1 0.355 0.895 0.437 0.843 3.08 

1,10,5,1 0.269 0.940 0.361 0.895 4.08 

2,10,5,1 0.330 0.910 0.384 0.881 3.33 

Crude Protein (%) 

1,4,4,1 0.766 0.988 1.046 0.978 9.17 

2,4,4,1 0.496 0.995 0.912 0.984 14.31 

1,5,5,1 0.774 0.988 1.059 0.977 9.08 

2,5,5,1 0.756 0.988 1.060 0.977 9.29 

1,10,5,1 0.800 0.987 1.090 0.976 8.78 

2,10,5,1 0.724 0.989 0.949 0.982 9.71 

Fat (%) 

1,4,4,1 0.343 0.998 0.466 0.997 23.89 

2,4,4,1 0.325 0.999 0.502 0.997 26.48 

1,5,5,1 0.345 0.998 0.468 0.997 23.74 

2,5,5,1 0.259 0.999 0.425 0.997 31.71 

1,10,5,1 0.370 0.998 0.507 0.997 23.39 

2,10,5,1 0.311 0.999 0.447 0.997 27.88 

ADF (%) 

1,4,4,1 1.393 0.798 1.968 0.602 2.23 

2,4,4,1 1.679 0.699 2.092 0.538 1.82 

1,5,5,1 1.430 0.788 1.982 0.596 2.17 

2,5,5,1 1.453 0.781 1.999 0.590 2.14 

1,10,5,1 1.542 0.766 1.967 0.625 2.07 

2,10,5,1 1.558 0.734 1.952 0.585 1.94 

NDF (%) 

1,4,4,1 1.451 0.844 1.892 0.741 2.53 

2,4,4,1 1.529 0.797 1.811 0.724 2.22 

1,5,5,1 1.535 0.829 1.989 0.718 2.41 

2,5,5,1 1.560 0.786 1.885 0.693 2.16 

1,10,5,1 1.486 0.837 1.856 0.751 2.47 

2,10,5,1 1.189 0.876 1.612 0.776 2.84 
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Continued 

Lignin (%) 

1,4,4,1 0.540 0.877 0.761 0.756 2.86 

2,4,4,1 0.427 0.926 0.792 0.744 3.67 

1,5,5,1 0.548 0.874 0.758 0.758 2.82 

2,5,5,1 0.466 0.909 0.733 0.774 3.32 

1,10,5,1 0.567 0.865 0.747 0.765 2.72 

2,10,5,1 0.538 0.881 0.795 0.739 2.89 

NSC (%) 

1,4,4,1 0.898 0.855 1.118 0.776 2.63 

2,4,4,1 0.565 0.936 1.031 0.790 3.97 

1,5,5,1 0.932 0.844 1.123 0.774 2.53 

2,5,5,1 0.652 0.918 1.039 0.794 3.50 

1,10,5,1 1.052 0.811 1.221 0.745 2.30 

2,10,5,1 0.742 0.894 1.116 0.761 3.06 

aThe math treatments that used underivatized raw spectra (0,4,4,1; 0,5,5,1; and 0,10,5,1) have been omitted 
because of their inferior performance. 

3.4. The Calibration Models Given by 2,4,4,1 Math Treatment  

As discussed in section 3.3, further evaluations of the models were kept limited 
with in-depth examination of the calibration and cross validation statistics given 
by the math treatment 2,4,4,1 because this option gave better calibration models 
for the highest number of constituents (out of 27 total). The calibrations and 
cross validations statistics of the NIRS models developed by this option for all 27 
constituents of sunflower and soybean plant samples are shown in Table 5. We 
also observed that the use of the whole visible-NIR range (400 - 2498 nm) re-
sulted in much higher R2 and 1-VR and lower SEC and SECV than when using 
either just the visible range (400 - 1100 nm) or just the near-infrared range (1100 
- 2498 nm) (data not shown). Optimum wavelengths for NIR analysis mostly re-
ly on empirical calibrations for predicting qualitative constituents in agricultural 
products. This is because of the broad array of chemical compounds present in 
the samples, which lead to overlapping and perturbed NIR absorption bands 
[41].  

Generally, except for starch and simple sugars (ESC), the calibration models 
for the other 25 parameters had good quantitative information. These models 
had low standard error of both calibration (SEC) and cross validation (SECV) 
with high coefficient of determination in both calibration (R2 = 0.6993 - 0.9986) 
and cross validation (1-VR = 0.5377 - 0.9966). According to the categorization 
Scheme 1, as many as 18 of these models were found to be “excellent” with R2 > 
0.90 and RPDc > 3.0, these included moisture, DM, CP, fat, ash, lignin, NFC, 
WSC, NSC, Ca, P, total-N, S, Al, Cu, Fe, Mn, and Zn. The models for B and K 
were “good” with 0.80 < R2 ≤ 0.90 and 2.5 < RPDc ≤ 3.0, and the 5 models for  
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Table 5. Equation development statistics using MPLS and scatter correction (2,4,4,1 SNVD) for the NIRS prediction of the 27 
constituents of sunflower and soybean plant samples. 

Constituent Na Termsb SD IQ 
Calibration Cross-validation 

RPDcg RPIQch Categoryi 
SECc R2d SECVf 1-Vre 

Moisture (%) 59 5 1.09 1.06 0.3089 0.9196 0.3882 0.8766 3.53 3.43 E 

DM (%) 59 5 1.09 1.06 0.3089 0.9196 0.3882 0.8766 3.53 3.43 E 

Protein (%) 80 8 7.10 13.69 0.4961 0.9951 0.9124 0.9835 14.31 27.60 E 

Fat (%) 76 8 8.61 3.47 0.3253 0.9986 0.5016 0.9966 26.48 10.67 E 

Ash (%) 56 5 4.37 3.40 0.6247 0.9795 1.1412 0.9314 6.99 5.44 E 

ADF (%) 79 8 3.06 3.59 1.6785 0.6993 2.0915 0.5377 1.82 2.14 A 

NDF (%) 80 8 3.39 4.66 1.5285 0.7973 1.8107 0.7243 2.22 3.05 A 

Lignin (%) 81 8 1.57 2.25 0.4271 0.9258 0.7919 0.7440 3.67 5.26 E 

Cellulose (%) 80 8 3.15 4.03 1.2942 0.8310 1.9580 0.6181 2.43 3.12 A 

Hemicellulose (%) 79 8 2.02 2.97 0.9297 0.7873 1.0744 0.7152 2.17 3.19 A 

NFC (%) 57 8 8.03 11.21 1.8306 0.9481 2.6433 0.8938 4.39 6.12 E 

Starch (%) 73 8 0.21 0.30 0.1972 0.0940 0.2085 -0.0132 1.05 1.52 P 

WSC (%) 73 8 2.06 2.00 0.4540 0.9515 0.8964 0.8127 4.54 4.41 E 

ESC (%) 66 5 1.28 1.60 0.9055 0.4964 0.9985 0.3958 1.41 1.77 P 

NSC (%) 76 8 2.24 2.05 0.5652 0.9364 1.0310 0.7899 3.97 3.63 E 

Ca (%) 82 8 0.73 0.54 0.1211 0.9725 0.1747 0.9427 6.03 4.49 E 

K (%) 84 8 0.54 0.63 0.1914 0.8763 0.2218 0.8331 2.84 3.27 G 

Mg (%) 80 8 0.07 0.08 0.0301 0.7939 0.0383 0.6676 2.20 2.59 A 

P (%) 82 8 0.11 0.13 0.0265 0.9393 0.0466 0.8107 4.06 4.81 E 

N (%) 82 8 1.14 2.23 0.1188 0.9892 0.1751 0.9765 9.61 18.75 E 

S (%) 81 8 0.05 0.08 0.0099 0.9669 0.0191 0.8783 5.53 8.18 E 

Al (mg/kg) 81 8 146.83 158.60 31.5381 0.9539 61.9923 0.8218 4.66 5.03 E 

B (mg/kg) 82 8 15.00 20.80 5.5869 0.8612 7.6923 0.7388 2.68 3.72 G 

Cu (mg/kg) 83 8 4.02 5.20 1.0530 0.9313 1.9829 0.7589 3.81 4.94 E 

Fe (mg/kg) 81 8 131.71 200.70 27.0742 0.9577 47.6777 0.8679 4.86 7.41 E 

Mn (mg/kg) 80 8 55.04 67.70 12.6663 0.9470 21.9174 0.8415 4.35 5.34 E 

Zn (mg/kg) 82 8 13.38 17.40 3.2594 0.9406 5.4901 0.8311 4.10 5.34 E 

aSamples used to develop the model. bNumber of PLS loading factors in the regression model MPLS (modified partial least-squares). cSEC, standard error of 
calibration. dR2, coefficient of determination of calibration. e1 − Vr, one minus the ratio of unexplained variance divided by variance. fSECV, standard error 
of cross-validation. gRPDc, SD/SECV, the ratio of standard error of cross validation to deviation (SD, standard deviation of reference data in calibration set). 
hRPIQc, IQ/SECV, the ratio of standard error of cross validation to inter-quartile distance (IQ, inter-quartile distance in reference data in the calibration 
set). iE: Excellent (r2 > 0.90 and RPD > 3), G: Good (0.81 < r2 < 0.90 and 2.5 < RPD < 3), A: Approximate: (0.66 < r2 < 0.80 and 2.0 < RPD < 2.5), P: Poor (r2 
< 0.66 and RPD < 2). 
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ADF, NDF, cellulose, hemicellulose, and Mg were “approximate” with 0.65 < R2 
≤ 0.80 and 2.0 < RPDc ≤ 2.5. The calibration models for starch and ESC were 
“poor” with R2 < 0.65 and RPDc < 2.0. The low R2 and RPDc for ADF, NDF, 
cellulose, and hemicelluloses may be due to their negative correlation with the 
oil and protein content as well as the NIR absorption characteristics of their he-
micellulose and cellulose fractions [50] [65] [66] [67]. 

The same 27 models were also grouped into three categories (A, B, and C) ac-
cording to the Scheme 2, but the details of this exercise are not shown for the 
sake of brevity except for the summary reported in Table 3. The Category A 
(RPD > 2.0) includes 21 constituents (Table 3) with measured versus predicted 
R2 values between 0.80 and 1.00. These constituents are fat, CP, N, Ash, Ca, S, 
Fe, Al, WSC, NFC, Mn, Zn, P, NSC, Cu, lignin, DM, moisture, K, B, and cellu-
lose. Such results indicate that these constituents were readily and accurately 
predicted [42]. Category B (RPD =1.4 - 2.0) includes constituents with measured 
versus predicted R2 values between 0.50 and 0.80. This group includes 4 consti-
tuents namely ADF, NDF, hemicellulose, and Mg. Starch and ESC (simple su-
gars) are in Category C (R2 < 0.50, RPD < 1.4). Chang et al. [42] suggested that 
prediction of constituents in Category B can be improved by using different ca-
libration strategies, but the constituents in Category C may not be reliably pre-
dicted using NIRS at all. However, in our study we found that the prediction of 
ESC improved from Category C in 2,4,4,1 math treatment (R2 = 0.4964, RPD = 
1.41) to Category A in 1,4,4,1 math treatment (R2 = 0.8380, RPD = 2.48) in addi-
tion to improvement of NDF prediction from Category B in 2,4,4,1 math treat-
ment (R2 = 0.7973, RPD = 2.22) to Category A in 1,4,4,1 math treatment (R2 = 
0.8441, RPD = 2.53). 

Asekova et al. [50] developed NIRS calibration of soybean forage quality and 
reported R2 and RPD values of 0.934 and 3.85 for crude fiber (CF), 0.909 and 
3.25 for CP, 0.767 and 2.07 for NDF, and 0.748 and 1.97 for ADF. With whole 
plant biomass of sunflower, the NIRS calibration models reported by Fassio et al. 
[49] had R2 and RPD values of 0.82 and 2.0 for DM, 0.86 and 2.9 for CP, 0.85 
and 2.2 for ash, 0.62 and 1.2 for NDF, 0.64 and 1.8 for ADF, and 0.50 and 1.2 for 
hemicellulose. 

The RPIQc (IQ/SECV) is another such criterion, which has been claimed to 
be a more robust one than RPDc because it is based on inter-quartile distance 
instead of SD, which better represents the spread of the population [45]. The 
calculated values of RPIQc were >3.0 for 23 constituents, between 2.5 - 3.0 for 
Mg, between 2.0 - 2.5 for ADF, and <2.0 for starch and ESC, reconfirming the 
high accuracy of at least 23 out of 27 models. However, the original paper of 
Bellon-Maurel et al. [45], where the RPIQc was proposed as a judging criterion 
of NIRS calibration model, did not discuss the interpretation of the situation 
having a high RPIQc but a relatively low RPDc as observed for ADF, NDF, cel-
lulose, hemicellulose calibrations of this study. Therefore, the acceptance or re-
jection of a calibration model solely based on RPIQc or RPDc value remains 
questionable. The other judging criteria (such as R2, SEC, and SECV) must be 
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taken into consideration. Based on this trend, a few of the 27 models that have 
been categorized as “Approximate”, leaving room for further improvement, but 
should not be considered as failed, because they yielded acceptable values of all 
other statistics used in numerous reports as the judging criteria for NIRS cali-
bration models. In this context, we suggest that the independent validation per-
formance should be closely monitored and could be used as the judging criteria 
with even more emphasis. 

Figure 3 shows the plots of laboratory reference values versus NIR predicted 
values for a selected set of 6 constituents such as DM, CP, ADF, NDF, lignin, 
and P contents for the calibration set. Such plots for the remaining 21 constitu-
ents are not shown for the sake of brevity. The diagonal dashed line in each plot 
is the 1:1 line. The closeness of the plotted data points to this line indicates the 
closeness between the NIR predicted values and the corresponding laboratory 
reference values. The results indicate the slopes of the measured versus predicted 
regression lines for these 6 constituents are not significantly different from 1.00, 
the slope was even exactly 1.00 for DM, ADF, NDF. This observation when con-
sidered alone may suggest that NIRS-MPLS did not tend to significantly over- or 
underestimate all of these 6 constituents. But other criteria need to be evaluated 
before reaching such a conclusion. For example, the model of ADF was catego-
rized as “Category-B” and “approximate” by the two categorization schemes 
used; despite this, the model for ADF yielded a slope of 1.00 for the measured vs. 
predicted regression line. Given the fact that this model had higher SECV and 
lower 1-VR, the plot is showing greater scatter around the 1:1 line. So a slope of 
1.00 alone is not a good indicator of how well the data are predicted. Likewise, 
the interpretation of the two categorization schemes merits reconsideration case 
by case. As revealed in the plots for DM, the values deviate from normal to some 
extent with higher frequency of the lower values. Such a high density of low val-
ues often results in more favorable coefficients of determination than when the 
values are more evenly distributed over the range. Inclusion of some samples 
with DM content higher than 90% may impart further robustness to the model 
developed. 

In this study, we attempted to develop NIRS calibration models for 11 differ-
ent minerals such as Ca, K, Mg, P, S, Al, B, Cu, Fe, Mn, and Zn contents of sun-
flower and soybean plant samples. The results show that VIS-NIRS-MPLS pro-
duced “excellent (r2 > 0.90 and RPDc > 3.0)” quantitative calibration models for 
Ca, P, S, Al, Cu, Fe, Mn, and Zn (8 in total), “good (0.80 < r2 ≤ 0.90 and 2.5 < 
RPDc ≤ 3.0)” calibration models for K and B, and “approximate (0.65 < r2 ≤ 0.80 
and 2.0 < RPDc ≤ 2.5)” calibration model for Mg. Given the narrow range of 
plant mineral contents, some authors, however, recommended that NIRS cali-
bration models for minerals should be evaluated by coefficient of variation (CV) 
or RPDc instead of coefficient of determination (R2) [68]. 

Analysis of mineral concentration with NIRS produces mixed results since 
minerals per se do not absorb visible (VIS) or NIR light and their concentrations 
are low in typical plant tissues. However, their detection by VIS-NIR spectros- 
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Figure 3. Scatter plots of NIRS predicted values versus laboratory reference values for calibration sets of some selected parameters 
of sunflower and soybean plant samples. 
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copy has been possible because minerals exist in plant tissue as complexes 
formed with various NIR-active organic compounds; the concentrations of 
many of such compounds vary both among and within species [69]. For exam-
ple, in plants with both P deficiency and sufficiency, existence of plant P predo-
minantly in the form of NIR-active P compounds in plants such as phytates, 
phospholipids and nucleic acids [70] [71] supports the development of sound 
NIRS calibration of plant-P. However, excessive uptake of P often increases the 
accumulation of metabolically inactive inorganic P [71] resulting in relatively 
poor performance of P calibrations as observed in other studies [47] [72] [73]. 
The calibration of N typically utilizes the correlation between N and chlorophyll. 
Further inclusion of the signal from N-H and peptide bonds of proteins indi-
cates a more solid correlation to N concentrations [67] [74]. In this study, the 
Mg content yielded only an “approximate” calibration model despite the fact 
that Mg is the central element in chlorophyll, its calibration frequently relies on 
the strong chlorophyll signal in the VIS-NIR region [74] [75]. However, parti-
tioning of total plant Mg and chlorophyll-bound Mg is more important in this 
context, which is highly variable for Mg-sufficient versus Mg-deficient plants. In 
a Mg-sufficient plant, less than 6% of the Mg content may be bound in chloro-
phyll. In Mg-deficient plant this proportion can increase up to 35%, and in com-
bination with low light conditions, which increase chlorophyll concentrations, 
more than 50% of the total plant Mg may be bound in chlorophyll [71]. Such va-
riability in the distribution of total plant Mg and chlorophyll-bound Mg may of-
ten hinder the success of achieving good VIS-NIRS calibration of Mg as ob-
served in this study. Beside N and Mg deficiency, numerous other factors may 
also affect the chlorophyll concentration, as demonstrated by Ward et al. [47]. A 
good number of earlier studies generally obtained poor or at most “qualitative” 
NIRS calibrations [64] [76] for Fe, Mn, Zn, Cu, and B. In contrast, we obtained 
“excellent (r2 > 0.90 and RPDc > 3.0)” or “good (0.80 < r2 ≤ 0.90 and 2.5 < RPDc 
≤ 3.0)” quantitative calibration models for Ca, S, Al, Cu, Fe, Mn, Zn, K, and B as 
reported by Menesatti [71] for Fe, Mn, and Zn.  

3.5. Independent Validation of the Calibration Models 

The predictability of the all 27 NIRS calibration models developed using 2,4,4,1 
math treatment was tested through a validation exercise carried out with a set of 
samples independent of the calibration set. The number of samples included in 
the validation set varied from 28 - 35 for different constituents, which were 
about half of the number of samples included in the corresponding calibration 
set.  

The statistics of such external validation exercise such as r2, bias, bias (limit) 
(maximum allowable bias), SEP, SEPc (the bias-corrected SEP), SEPc (limit) (the 
maximum allowable SEPc), slope, RPDv (SD/SEP), and RPIQv (IQ/SEP) values 
for the models are presented in Table 6. These statistics were utilized to evaluate 
the predictability or reliability of the calibration models. An NIRS calibration 
model is considered robust and reliable when it can produce lower bias [(lower  
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Table 6. Monitoring (external validation) statistics for the NIRS prediction equations developed with 2,4,4,1 math treatment for 
the 27 constituents of sunflower and soybean plant samples. 

Constituent Na Range SDb IQc Biasd 
Bias 

(limit)e 
r2f SEPg SEPch 

SEPc 
(limit)i 

Slopej Interceptj RPDvk RPIQvi Categorym 

Moisture (%) 28 7.24 - 11.67 1.13 0.97 0.066 0.227 0.9260 0.310 0.309 0.491 0.987 0.5828 3.65 3.13 E 

DM (%) 28 88.33 - 92.76 1.13 0.97 −0.066 0.227 0.9260 0.310 0.309 0.491 0.987 5.643 3.65 3.13 E 

Protein (%) 34 7.41 - 31.00 7.07 8.93 0.137 0.573 0.9890 0.748 0.747 1.242 0.997 0.0103 9.45 11.94 E 

Fat (%) 30 0.29 - 33.50 8.75 3.39 0.035 0.259 0.9990 0.304 0.307 0.561 1.007 0.0083 28.78 11.14 E 

Ash (%) 26 6.29 - 22.08 4.15 3.56 −0.17 0.85 0.9660 0.812 0.809 1.843 0.942 0.1308 5.11 4.38 E 

ADF (%) 34 12.26 - 30.75 3.67 5.64 −0.128 1.137 0.8450 1.435 1.451 2.463 1.03 4.4507 2.56 3.93 G 

NDF (%) 33 25.30 - 46.68 5.13 5.90 −0.383 1.069 0.9610 1.086 1.032 2.316 1.037 2.8414 4.72 5.43 E 

Lignin (%) 34 2.73 - 11.10 2.14 2.50 0.071 0.455 0.9450 0.513 0.516 0.985 1.066 0.6104 4.17 4.87 E 

Cellulose (%) 34 11.42 - 26.15 3.63 4.39 −0.174 0.952 0.8890 1.210 1.215 2.063 1.037 2.7513 3.00 3.63 E 

Hemicellulose 
(%) 

33 6.70 - 15.93 2.41 2.30 −0.031 0.606 0.9530 0.530 0.537 1.314 1.06 1.0502 4.54 4.34 E 

NFC (%) 27 17.76 - 50.08 9.16 14.41 0.387 1.697 0.9560 1.955 1.952 3.678 1.037 2.0191 4.69 7.37 E 

Starch (%) 26 0.20 - 1.00 0.24 0.20 0.031 0.129 0.3820 0.184 0.186 0.28 0.3415 0.2605 1.28 1.09 P 

WSC (%) 31 2.60 - 14.20 2.42 1.30 0.064 0.546 0.9380 0.597 0.604 1.183 0.973 0.1278 4.04 2.18 E 

ESC (%) 29 1.30 - 11.30 2.10 1.90 0.138 0.617 0.8320 0.863 0.867 1.336 0.948 0.3208 2.43 2.20 A 

NSC (%) 31 3.00 - 15.20 2.59 1.00 0.01 0.643 0.9370 0.648 0.658 1.394 0.962 0.144 3.99 1.54 E 

Ca (%) 32 0.69 - 2.96 0.58 0.53 −0.017 0.096 0.9610 0.117 0.118 0.208 0.951 0.0012 4.96 4.55 E 

K (%) 34 1.68 - 3.91 0.63 0.99 0.03 0.103 0.9800 0.095 0.092 0.224 1.044 0.1338 6.60 10.47 E 

Mg (%) 33 0.32 - 0.32 0.09 0.12 −0.002 0.02 0.9230 0.024 0.025 0.044 1.027 0.0467 3.71 5.13 E 

P (%) 35 0.20 - 0.62 0.11 0.16 −0.002 0.026 0.9460 0.026 0.027 0.057 0.954 0.0044 4.35 5.98 E 

N (%) 34 1.19 - 4.96 1.13 1.57 0.041 0.100 0.9820 0.153 0.15 0.216 0.997 0.0099 7.37 10.23 E 

S (%) 34 0.14 - 0.37 0.06 0.06 0.00 0.011 0.9560 0.012 0.012 0.025 1.033 0.0167 4.58 4.92 E 

Al (mg/kg) 33 13.60 - 383.40 125.77 227.10 1.941 36.801 0.9150 36.263 36.773 79.734 1.027 15.347 3.46 6.26 E 

B (mg/kg) 33 28.60 - 86.80 14.32 17.80 −0.614 5.015 0.9140 4.610 4.64 10.866 1.047 13.024 3.11 3.86 E 

Cu (mg/kg) 35 4.40 - 16.80 3.07 4.60 0.098 1.049 0.9010 0.956 0.965 2.273 0.978 0.7306 3.21 4.82 E 

Fe (mg/kg) 33 48.60 - 457.00 105.38 147.20 1.113 26.73 0.9350 27.899 28.309 57.915 0.92 4.1129 3.78 5.28 E 

Mn (mg/kg) 34 29.20 - 259.00 55.17 72.20 0.71 15.581 0.9010 17.080 17.322 33.758 0.999 8.1403 3.23 4.23 E 

Zn (mg/kg) 35 23.00 - 62.20 10.72 15.70 −0.598 3.715 0.8260 4.574 4.601 8.048 0.900 3.5861 2.34 3.43 A 

aSamples (independent) used to monitor the model. bSD, standard deviation of mean. cIQ, inter-quartile distance (IQ, inter-quartile distance in reference 
data). dBias, average difference between reference and NIRS values. eBias(limit) maximum allowable value of bias.fr2, coefficient of determination in external 
validation. gSEP, standard error of prediction. hSEPc, the bias-corrected standard error of prediction. iSEPc(limit), the maximum allowable value of SEPc. 
jSlope and intercept, the steepness and intercept of a straight line curve for the plot between the NIR predicted values versus reference values. kRPD, SD/SEP, 
the ratio of performance to deviation (SEP to the SD of the reference data in the external validation set). lRPIQ, IQ/SEP, the ratio of performance to in-
ter-quartile distance (SEP to the IQ of the reference data in the external validation set). mE: Excellent (r2 > 0.90 and RPD > 3), G: Good (0.81 < r2 < 0.90 and 
2.5 < RPD < 3), A: Approximate: (0.66 < r2 < 0.80 and 2.0 < RPD < 2.5), P: Poor (r2 < 0.66 and RPD < 2). 
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than the bias(limit)] and SEPc [(lower than the SEPc (limit)] with r2 and slope 
close to 1.0, and RPDv and/or RPIQv values greater than 2.0 in external valida-
tion with samples independent of calibration sample set [42] [43] [45] [46]. In 
general, the slope, r2 and RPDv values obtained during external validation for all 
models except starch were high enough to indicate good agreement between ref-
erence values and NIRS predicted values (slope > 0.90; r2 > 0.80; and RPDv > 
2.0) (Table 6), similar in most cases to the corresponding statistics obtained 
during the calibration development (Table 5). Figure 4 depicts the plots of NIRS 
predicted values versus laboratory reference values in the validation set for DM, 
CP, ADF, NDF, lignin, and P contents, which shows the significant relationship 
between NIRS predicted values and laboratory reference values.  

As depicted in Table 6, the validation performance was “excellent” (r2 > 0.90 
and RPDv > 3.0) for 23, “good” (0.81 < r2 < 0.90 and 2.5 < RPDv < 3) for 1, “ap-
proximate” (0.66 < r2 < 0.80 and 2.0 < RPDv < 2.5) for 2, and “poor” (r2 < 0.66 
and RPDv < 2.0) for 1 models according to the categorization Scheme 1 [44] 
[62]. In contrast, the calibration performance of these models was “excellent” 
(R2 > 0.90 and RPDc > 3.0) for 18, “good” (0.81 < R2 < 0.90 and 2.5 < RPDc < 
3.0) for 2, “approximate” (0.66 < R2 < 0.80 and 2.0 < RPDc < 2.5) for 5, and 
“poor” (R2 < 0.66 and RPDc < 2.0) for 2 models (Table 3). That means actual 
predictability of some models was better than what was expected based on their 
calibration statistics. For example, despite the models for ADF, cellulose, hemi-
cellulose, WSC, ESC, and Mg were “approximate” (0.66 < R2 < 0.80 and 2.0 < 
RPDc < 2.5) based on calibration performance, they were “excellent” (r2 > 0.90 and 
RPDv > 3.0) or “good” (0.81 < r2 < 0.90 and 2.5 < RPDv < 3.0) based their valida-
tion performance, suggesting that these models are also reliable for quantitative 
prediction. Likewise, the model for ESC was “poor” (R2 < 0.66 and RPDc < 2.0) 
based on calibration performance, but it was able to offer an “approximate” pre-
diction during a validation exercise. Thus, the schemes for categorizing NIRS ca-
libration models available in the literature should be carefully used for judging 
the quality of the models. We suggest putting more emphasis on the perfor-
mance criteria of independent validation in judging the quality of the model.  

4. Conclusions 

Soybean and sunflower have the potential to be used as forage crops in addition 
to their traditional use as protein and/or oil yielding crops. In integrated fo-
rage-based livestock production industries, high throughput in analysis is im-
portant for evaluating forage quality and diagnosing and correcting forage nu-
trient deficiency. NIRS method is especially suitable in such case because it rep-
laces the time consuming wet-chemistry methods without sacrificing accuracy 
and precision.  

This study demonstrated that composition of various plant parts of both soy-
bean and sunflower could be calibrated as a single population covering multiple 
sampling dates and under varying tillage treatments, which is very useful but 
contrary to common belief. Except starch, the NIRS calibration models for all  



U. Saha et al. 
 

485 

 
 

 
 

  
Figure 4. Scatter plots of NIRS predicted values versus laboratory reference values for external validation sets of some selected 
parameters of sunflower and soybean plant samples. 
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other 26 forage quality parameters showed good results with 24 models ranging 
from good to excellent in their quantitative predictability. These models can be 
reliably applied in the routine analysis of soybean and sunflower forage quality 
for the purposes of livestock nutrient management decisions. The study also 
showed NIRS as a reliable analytical tool for decision making allowing determi-
nation of multiple values in a single analytical procedure thereby assisting in 
timely decision making for efficient nutrient management for livestock. Al-
though development of an NIRS laboratory entails significant initial start-up 
costs, it is relatively inexpensive in the long term. It is also considered as “cheap” 
and “green chemistry” because it does not involve any chemicals and does not 
generate any hazardous wastes. However, the problem of spectral outliers should 
be watched and solved by updating, expanding, and improving the initially de-
veloped and validated calibrations by including future samples from different 
environments and species and covering a wider range of the parameters. This 
will impart further robustness to the current calibration models. Nonetheless, 
the results accomplished in this study would contribute to expand organic pro-
duction system including soybean and sunflower particularly in the southern 
United States. 
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Abbreviations 

ADF, Acid Detergent Fiber;  
CP, Crude Protein;  
NDF, Neutral Detergent Fiber;  
NIRS, Near-infrared Reflectance Spectroscopy;  
RPDc, Ratio of Standard Error of Cross Validation to Deviation;  
RPIQc, Ratio of Standard Error of Cross Validation to Inter-Quartile Distance; 
RPDv, Ratio of Performance to Deviation;  
RPIQv, Ratio of Performance to Inter-Quartile distance. 
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