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HE us npensoxenus 5. [lo npemmoxkenuio 3.13 u3 [4] cBoiicTBO Bo3BpaTHOCTH X BiEYeT
CYILIIeCTBOBAaHNIE XapPUCOBCKOro MHOXecTBa F1 € &4, T.e. MHOXeCTBa, orpanndenne X Ha
KOTOpOe SIBIISIETCS Ilebio MapkoBa, BO3BpATHON 110 Xappucy.

Bamanum r € Eu B € &. Ecnu z € E1 uy = zx~ *, TO O TPEIJIOKEHUIO 5

HP(x) = H"" (yx) = H'"(2),

a mockonbKy z € F1 u w(yB) > 0, To ﬁyB(z) = 1. Wapmvu cnoBamu, f—jB(m) =1 nna
Beex ¢ € FE, m, TakmMm oGpasom, ciydaiiHoe Gmyx)nanme X BO3BPATHO mo Xappucy [4,
onpenenenue 3.5]. Teopema 2 nokaszana.
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1. Introduction. This paper discusses an empirically observed feature that we refer
to as Incremental Similarity. Its most remarkable manifestation is in turbulence but it is
also found, in a less pronounced form, in finance.

In high frequency recordings of velocities of homogeneous, isotropic, and stationary
turbulence the non-Gaussian and skewed distributions of velocity increments from differ-
ent experiments and different lags are essentially identical provided they have the same
variance. Note however that this identification is effectuated lag by lag and not by a simple
common transformation.

The observation of incremental similarity for turbulent velocity time series adds a
new type of universality to the statistical stylized features of turbulent flows. In the
time domain, the term universality traditionally refers to universal scaling properties of
structure functions defined as moments of velocity increments. These scaling laws are only
realized in the limit of very large Reynolds numbers, i.e., strongly turbulent flows. Even for
large Reynolds numbers only approximate scaling is observed and only for a certain range
of time scales, the so-called inertial range, which covers merely part of the dynamically
active scales.

The new stylized feature of incremental similarity points towards a completely differ-
ent type of universality. Incremental similarity characterizes the distributions of velocity
increments at all dynamically active scales. Furthermore, our empirical analysis shows
that incremental similarity is not restricted to any high Reynolds number limit. And fi-
nally, incremental similarity provides a relatively simple mapping that directly connects
measurements from different experiments, different in Reynolds numbers and different in
boundary conditions.

The phenomenon of incremental similarity was first noted in the paper [4], which re-
vealed this trait through a detailed analysis of the recordings of the main component of the
velocity vector from three different types of experiments, with Reynold’s numbers 80, 190,
17 000. The collapsibility of the incremental distributions was of extraordinary degree.
This type of analysis has since been extended to a much larger class of experiments, as
reported in [5], fully confirming the original observation. However, up till now a mathe-
matical representation of the phenomenon has not been given. Such a representation is
proposed in this paper.

As stated here the property of incremental (or distributional) similarity is of non-
parametric character but, as demonstrated in [4], the laws of the velocity differences can
be fitted by the normal inverse Gaussian distribution, denoted NIG, to a high degree of
precision. This distribution was introduced in [1] and has since found a multitude of appli-
cations in a variety of fields. Recently the fact that NIG describes the velocity increments
to high precision has found a theoretical counterpart in studies of Birnir concerning a
stochastic version of the Navier—Stokes equations, see [7], [8], [9].

The empirical evidence for incremental similarity is summarized in section 2. Section
3 presents a mathematical definition of incremental similarity — or IncSim — and an
extended concept — extIncSim — and a variety of examples of stochastic processes and
fields that meet the definition of incremental similarity exactly are presented there. For
the relation to the statistical theory of turbulence it is crucial to have examples where the
processes considered are stationary, and herein lies the main difficulty. Section 4 briefly
addresses the question of modeling the timewise behavior of the main component of the
velocity vector in homogeneous turbulence by stochastic processes embodying the main
universal features of this type of dynamics, including that of incremental similarity.

2. Incremental similarity: empirical evidence. The empirical verification of
incremental similarity, presented in [4] and [5] and briefly outlined here, is based on the
analysis of 17 experimental data sets (a wake-flow experiments, a free-jet experiment, 13
helium jet experiments, one wind tunnel experiment, one data set from the atmospheric
boundary layer) and on one data set from a direct numerical simulation (DNS) of the
Navier—Stokes equation. The Reynolds numbers covered by these data range from 80 up
to 20 000. The empirical data consist of stationary time series of recordings of the main
component of the turbulent velocity vector measured at a fixed position in space. The
DNS data are spatially homogeneous at a fixed point in time. All data are standardized
for the velocities to have a unit variance.
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Let vt(l) denote the velocity signal at time ¢ belonging to the data set (z). We denote

by

) = o, —of?
the velocity increment at time scale s. Here we skip reference to ¢ since we are only dealing
with stationary time series. (For the DNS data ¢ denotes the spatial position.)

A key observation related to the densities of velocity increments is depicted in Fig. 1.
Each graph corresponds to the density of velocity increments at a certain time scale s with
s increasing from top left to bottom right. These densities evolve from heavy tails at small
time scales towards a more Gaussian shape at the large time scales. This evolution across
scales is well known in the literature and sometimes called aggregational Gaussianity.
Fig. 1 also shows, as solid lines, the approximation of these densities within the class of
normal inverse Gaussian distributions. The normal inverse Gaussian distributions fit the
empirical densities equally well for all time lags and all amplitudes.
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Fig. 1. Logarithmic representation of probability density functions. Dots: empirical pdf
of the wind tunnel dataset. Solid black: pdf of the corresponding estimated normal
inverse Gaussian distribution. Dashed black: pdf of the normal inverse Gaussian
distribution fitted from all sixteen data sets pooled into a single one.

Fig. 1 provides one example for the evolution across scales, similar results are ob-
served for the other data sets we analyzed. The larger the Reynolds number the more the
heaviness of the tails. And, different data sets show different distributions at the same
time scale. But the key question that is of interest here is: Do different experiments show
the same distribution of increments just at different time scales? In other words: Is the

evolution across scales exemplified in Fig. 1 universal in the sense that the distributions
of u{” and ugj,) are the same if s’ is properly chosen given s? Obviously, an affirmative
answer requires that the variances at these time scales are the same

Var (u{") = Var (ui’,))
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Fig. 2 shows the corresponding densities of velocity increments for 12 fixed values of
the variance. Each plot corresponds to a different value, increasing from top left to bottom
right. The densities within each plot correspond to different experiments and different time
lags, but the variances are the same. We clearly observe the collapse of the densities during
the whole evolution across scales. In this sense the evolution across scales is universal.
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Fig. 2. Logarithm representation of the empirical probability density function of the six-
teen datasets, after pairing of variances. The thirteen Helium jet data sets are dis-
played in grey.The wind tunnel dataset, the data set from the atmospheric boundary
layer and the DNS dataset are displayed in black. The DNS dataset is absent in
the case of the largest variance.

The shape of the distributions in Fig. 2 is, to a good approximation, a universal
function of the variance. For normal distributions, this is trivial. But here we clearly have
distributions that are not normal.

3. Incremental similarity: mathematical considerations. As theoretical coun-
terpart to the incremental similarity features discussed in sections 1 and 2 we introduce
the following definition.

Definition 1. Let X and Z be two stochastic processes on R. Then X and
Z are said to be incrementally similar, or IncSim, provided that for any ¢ € R and any
u > 0 there exist a t' € R and a positive number u’ such that the law of Z(¥' +u') — Z(t')
is the same as that of X (¢ 4+ u) — X (¢) and vice versa (i.e., the relation between X and Z
is symmetric).

More generally, if 2 and & are two classes of stochastic process on R, then 2 and
% are said to have the IncSim property if all pairs X and Z such that X € & and Z € &

are of IncSim type. For brevity we will say that (2", Z) is IncSim and that 2 is IncSim
if that is the case of (2, Z).
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There are many trivial examples of increment similarity. For instance, any continuous
Gaussian process is incrementally similar to Brownian motion. Another example is where
X and Z are stationary processes on R with Z equal in law to a proportional timechange
of X, that is Z; = X for some ¢ > 0. Various nonobvious examples may be based on the
following concept of extended incremental similarity or extIncSim.

Definition 2. Let R be a class of positive, continuous, and decreasing func-
tions r on [0, c0) with the property that for any pair 7 and 7 of elements in R it holds that
for all u € [0, 00) there exists a u € [0, c0) such that 7(z) = r(u) and vice versa. Further,
let 2 = {X":r € R} be a parameterized family of stationary processes X " on R With

the property that for any pair of time points (¢,t + u) the joint law of X I and Xt L
fully determined by r(u); this in particular implies that the same holds for the law of the

increment Xt[ﬂu — X", We furthermore assume that the joint law of X" and X 9

the same as the joint law of Xtm and Xt[ia provided r(u) = 7(u) whatever r and 7 in R
We then say that, relative to R, 2 has the property of extended incremental similarity or
that 2 is extIncSim.

If & is extIncSim, then it is in particular IncSim. As another direct consequence of
the definition of extIncSim we have the following proposition.

Proposition 1. Let 21, X3, ..., Zn denote independent extIncSim families relative
to the same index class R. If F is a real (measurable) function on R™ and if % =

YUl r € R} is the class of processes given by Y[T] =F X[ ] X[r , where X[ e
nt

51,‘”3, j=1,...,n, then the family % is e:z:t[ncSzm and hence IncSzm In fact, the same
conclusion holds zf F is random, provided it is independent of (%1, Z2,..., Zn).

Applications of this result will be discussed in section 4.

We proceed to present some classes of stationary processes on R having the extIncSim
property.

Let % be the class of stationary Gaussian processes on R of mean 0 and variance
1 such that for any member X of %/ the autocorrelation function r of X is positive,
continuous, and strictly decreasing to 0. Then, as is easily seen, % is extIncSim.

The concept of trawl processes, introduced in [2], offers a range of extIncSim classes.
As discussed in [3], the simplest type of trawl processes X on R are of the form

Xe = L(Ar), (1)

where L is a homogeneous Lévy basis on R* and A; = A + (t,0) for a Borel set A in R?
with positive Lebesgue measure, points in R? being denoted by (¢,2). In this case, since
for any ¢,¢ € R we have
¢Xe + Y Xepu = OL(A\Atsu) + (@ + ) L (At N Arpu) + YL (Argu\Ar)
= ¢L(A\Au) + (¢ +9¥)L(AN A,) + L (A\A)

the cumulant function of (X, X¢1.) is given by

L6, ¥4 (X, Xevu)} = [A\AL CLSEL'} + AN A C{6 + 1L’} + |A\A| C{p1L'}
= |A][C{otL"} + C{ytL} — 7 (u)
x (C{¢tL'} + C{yiL'} — C{p +viL'})],
where L' denotes the Lévy seed of L, || indicates Lebesgue measure and

r(u) = % (@)

and we assume that |A| is positive and finite.

Now consider the class o7 of Borel sets A such that (2) is positive for all real v with
r continuous and strictly decreasing on Ry and tending to 0 as u — co. Let R be the
corresponding class of functions r. Furthermore, for any ¢ > 0 let <. be the subclass of
o/ given by o, = {A € of: |A| = c}. If X is the class of trawl processes corresponding
to a given seed L’ and a given 7, then % is extIncSim and hence IncSim.
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We note that
C{p1 Xeru — Xe} = [A[ (1 =7 (w)) (C{otL'} + C{—01L'}).

In case L' is square integrable then r is the autocorrelation function of the process
X. In general we will refer to r as the autodependence function of X. By suitable choice
of A the autodependence function can be selected to show short, middle or long term
dependence.

With reference to section 2 we note that if the law of L’ is normal inverse Gaussian and
symmetric, then X; and all increments of X are also normal inverse Gaussian distributed.

Further, suppose that X; is a stationary process of the form

xi= [ g9, (3)

where L is a symmetric a-stable Lévy process on R and the kernel function g satisfies
g(s) =0 for s < 0 and

(@)= [ 9(s)"ds < oo (4)
0
for some o € (0,2). Then the integral (3) exists and, since the Lévy seed L’ of L has

cumulant function
C{g1X} = —v|9|", (5)

we find, for u > 0, that
u 0
Clovixn Xind = =116 [ g ds = [ loglu—s) = vg(-9)"ds. (©)
0 —oo
Now, let ¢ be the class of kernel functions g such that g is continuous and strictly de-
creasing to 0 and let 2 be the corresponding class of stochastic processes (3). Suppose
that g and h are both members of ¢ and consider the analogue of (6), i.e.,

u 0
CL. 02 Zeniy = =16l [ h(e s =y [ leh(u—s)—un (ol ds ()
where Z denotes the element of % corresponding to h. Only in quite exceptional cases
will it be possible for every v > 0 to find a v > 0 such that C{¢,¥1Z:, Ziy,} =
C{¢, ¥1 X, Xitu}. In other words, in the present setting interesting examples of extIncSim
do not exist.
On the other hand,

C{p1Xtu — Xe} = =70 G (w3 0), (8)
where

§(uia) =/f 19 (u—s) — g(—s)|° ds (9)

and, therefore, there are subclasses of & that are IncSim. Specifically, for a fixed a €
(0,2), consider a subclass ¥, of ¢ of kernels g such that the function g — I (g) is constant
on ¥,. Then the processes X in Z have the same one-dimensional marginal distribution,
and 2 is IncSim. In fact, for any g,h € 9, and any u > 0 there exists a v > 0 such that
the condition |h(v; )| = |g(u; a)t| is met.

From the viewpoint of applications the question now is whether in principle it is
possible, given a class of processes that are known to be of IncSim type (or suspected to
be s0), to determine the transformation that effectuates the collapsibility of the laws of
increments from the different members of the class.

Empirically, given that high frequency and extensive datasets are available from each
of the processes in question and that stationarity of the series is a realistic assumption, the
most immediate way is to first standardize the series to have the same marginal variance
and then estimate the variances of the increments for a suitable range of lags, as was done
for the turbulence data discussed in section 2. However, in case the data are suspected
to come from a fractional regime where second order moments may not in principle exist,
such as the a-stable setting considered above, one may resort to other methods of lag
transformation, for instance resorting to estimation of fractional moments.
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4. Models of BSS/LSS type. In [6] the concept of Brownian semistationary pro-
cesses — or BSS — processes was introduced. These are stationary processes of the form

t

t
Yi=up+ / g(t—s)osdBs + / q(t—s)asds, (10)

—o0 —o0

where B is Brownian motion, ¢ and a are stationary processes and the kernels g and ¢ are
deterministic functions. The particular setting

t

t
Y}zu—i—/ g(t—s)asst+/ q(t—s)afds (11)

— o0 — 00

is of particular interest. (It may be seen as a stationary analogue of the BNS model studied
in financial econometrics.) The LSS class is obtained by substitution of B in (10) by a
general Lévy process L.

The primary aim of the definitions of BSS and LSS was to model the timewise behavior
of the main velocity component in a homogeneous turbulent flow, but the same kind of
processes have found many applications elsewhere, see for instance [3], [12] and references
given there.

BSS processes of type (11) have been demonstrated to be capable of modeling classical
stylized features of turbulence very accurately, cf. [11]. And a recent study [10] of the
Helium data discussed in section 2, based on exponential LSS processes, has revealed a
new type of universality for the energy dissipation.

However, as indicated in the previous section, the BSS structure does only in excep-
tional cases have the property of extended increment similarity and it is therefore natural
to ask whether there is a modification of that structure having dynamic behavior closely
similar to BSS but also exhibiting extIncSim.

To this end we now introduce the following variant of BSS. Let X be a stationary
Gaussian process such that the one-dimensional marginals of X have mean 0 and variance
1. Let o be a stationary, cadlag and square integrable process with autocorrelation function
p, and let

Vi = p+ 0 Xy + Boi (12)

for some constant 3 € R. We shall refer to this type as a BSS’ process. Colloquially
speaking, the alternative view amounts to moving the volatility process o in (11) outside
the integration signs.

Now, let % be the class of processes (12) obtained by letting the autocorrelation
function r of X vary over the set R for which r is positive, continuous and decreasing on
R, and taking o2 to vary over a family 3 which in itself is extIncSim with the same index
set R and such that o is paired with X so as to have the same index r. Then, in view of
the proposition presented in section 3, the class % is extIncSim.

For instance, 3 could be chosen to be an extIncSim class of processes o2 for which
the log o2 are trawl process L(A+ (t,0)), as discussed in section 3. In particular, L may
be taken to be an NIG basis, as in [10].

As a further example, suppose that Z is an independent copy of X and let 02 = |Zt|1/ 2,
In this case the autovariance function of the corresponding process Y of (12) is given by

E{(Y: - Y0)*} = 2(E{00}*(1 — (1)) + V{oo}r(t)(1 — p(t)) + 26° V{5 }(1 - o(1))),
where g is the autocorrelation function of o2, with
E{(Y; — Y0)*} = 2((3+ 968%) — r(t) — 2r(t)® — 728%r(t)* — 248%r(t)")
which is a monotonically decreasing function of r(¢) enabling direct lag identification.
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Haiineno coBmectnoe pacupenenenune Py (X, K |Z) cocrosaus X [B Mo-
MeHT N| IpOCTOro CUMMETPUYHOTO CILy9aiiHOTO GILy K IAHWs 110 OIHOMEDPHON
TEJIOUNCIIEHHON PEIIeTKE U JnCiIa [K ] TIOCENIeHNN 3TUM Oy KnaHueM (puKCu-
POBAHHOTO COCTOstHUA Z [3a Bpems N|.

YkazaHHOe paclpenesieHue uMeeT MPOCTYo (GOopMy B TepMUHAX PaCIIpe-
nenenus py(X') mume ommoit ciyuaiinoin Bemuunmb, rne N' = N — K, a
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