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Abstract

This paper deals with forward performances of HARA type. Precisely, for a market
model in which stock price processes are modeled by a locally bounded d-dimensional semi-
martingale, we elaborate a complete and explicit characterization for this type of forward
utilities. Furthermore, the optimal portfolios for each of these forward utilities are explicitly
described. Our approach is based on the minimal Hellinger martingale densities that are
obtained from the important statistical concept of Hellinger process. These martingale den-
sities were introduced recently, and appeared herein tailor-made for these forward utilities.
After outlining our parametrization method for the HARA forward, we provide illustrations
on discrete-time market models. Finally, we conclude our paper by pointing out a number
of related open questions.

1 Introduction

Since the seminal papers of Merton (1971, 1973), the theory of utility maximization and optimal
portfolio has been developed successfully in many directions and in different frameworks. These
achievements can be found in the works of Karatzas and Wang (2000), Kramkov and Schacher-
mayer (1999), Cvitanic et al. (1992, 2001), Karatzas and Zitkovic (2003), and the references
therein to cite few. In these works, the authors considered a fixed investment horizon and
practically neglected the impact of a variable horizon on the optimal selection portfolio and/or
investor’s behavior. The economic problem of how a horizon will impact an investment is old
and can be traced back to Fisher (1931). In mathematical context, this problem is very difficult
and only recently there were some advances. However, the problem where the agent should find
an optimal portfolio from her investment in the stock market and the optimal time to liquidate
all her assets (tradable or not tradable) was around since a while and has been addressed in
many ways. For the literature about this problem, we refer the reader to Evans et al. (2008),
Henderson and Hobson (2007), and the references therein. A particular interesting approach
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for this problem was proposed by Henderson and Hobson (2007) where the authors proposed
to transfer the problem of investment and liquidation time to the problem of finding a utility
that is not sensitive to the horizon. The authors called this utility functional, when it exists, a
horizon-unbiased utility. This is one of the ideas that contributed to the birth of forward utilities.
Indeed, the notion of forward utilities (or forward performances) appeared in the literature in
various forms through mainly the works of Musiela–Zariphopoulou (2007, 2009a, 2009b, 2010),
the work of Henderson–Hobson (2007), and the work of Choulli et al. (2007) (see Choulli and
Stricker (2005, 2006) for other related topics). The forward utilities constitute a subclass of
the large class of random field utilities that was brought to mathematical finance by Karatzas
and Zitkovic (2003). These random field utilities appeared first in economics within the random
utility model theory due to the psychometric literature that provided empirical evidence about
the stochastic choice behavior. For details about these themes, we refer the reader to Suppes et
al. (1989), McFadden and Richter (1970), Cohen (1980), and Clarck (1996) and the references
therein to cite few. A random field utility represents the preference of an agent (or the agent’s
impatience as called in Fisher (1930)), which is updated at each instant using the available
aggregate flow of public information about the market. Among these random field utilities,
forward utility has the feature of being a supermartingale for the wealth process generated by
an admissible and self-financing strategy, while it is a martingale at the optimum.

After its birth, the notion of forward utilities has been extensively studied in different context
and generalized in many ways. Indeed, forward utilities were used in the context of risk measures
in Zariphopoulou and Zitkovic (2010). In Henderson (2007) and Anthropelos (2013), the notion
of forward utilities is mainely and extensively used for indifference pricing and/or evaluation.
There were many attempts to characterize these forward utilities starting with Berrier, Rogers
and Tehrenchi (2009) under strong assumptions on the market models. Afterwards, Zitkovic
(2009) elaborated a duality characterization for the semimartingale market model with explicit
characterization when the market model is driven by Brownian motions and the utility is of
exponential-type. At last, in Choulli et al. (2011), the forward utility of exponential type is
completely and explicitly described in the semimartingale framework.

The main aim of this paper is to elaborate an explicit parametrization for forward utilities of
HARA type. Precisely, we are interested in forward utilities, U(t, x), having the form of

(1.1) U(t, ω, x) = D(t, ω)xp(ω,t), or U(t, ω, x) = D(t, ω) + D̂(t, ω) log(x).

We will describe explicitly the dynamics of the processes D, p, D and D̂ as well as the optimal
portfolios for each class of forward utility. This will be achieved due to the concept of minimal
Hellinger martingale densities introduced and developed in Choulli et al. (2007). The results
of the actual paper —Sections 3 and 4— can not be put together with those of Choulli et al.
(2011) in a unified framework. This fact is obvious from the different forms found for the risk-
aversion processes in this current paper and in Choulli et al. (2011) respectively. The concept
of Hellinger process/integral appeared in statistics and/or information theory, where it plays
important rôles. It was extended and then slightly modified, for a better use in mathematical
finance, by many scholars such as Jacod, Kabanov, Shiryaev, Stricker and Choulli. For more
details, we refer the reader to Kabanov (1985), Kabanov et al. (1984, 1986), Chouli and Stricker
(2005, 2006) and the references therein.

This paper is organized as follows. Section 2 will introduce the mathematical model as well as
some preliminaries and notation. In Sections 3 and 4, we will detail our parametrization for the
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HARA forward utilities, while Section 5 illustrates the obtained characterizations on discrete-
time market models. The paper concludes the study by signaling some related open problems.
Other technical and/or intermediatory results are gathered in the Appendix.

2 Preliminaries and Notation

This section contains two subsections. The first subsection presents the mathematical model as
well as its preliminary analysis. The second subsection introduce the economical concepts of
random field utility and forward utilities.

2.1 The Mathematical Model

The mathematical model starts with a given filtered probability space denoted by (Ω,F ,F, P )
where the filtration F := (Ft)0≤t≤T is complete and right continuous, and T represents a fixed
horizon for investments. In this setup, we consider a d-dimensional locally bounded semi-
martingale S = (St)0≤t≤T which represents the discounted price processes of d risky assets.
Next, we recall the definition of the predictable characteristics of the semimartingale S (see
Section II.2 of Jacod and Shiryaev (2003)). The random measure µ associated to its jumps is
defined by

µ(dt, dx) =
∑

I{∆Ss 6=0}δ(s, ∆Ss)(dt, dx),

with δa the Dirac measure at point a. The continuous local martingale part of S is denoted
by Sc. This leads to the following decomposition, called “the canonical representation” (see
Theorem 2.34, Section II.2 of Jacod and Shiryaev (2003)), namely,

(2.2) S = S0 + Sc + x ⋆ (µ− ν) +B,

where the random measure ν is the compensator of the random measure µ. The entries of the
matrix C are Cij := 〈Sc,i, Sc,j〉, and the triple (B, C, ν) is called predictable characteristics of
S. Furthermore, we can find a version of the characteristics triple satisfying

(2.3) B = b · A, C = c · A and ν(ω, dt, dx) = dAt(ω)Ft(ω, dx).

Here A is an increasing and predictable process, b and c are predictable processes, Ft(ω, dx)
is a predictable kernel, bt(ω) is a vector in IRd and ct(ω) is a symmetric d × d-matrix , for all
(ω, t) ∈ Ω × [0, T ]. In the sequel we will often drop ω and t and write, for instance, F (dx) as
a shorthand for Ft(ω, dx).
The characteristics, B, C, and ν, satisfy

Ft(ω, {0}) = 0,

∫
(|x|2 ∧ 1)Ft(ω, dx) ≤ 1, ∆Bt =

∫
xν({t}, dx),

c = 0 on {∆A 6= 0}.

We set
νt(dx) := ν({t}, dx), at := νt(IR

d) = ∆AtFt(IR
d) ≤ 1.

We denote by Pa (respectively Pe) the set of all probability measures that are absolutely con-
tinuous with respect to (respectively equivalent to) P . The set of local martingales under the
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probability Q is denoted by Mloc(Q), while the set of equivalent martingale measures for S is
given by

(2.4) Me
loc(S) :=

{
Q ∈ Pe : S is a local martingale under Q

}
.

As usual, A+ denotes the set of increasing, right-continuous, adapted and integrable processes.

If C is a class of processes, we denote by C0 the set of processes X with X0 = 0 and by Cloc
the set of processes X such that there exists a sequence of stopping times, (Tn)n≥1, increasing
stationarily to T (i.e., P (Tn = T ) → 1 as n → ∞) and the stopped process XTn belongs to C.
We put C0,loc = C0 ∩ Cloc.

Very frequently, throughout the paper, we will work with local martingale densities instead of
equivalent martingale measures. For this, we will use the following sets of densities

(2.5) Ze
loc(S) :=

{
Z = E(N) > 0

∣∣∣ N and ZS are local martingales
}
,

and/or

(2.6) Ze
q,loc(S) :=

{
Z = E(N) ∈ Ze

loc(S)
∣∣∣
∑

fq(∆N) ∈ A+
loc

}
,

where for any r ∈ IR, the function fr is given by

(2.7) fr(x) :=





(1 + x)r − 1− rx

r(r − 1)
, if r 6∈ {0, 1} and x > −1,

x− log(1 + x), if r = 0 and x > −1,
(1 + x) log(1 + x)− x, if r = 1 and x ≥ −1,
+∞, otherwise.

For a probability measure R which is equivalent to P , the function fr together with the function
ΦR
r and the set D+ will play important roles in our analysis. Throughout the paper, xtry will

denote the inner product of x and y in R
d. The function ΦR

r —also denoted by ΦR
r = Φr when

R = P— takes values in (−∞,+∞] and is given by

(2.8) ΦR
r (λ) :=

λtrbR

r − 1
+

1

2
λtrcλ+

∫
fr(λ

trx)FR(dx), ∀ λ ∈ R
d, ∀ r 6= 1,

while the set D is defined by

(2.9) D+ :=
{
θ ∈ IRd : 1 + θtrx > 0, F (dx)− almost all x ∈ IRd

}
.

The next technical assumption is crucial for the explicit forms of our main results. For some
p ∈ (−∞, 1) and a positive local martingale M = E(N), N0 = 0, let (β, f, g,N ′) be Jacod’s
parameters of N (see Theorem A.1 for details) and put the measure FM

t (dx) := (1+ft(x))Ft(dx).
Then, our main assumption that depends on (p,M) is

Assumptions 2.1. For any predictable process λ such that λ ∈ D+, P ⊗ A-a.e., and every
sequence of predictable processes, (λn)n≥1, such that λn ∈ int(D+), and λn → λ P ⊗A-a.e., we
have

(2.10) lim
n→+∞

∫
Kp(λ

tr
n x)F

M (dx) =





+∞, on Γ;

∫
Kp(λ

trx)FM (dx), on Γc.
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where Kp(y) := y
[
1− (1 + y)p−1

]
and Γ := {FM (Rd) > 0 and λ /∈ int(D+)}.

Examples 2.2. The Assumption 2.1 is a technical condition essential for the solution of our
stochastic optimization to belong to the interior of the effective domain of the functional that we
minimize. Below, we cite some models that satisfy Assumption 2.1.
1) Assumption 2.1 is automatic when S is continuous since, in this case, F ≡ 0 and Γ = ∅.
2) Assumption 2.1 is fulfilled for any model such that

Ft(dx) =

nt∑

i=1

δxi(t)(dx), P ⊗A− a.e.,

where xi(t) is a process with values in R
d and nt is a process with values in N. Examples of

models —for which their kernels F are atomic— can be found in risk theory such as Xt =
Nt∑

j=1

Yj.

Here (Yi)i≥1 are iid and independent of the Poisson process N , and
n∑

k=1

P (Y1 = yk) = 1. Here

yk ∈ R
d and n ∈ N, and Xt represents the aggregate claims up to time t.

On the set Ω × [0, T ], we define two σ-fields denoted by, O and P, generated by the adapted
and RCLL processes and the adapted and continuous processes respectively. On the set Ω ×
[0, T ]×R

d, we consider the σ-field P̃ = P ⊗B(Rd) (resp. Õ = O⊗B(Rd)), where B(Rd) is the
Borel σ-field for Rd.
For any Õ-measurable functional, g, (hereafter denoted by g ∈ Õ), we define MP

µ (g | P̃) to be

the unique P̃-measurable functional, when it exists, such that for any bounded W ∈ P̃,

MP
µ (Wg) := E

(∫ T

0

∫

Rd

W (s, x)g(s, x)µ(ds, dx)
)
= MP

µ

(
WMP

µ (g | P̃)
)
.

Throughout the paper, we will use frequently the following order to compare two stochastic
processes.

Definition 2.3. Let X and Y be two processes such that X0 = Y0. Then, we write

X � Y

if Y −X is a nondecreasing process.

This order was used to defined the minimal Hellinger martingale measures (or densities) in
recent papers, see for instance Choulli and Stricker (2005, 2006) and Choulli et al. (2007).
Below, we define a slight extension of the Hellinger process that incorporates the local change
of probabilities.

Definition 2.4. (i) Let Q be a probability measure and Y be a Q-local martingale such that
1 + ∆Y ≥ 0. Then, if the RCLL nondecreasing process

(2.11) V (q)(Y ) =
1

2
〈Y c〉+

∑
fq(∆Y ),

is Q-locally integrable (i.e. V (q)(Y ) ∈ A+
loc(Q)), then its Q-compensator is called the Hellinger

process of order q of the local martingale Y (or equivalently of E(Y )) with respect to Q, and is
denoted by h(q)(Y,Q) (respectively h(q)(E(Y ), Q)).
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(ii) Let N ∈ M0, loc(P ) such that 1 + ∆N > 0 and Y is a semimartingale such that Y E(N) is
a P -local martingale and 1 + ∆Y ≥ 0. Then, if the process

(2.12)
1

2
〈Y c〉+

∑
(1 + ∆N)fq(∆Y ),

is P -locally integrable, then its P -compensator is called the Hellinger process of order q of the
local martingale E(Y ) with respect to E(N), and is denoted by h(q) (E(Y ), E(N)).

Definition 2.5. Let q be a real number. We call the minimal Hellinger martingale density of
order q, the process Ẑ that belongs to Ze

q,loc(S,Z) and satisfies

(2.13) h(q)(Ẑ, P ) � h(q)(Z,P ), ∀ Z ∈ Ze
q,loc(S).

The following lemma proves that the concept of minimal Hellinger martingale density is stable
under localization, and thus it is enough to describe this minimal martingale density locally.
This lemma was first established in Choulli et al. (2011) for the case of exponential utility (i.e.
q = 1, the minimal entropy-Hellinger martingale density).

Lemma 2.6. Let (Tn)n≥0 (T0 = 0) be a sequence of stopping times that increases stationarily to
T , and let q ∈ R. Suppose that for each n, STn admits the minimal Hellinger martingale density
of order q (called hereafter in the shorthand form of MHM density of order q), denoted by Z̃(n).
Then, S admits the MHM density of order q, denoted by Z̃ and is given by

Z̃ := E(Ñ) and Ñ :=
∑

n≥1

I]]Tn−1,Tn]]
1

Z̃
(n)
−

· Z̃(n).

Proof. The proof of this lemma is immediate and will be omitted.

2.2 Preliminaries on Random Field Utilities

Throughout the paper, we call a random field utility, any B([0, T ])⊗B(R)⊗F-measurable func-
tional, U(t, x, ω) satisfying:
(i) for any fixed x, the process U(t, x, ω) is a càdlàg and adapted process,
(ii) and for any fixed (t, ω) the function x 7→ U(t, x, ω) is strictly increasing and strictly concave.

For a random field utility U(t, x, ω), a probability measure Q, a semimartingale X, and x ∈ R

such that U(t, x, ω) < +∞, we denote by

(2.14) Aadm(x,X,Q,U) :=
{
π ∈ L(X)

∣∣∣ sup
τ∈TT

EQ

[
U
(
τ, x+ (π ·X)τ

)−]
< +∞

}
,

the set of admissible portfolios for the model (x,X,Q,U). Here TT is the set of stopping times,
τ , such that τ ≤ T . When X = S and Q = P , for the sake of simply, we write Aadm(x,U).

Definition 2.7. Consider a càdlàg semimartingale, X, and a probability measure, Q. Then,
we call a forward utility for (X,Q), any random field utility, U := (U(t, ω, x)), fulfilling the
following self-generating property:
a) The function U(0, x) is strictly increasing and concave.
b) For any x ∈ (0,+∞), there exists π∗

x ∈ Aadm(x,X,Q) such that

U
(
s, x+ (π∗

x ·X)s

)
= EQ

[
U
(
t, x+ (π∗

x ·X)t

)
|Fs

]
, ∀ T ≥ t ≥ s ≥ 0.
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c) For any x ∈ (0,+∞) and for any π ∈ Aadm(x,X,Q), we have

U
(
s, x+ (π ·X)s

)
≥ EQ

[
U
(
t, x+ (π ·X)t

)
|Fs

]
, ∀ T ≥ t ≥ s ≥ 0.

When X = S and Q = P , we simply call U a forward utility.

Definition 2.8. Let X be a càdlàg semimartingale and Q be a probability measure. Then,
we call HARA forward utility for (X,Q), any forward utility for (X,Q) that takes one of the
following forms

(2.15) Up(t, x) := D(t)xp(t), U0(t, x) := D̂(t) log (x) +D(t), Ue(t, x) := De(t) exp (γ(t)x) .

Here D = (D(t))0≤t≤T , p = (p(t))0≤t≤T , γ := (γ(t))0≤t≤T , De = (De(t))0≤t≤T , and D̂ =

(D̂(t))0≤t≤T and D = (D(t))0≤t≤T are stochastic processes.

In this paper, we focus on the first and the second types of HARA utilities ( i.e. the two cases of
Up and U0). The exponential-type forward utilities (i.e. the case of Ue) is completely analyzed
in Choulli et al. (2011). In our view, it is impossible to describe all cases in one single form.
This fact is highly supported by the different forms that we found for the risk-aversion processes
p and γ.

Proposition 2.9. Let U := U(t, ω, x) be a random field utility and S be a semimartingale. Then
the following hold.
(i) If U is a forward utility for (S,P ), then for any stopping time τ ∈ TT , the functional

(2.16) U(t, ω, x) := U(t ∧ τ(ω), ω, x),

is a forward dynamic utility for (Sτ , P ).
(ii) Consider a probability measure Q that is absolutely continuous with respect to P with the
density process denoted by Z. Then, the random field utility

(2.17) UQ(t, ω, x) := U(t, ω, x)Zt(ω),

is a forward utility for (S,P ) if and only if U is forward utility for (S,Q).

Proof. The proof of this proposition is easy and can be found in Choulli et al. (2011).

3 Parametrization of the Power-Type Forward Utilities

In this section, we will parameterize the forward utilities of the following form

(3.18) Up(t, x) := D(t)xp(t).

To this end we start by deriving some useful properties of the portfolio rate process defined in
the following.

Definition 3.1. Let π be a portfolio (i.e. π ∈ L(S)) and x > 0 such that

(3.19) x+ π · S > 0, and x+ (π · S)− > 0.

Then, we define the portfolio rate by

(3.20) θx :=
(
x+ (π · S)−

)−1
π.
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Lemma 3.2. Let π be a portfolio and x > 0 such that (3.19) holds. Then, the following hold.
(i) The portfolio rate θx is S-integrable and E(θx · S) = (x+ π · S) /x > 0.
(ii) There is a one-to-one correspondence between π and its portfolio rate θx via (3.20) and

(3.21) π = xE−(θx · S)θx.

Proof. The proof of this lemma is obvious and will be omitted.

For our analysis when dealing with utilities Up ( in both cases of p = 0 and p 6= 0), it is
more convenient to deal with the portfolio rate than the portfolio itself. Therefore we need
to define the set of admissible portfolio rates that we will use throughout the paper. For any
semimartingale X, any probability Q, any random utility U , and any initial capital x > 0, we
associate the set of admissible portfolio rates Θ(x,X,U,Q) defined by

(3.22) Θ(x,X,Q,U) :=
{
θ ∈ L(X)

∣∣ E(θ ·X) > 0 & πx := xE−(θ ·X)θ ∈ Aadm(x,X,Q,U)
}
.

Again, when X = S and Q = P , the set of admissible portfolio rates will be denoted by Θ(x,U)
for the sake of simplicity.

Proposition 3.3. Suppose that S is locally bounded and Ze
loc(S) 6= ∅. Let p ∈ (−∞, 1) and

consider

(3.23) Up(t, x) :=





D(t)xp, if p 6= 0

D(t) + D̂(t) log(x), if p = 0.

For any x ∈ (0,+∞), consider the following maximization problem

(3.24) max
π∈Aadm(x)

EUp (T, x+ (π · S)T ) ,

where the set Aadm(x,U p) is defined in (2.14). Then following assertions hold.
(1) For any x ∈ (0,+∞), if the solution to (3.24) —that we denote by π̃x— exists, then

(3.25) x+ π̃x · S > 0, and x+ (π̃x · S)− > 0.

(2) The optimal portfolio rate for Up with initial capital x, that we denote by θ̃x := (x+ (π̃x · S)−)
−1 π̃x,

is independent of x ∈ (0,+∞) (or equivalently π̃x/x is independent of x).

Proof. It is clear from Kramkov and Schachermayer (1999), that the random variable x+ (π̃x ·
S)T is positive, and the process (x+ π̃x ·S)Z is a supermartingale, for any Z ∈ Ze

loc(S) 6= ∅. This
implies that both processes x+ π̃x ·S and x+(π̃x ·S)− are positive and assertion (1) follows. To
prove assertion (2), it is enough to remark that for any x ∈ (0,+∞), xπ̃1 ∈ Aadm(x,U p), and for
any π ∈ Aadm(x,U p), we have x−1π ∈ Aadm(1, U p). This ends the proof of the proposition.

The remaining part of this section contains three subsections. The first subsection (Subsection
3.1) deals with the description of the process p, while the second subsection (Subsection 3.2)
focuses on the process D. In the last subsection (Subsection 3.3), we detail the proof of Theorem
3.8 which represents the back-bone for the general result of the second subsection. Throughout
the rest of the paper we denote by Up(t, x) the functional defined in (3.18). This functional
depends on the uncertainty ω ∈ Ω also, while throughout the paper we will use the shorthand
Up(t, x) for the sake of simplicity.
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3.1 The Dynamic of the Risk-Aversion Process p

This subsection constitutes our first major step within our parametrization of the functional
defined in (3.18). Below, we state the principal result of this subsection.

Theorem 3.4. Suppose that S is locally bounded and Ze
loc(S) 6= ∅. Let Up(t, x) be defined in

(3.18) such that

(3.26) sup
τ∈TT

E
[
D(τ)−

]
< +∞, and p = (p(t))0≤t≤T is locally bounded.

If Up(t, x) is a forward utility, then p(ω, t) = p(0) P−almost all ω ∈ Ω, and for all t ∈ [0, T ].

The proof of Theorem 3.4 requires two intermediary steps that will be detailed in Lemmas 3.5
and 3.6. These two lemmas prove that Theorem 3.4 holds when p has a constant sign.

Lemma 3.5. Suppose that p = (p(t))t≥0 is positive, (3.26) holds and Up is a forward utility.
Then, the process p is constant in (ω, t) (i.e. Theorem 3.4 holds true in this case).

Proof. Since Up(t, x) is a random field utility, then it is strictly increasing in the variable x for
any (t, ω) ∈ [0, T ] × Ω. This implies that pD > 0 and hence D > 0 (since p is positive). By
stopping and using Proposition 2.9–(i), we can assume —without loss of generality— that p is
bounded. Thus, it is easy to see that in this case the null portfolio rate θ = 0 is admissible for
any x > 0 — i.e. 0 ∈ Θ(x,Up)— due to (3.26). Therefore, the optional sampling theorem and
the supermartingale property of Up(t, x) lead to

(3.27) E
(
D(σ)xp(σ)|Fτ

)
≤ D(τ)xp(τ),

for any x > 0 and any stopping times σ and τ satisfying σ ≥ τ . By putting

Q :=
D(σ)/D(τ)

E(D(σ)/D(τ))
· P, and ∆ := p(σ)− p(τ),

we conclude that (3.27) becomes

EQ
(
elog(x)∆ − 1|Fτ

)
≤ CQ :=

(
E(D(σ)|Fτ )

)−1
− 1, for all x > 0.

Due to elog(x)∆ − 1 = elog(x)∆
+
+ e− log(x)∆−

− 2, the above inequality is equivalent to

(3.28) EQ
(
elog(x)∆

+
+ e− log(x)∆−

|Fτ

)
≤ CQ + 2, for all x > 0.

Thanks to Jensen’s inequality, (3.28) yields

exp
(
log(x)EQ(∆+|Fτ )

)
+ exp

(
− log(x)EQ(∆−|Fτ )

)
≤ CQ + 2.

This inequality holds for all x > 0 if and only if

EQ(∆+|Fτ ) = EQ(∆−|Fτ ) = 0, P − a.s.

or equivalently p(σ) = p(τ) P − a.s. Since the pair of stopping times is arbitrary, then the proof
of the lemma follows immediately.
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The positivity condition on p is crucial in our proof of Lemma 3.5, and without it this approach
will not be conclusive at some stage. Thus, for the case of negative p, we will proceed differently
by using a result of Berrier et al. (2009), where the authors tried to measure the effect of the
forward property of a random field utility on its random field conjugate that can be defined as
follows. For any random field utility, U(t, x), x ∈ R

+ we define its Frenchel-Legendre conjugate
(called hereafter random field conjugate), V (ω, t, y), by

V (t, ω, y) := sup
x>0

(
U(t, ω, x) − xy

)
, for t ≥ 0, y > 0.

The random field conjugate of Up defined in (3.18) is given by

(3.29) Vp(t, y) = −(D(t)p(t))1−q(t)yq(t) (q(t))−1 ,

where q is the conjugate process of p and is given by q(t) := p(t)
p(t)−1 .

Lemma 3.6. Suppose that the process p = (p(t))0≤t≤T is negative, (3.26) holds and Up is a
forward utility. Then, p is constant in (t, ω), i.e. p(t) = p(0), P − a.s..

Proof. Consider t ≥ 0, arbitrary but fixed. A direct application of Proposition 3.7 (see at the
end of this proof) to Up(t, x) = D(t)xp(t) and its random field conjugate defined in (3.29) implies
that for any T ′ ∈ [t,+∞), any Z ∈ Ze

loc(S), and η ∈ L0
+(Ft), we have

(3.30) E

(
(D(T ′)p(T ′))1−q(T ′)

q(T ′)
(η

ZT ′

Zt
)q(T

′)|Ft

)
≤

(D(t)p(t))1−q(t)

q(t)
ηq(t).

By choosing η = Zte
α, and putting Xs :=

(D(s)p(s))1−q(s)

q(s) Z
q(s)
s > 0, the equation (3.30) becomes

(3.31) E
(
XT ′eα(q(T

′)−q(t))|Ft

)
≤ Xt.

Since X is positive (which is due to q(t) = p(t)
p(t)−1 > 0), then we derive

(3.32) max
{
eεα

+
E
(
XT ′I{q(T ′)−q(t)≥ε}|Ft

)
, eεα

−

E
(
XT ′I{q(T ′)−q(t)≤−ε}|Ft

) }
≤ Xt,

for any α ∈ IR and any ε > 0, where α = α+ − α−. Therefore, we deduce that

q(T ′) = q(t), P − a.s. ∀ T ≥ T ′ ≥ t ≥ 0.

This ends the proof of the lemma.

The proof of the previous lemma is essentially based on the following.

Proposition 3.7. If U(t, x) is a forward utility, then for any T ′, 0 ≤ t ≤ T ′ ≤ T and any
η ∈ L0

+(Ft), we have

(3.33) V (t, η) ≤ ess inf
Z∈Ze

loc
(S)

E

(
V (T ′, η

ZT ′

Zt
)
∣∣∣Ft

)
, P − a.s..

Proof. The proof of this proposition can be found in Berrier et al. (2009).
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The remaining part of this subsection is devoted to the proof of Theorem 3.4.

Proof of Theorem 3.4: If the process p is either positive or negative, then the proof of this
theorem follows from Lemmas 3.5 and 3.6 respectively. Thus, the proof of this theorem will be
achieved once we prove that the process p has a constant sign (i.e. p(t)p(0) > 0, P − a.s. for all
t ∈ [0, T ]). To this end, we assume that

(3.34) sup
0≤t≤T

|p(t)| > 0, P − a.s.,

and consider the following stopping time

τ := inf
{
t ≥ 0

∣∣∣ p(t)p(0) < 0
}
∧ T.

Due to (3.26), the null portfolio belongs to Aadm(x,Up) for any x ≥ 1. Hence, D and Up(t, e)
are two càdlàg supermartingales that never vanish, and thus p(t) = log (Up(t, e)/D(t)) is a right
continuous and adapted process. By combining this right continuity of p and (3.34), we deduce
that p has a constant sign if and only if

(3.35) p(0)p(τ) > 0, P − .a.s.

Since p is locally bounded, there is no loss of generality in assuming p bounded. To prove (3.35),
we will proceed by distinguishing whether p(0) < 0 or p(0) > 0 in parts a) and b) respectively.

a) Suppose that p(0) < 0, and hence D(0) < 0. Then, due to (3.26), we deduce that the null
strategy is admissible for any x > 0. Hence, D(t)xp(t) is a supermartingale, for any x > 0, and
we have

E
(
D(τ)xp(τ)I{p(τ)>0}

∣∣∣ F0

)
≤ −E

(
D(τ)xp(τ)I{p(τ)<0}

∣∣∣ F0

)
+D(0)xp(0).

By letting x goes to infinity and using Fatou’s lemma we conclude that we should have P (p(τ) > 0) =
0 (otherwise we will have a contradiction from the above inequality). This proves (3.35).

b) Suppose that p(0) > 0, or equivalently D(0) > 0. Then for any n ≥ 1, there exists θn ∈
Aadm(n−1) such that

(3.36) E
{
D(τ)n−p(τ)(1 + (θn · S)τ )

p(τ)
}
= D(0)n−p(0).

Thanks to Lemma A1.1 in Delbaen and Schachermayer (1994) , there exists a sequence of non-
negative real numbers, (αk)k=n,...,Nn

, such that

Nn∑

k=n

αk = 1 and Yn := 1 +

Nn∑

k=n

αk(θk · S)τ converges almost surely to Y ≥ 0.

Thanks to Fatou’s lemma and Ze
loc(S) 6= ∅, we obtain

E (ZY ) ≤ lim
n→+∞

E (ZYn) ≤ 1,

for some Z ∈ Ze
loc(S). This implies that 0 ≤ Y < +∞ P − a.s. Consider (Xn)n≥1 given by

Xn := D(τ)n−p(τ)Y p(τ)
n −D(τ)Y p(τ)

n .
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It is easy to check that Xn ≤ 0, P − a.s., and by distinguishing the cases of {p(τ) > 0} and
{p(τ) < 0} separately, on the one hand we derive

(3.37) lim
n→+∞

Xn =

{
−D(τ)Y p(τ), if p(τ) > 0;
−∞, if p(τ) < 0.

On the other hand, we have

Xn ≥
Nn∑

k=n

αkn
−p(τ)D(τ)(1 + θk · Sτ )

p(τ) −D(τ)Y p(τ)
n

≥
Nn∑

k=n

αkk
−p(τ)D(τ)(1 + θk · Sτ )

p(τ) −D(τ)Y p(τ)
n .(3.38)

Then, by taking expectation in both sides of (3.38), and using (3.36) and the supermartingale
property of Up(τ, 1 +

∑Nn

k=n αkθk · Sτ ), we get

(3.39) E(Xn) ≥ D(0)

[
Nn∑

k=n

αkk
−p(0) − 1

]
.

Since Xn is nonpositive, again Fatou’s lemma to the left-hand-side term of (3.39) leads to

(3.40) E( lim
n→+∞

Xn) ≥ −D(0) > −∞.

Then, thanks to (3.37) and (3.40), we deduce that P (p(τ) < 0) = 0. Hence (3.35) holds, and
the theorem is proved under the assumption (3.34). The proof of the theorem will be completed
if we prove that this assumption actually holds. To this end, consider

τ0 := inf{t ≥ 0 | p(t−) = 0} ∧ T.

Since p never vanishes (since Up is a random field utility), we deduce that on {τ0 < T}, we have
p(τ0−) = 0 P − a.s. This implies that τ0 is a predictable stopping time that is announced by a
sequence of stopping times (σn)n≥1 satisfying

sup
0≤t≤σn

|p(t)| > 0 P − a.s.

Thus, pσn fulfills the assumption (3.34) and hence it is constant equal to p(0). Then, on {τ0 < T}
we have 0 = p(τ0−) = p(0) 6= 0, which implies that τ0 = T and p(T−) = p(0) 6= 0 P − a.s..
This proves that both processes p(t) and p(t−) never vanish, and (3.34) follows immediately.
This ends the proof of the theorem.

3.2 The Dynamic of the Process D

In this subsection, we develop our second and last step of our parametrization for the power-
type forward utilities. Thanks to Theorem 3.4, we will assume —throughout the rest of this
section— that the process p is constant in (ω, t), and we will describe (D(t))0≤t≤T as well as
the optimal portfolio for the utility maximization problem associated to Up(t, x). These results
will be presented in two theorems that are stated in the increasing order of generality. First, we
describe the process D that is predictable with finite variation (Theorem 3.8). Afterwards, we
drop the predictability and the finite variation assumptions, and determine the general form of
D (Theorem 3.11).
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Theorem 3.8. Let p be a real number such that 0 6= p < 1, q is its conjugate (q := p
p−1), and

the set D+ is given by (2.9). Suppose that D(t) is a càdlàg and predictable process with finite
variation, S is locally bounded, Ze

loc(S) 6= ∅, and Assumptions 2.1 with M ≡ 1 holds .
Then, the assertions (1) and (2) below are equivalent.
(1) U(t, x) = D(t)xp is a forward utility with the optimal portfolio rate θ̂.
(2) The minimal Hellinger martingale density of order q, Z̃, exists and satisfies:

(2.a) The process Ẑ := Z̃E
(
θ̂ · S

)
is a martingale.

(2.b) The process D is given by

(3.41) D = D0E
(
q(q − 1)h(q)(Z̃, P )

)p−1
.

(2.c) P ⊗A−almost all (ω, t), the optimal portfolio rate, θ̂, belongs to int(D+), and is a root for

(3.42) b+ (p− 1)cθ +

∫ [
(1 + θtrx)p−1 − 1

]
xF (dx) = 0, P ⊗A− a.e.

The proof of this theorem requires a number of intermediate results that are interesting in
themselves. Technically, Theorem 3.8 is the back-bone of this subsection. Thus, for the sake of
clear exposition, we will postpone its proof to Subsection 3.3. In the following, we will highlight
the importance of Theorem 3.8 on the particular case when S is continuous, and afterwards we
will deal with describing D in the general case.

Corollary 3.9. Suppose that D(t) is a càdlàg and predictable process with finite variation, S is
continuous and Ze

loc(S) 6= ∅. Then the following are equivalent.

(1) U(t, x) = D(t)xp is a forward utility with the optimal portfolio rate θ̂.
(2) The optimal portfolio rate θ̂ is a root for b+ (p − 1)cθ = 0, P ⊗A− a.e, and the following
properties hold:

(2.a) The process D is given by Dt = D0 exp

(
q

2

∫ t

0
θ̂tru cuθ̂udAu

)
, 0 ≤ t ≤ T.

(2.b) The process Ẑ := E
(
(p− 1)θ̂ ·MS

)
E
(
θ̂ · S

)
is a martingale, where MS is the local mar-

tingale part of S.

Proof. The proof of this corollary is straightforward from Theorem 3.8 and from the fact that,
when S is continuous, the minimal Hellinger densities of all order r coincide with the minimal
martingale density (see Choulli et al. (2007)), and Assumption 2.1 holds. This ends the proof
of this corollary.

Remark 3.10. Theorems 3.4 and 3.8 claim that the set of forward utilities having the form of
(3.18) with predictable and finite variation D is parameterized by the constant p(0) which is the
initial value of the risk-aversion process. Given p(0), the process D is uniquely and explicitly
determined using the Hellinger process of an optimal pricing density. This density is the min-
imal Hellinger martingale density that is calculated explicitly in Choulli et al. (2007) (see also
Choulli and Stricker (2005, 2006) for other cases of p) and plays –herein– its natural rôle of
the “optimal dual process” for the power-type forward utility maximization. Furthermore, the
optimal portfolio rate is explicitly given via a point-wise R

d-equation (3.42).

Now, we are in the stage of announcing our description of the general form of D and achieve
the parametrization of Up –defined in (3.18)– in its full generality.
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Theorem 3.11. Consider Up given by (3.18), where p is assumed to be constant in (−∞, 0) ∪
(0, 1) and D satisfies

(3.43) D(t) = D(0)E(ND) exp(aD).

Here ND is a local martingale and aD is a predictable process with finite variation such that
ZD := E(ND) > 0. Suppose that S is locally bounded, Ze

loc(S) 6= ∅, and Assumptions 2.1 with
M ≡ ZD holds. Then, the assertions (1) and (2) below are equivalent.
(1) Up is a forward utility with the optimal portfolio rate θ̂.
(2) The following properties hold.
(2.a) The minimal Hellinger martingale density of order q with respect to ZD, denoted by Z̃D,
exists and

(3.44) D = D0Z
DE
(
q(q − 1)h(q)(Z̃D, ZD)

)p−1
.

(2.b) The optimal portfolio rate, θ̂, belongs to int(D+), and is a root for

(3.45) bD + (p− 1)cθ +

∫ [
(1 + θTx)p−1 − 1

]
xFD(dx) = 0, P ⊗A− a.e.

(2.c) The process Ẑ := ZDZ̃DE(θ̂ · S) is a martingale.
Here, bD and FD are given by

(3.46) bD := b+ cβ +

∫
f(x)xF (dx), and FD(dx) := (1 + f(x))F (dx),

and
(
β, f, g,N

D
)
are the Jacod’s parameters for ND guaranteed by Theorem A.1.

Proof. We start by proving (1) ⇒ (2). Suppose that assertion (1) holds. Let (Tn)n≥1 be a
sequence of stopping times that increases stationarily to T such that (ZD)Tn is a martingale.
Put Qn := ZD

Tn
· P . Then, due to Lemma 2.9, we conclude that Un(t, ω, x) := D0 exp(a

D
t∧Tn

)xp

is a forward dynamic utility for (STn , Qn) with the optimal portfolio rate θ̂n := θ̂I[[0,Tn]]. Hence,

a direct application of Theorem 3.8 to (STn , Qn, Un, θ̂n) implies the existence of the minimal
Hellinger martingale density for this model, denoted by Z̃D,n, that satisfies

(3.47) exp(aDt∧Tn
) = Et∧Tn

(
q(q − 1)h(q)(Z̃D,n, Qn)

)1/(q−1)
, 0 ≤ t ≤ T,

and on [[0, Tn]], θ̂ belongs to int(D+) and is a root for (3.45). Thus, it is clear that, this last
statement implies assertion (2.b). By virtue of Lemma 2.6, we deduce that the minimal Hellinger
martingale density of order q with respect to ZD (denoted by Z̃D) exists and

h
(q)
t (Z̃D,n, Qn) = h

(q)
t∧Tn

(Z̃D, ZD).

Therefore, a combination of this equality with (3.47) leads to the assertion (2.a).

Due to Proposition B.1 (see formula (B.120) and notice that our θ̂ here is a version of β̃ of that
proposition) and (3.44), we derive

(3.48)

Ẑ = ZDZ̃DE(θ̂ · S) = ZDE
(
H̃D · S + q(q − 1)h(q)(Z̃D, ZD)

)p−1
E(θ̂ · S)

= ZDE(θ̂ · S)p−1E
(
q(q − 1)h(q)(Z̃D, ZD)

)p−1
E(θ̂ · S)

= (D0x
p)−1 U(t, xEt(θ̂ · S)).
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This proves that Ẑ is a martingale, since U(t, x) is a forward utility with optimal portfolio rate
θ̂. This ends the proof of (1) ⇒ (2).

In the remaining part of this proof, we will address (2) ⇒ (1). Suppose that assertion (2) is
fulfilled, and remark that (3.48) remains valid as long as assertion (2–a) holds. Thus, we obtain

Up

(
·, xE

(
θ̂ · S

))
= D0x

pẐ,

and due to assertion (2-c), we conclude that U
(
·, xE

(
θ̂ · S

))
is a martingale for any x > 0.

Furthermore, for any admissible strategy θ, we have

Up

(
t, xEt (θ · S)

)
= D0x

pẐtEt (θ · S)
p Et

(
θ̂ · S

)−p
.(3.49)

Thanks to pD0 > 0 (U(t, x) is a random field utility), Proposition A.5 (take Z̃ := ZDZ̃D which
is a martingale density for S by definition of Z̃D), and

sup
τ∈TT

EQ̂

{
Eτ (θ · S)

p Eτ
(
θ̂ · S

)−p
}

= −
1

D0xp
sup
τ∈TT

E
[
U
(
τ, xEτ (θ · S)

)−]
< +∞,

we deduce that U (t, xEt(θ · S)) is a supermartingale for any admissible strategy θ and any x > 0.
This ends the proof of the theorem.

Remark 3.12. 1) From the proof of the theorem, one can easily see that (3.43) is fulfilled when
Up is as forward utility.
2) Theorems 3.11 and 3.4 state that the set of forward utility having the form of (3.18) is param-
eterized by the pair

(
p(0), ZD

)
, where ZD is the positive local martingale in the multiplicative

Doob-Meyer decomposition of D that exists when Up is a forward utility. If we suppose that p(0)
is given, then Theorem 3.11 claims that all power-type forward utilities are obtained by combin-
ing the local change of probability —that corresponds to the local change of belief economically—
and Theorem 3.8. Again, the optimal portfolio rate is explicitly described by (3.45) once the
parameters

(
p(0), ZD

)
are chosen.

3.3 Proof of Theorem 3.8

The proof of Theorem 3.8 requires three intermediary technical lemmas. The main tools used
in the proof of these lemmas are two types of integrations —involved with the random measure
µ— that we precise in the following.

Definition 3.13. Let K = (K(t, ω, x), x ∈ R
d, ω ∈ Ω, t ∈ [0, T ]) be a P̃-measurable functional.

(1) If K is nonnegative, we denote by K ⋆ µ and K ⋆ ν) the following nondecreasing processes

(3.50)

(K ⋆ µ)t :=

∫ t

0

∫

Rd

K(u, x)µ(du, dx) =
∑

0<u≤t

K(u,∆Su)I{∆Su 6=0}

and (K ⋆ ν)t :=

∫ t

0

∫

Rd

K(u, x)ν(du, dx).

(2) Let Q be a probability, and νQ is the compensator of µ under Q. We say that K is (µ−νQ)-
integrable, and denote K ∈ G1

loc(µ,Q), if

(3.51)


∑

0<t≤·

(
K(t,∆St)I{∆St 6=0} −

∫
Kt(x)ν

Q({t}, dx)
)2



1/2

∈ A+
loc(Q).
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In this case, the resulting integral —denoted by K ⋆ (µ − νQ)— is a Q-local martingale. When
Q = P , we simply write W ∈ G1

loc(µ).

For more details and properties about these two integrations using random measures as well as
the obtained integrals, we refer the reader to Jacod (1979), Jacod and Shiryaev (2003), or He,
Wang and Yan and (1992).

Lemma 3.14. Suppose that S is locally bounded, Ze
loc(S) 6= ∅, Assumptions 2.1 with M ≡ 1

holds, D is predictable with finite variation, and Up given by (3.18) is a forward utility. Then,
the process D satisfies

(3.52) D = D0 exp(a
D) = D0E(X

D), XD := aD +
∑

(e∆aD − 1−∆aD),

and the following assertions hold.
(i) For any α ∈ (0, 1), the processes

(3.53)
(1 + θ̂trz)p − 1− pθ̂trz

p(p− 1)
I
{|θ̂trz|≤α}

⋆ µ, and (1 + θ̂trz)pI
{|θ̂trz|>α}

⋆ µ,

are non decreasing and locally integrable.
(ii) P ⊗A-almost all (ω, t) ∈ Ω× [0,+∞[, θ̂ ∈ int (D+).
(iii) The optimal portfolio rate, θ̂, is a root of (3.42). That is

(3.54) 0 =
1

p− 1
b+ cθ̂ +

∫
(1 + θ̂trz)p−1 − 1

p− 1
zF (dz), P ⊗A− a.e.

(iv) The optimal portfolio rate, θ̂, satisfies
(3.55)

e−∆aD ·XD =
p(p− 1)

2
θ̂trcθ̂ ·A−

[∫ [
(1 + θ̂trz)p−1 − 1 + (1− p)θ̂trx(1 + θ̂trz)p−1

]
F (dz)

]
·A.

Here XD is given by (3.52).

(v) If we denote u(t, ω, x) :=
(
1 + xtrθ̂t(ω)

)p−1
, then

(3.56) 1− a+ ût := 1 +

∫
(u(t, x) − 1)ν({t}, dx) = exp(−∆aD), at := ν({t}, IRd),

and as a consequence, the positive predictable process, (1− a+ û)−1, is locally bounded.

Proof. Since pD(t) > 0 for all (t, ω) ∈ [0, T ]×Ω—U(t, x) is a random field utility—, it is obvious
to see that D(t)/D0 is a positive and predictable process with finite variation. Therefore, the
decomposition in (3.52) holds. The proof of the assertions (i)—(v) of the lemma will be carried
in three steps (parts a), b), and c) below). Part a) proves assertion (i), while part b) proves
assertions (ii), (iii) and (iv). The part c) proves assertion (v).
a) Remark that

(3.57)
U(t, xEt(θ · S)) = D0x

p exp
(
aDt
)
Et (θ · S)

p = D0x
pEt
(
XD

)
Et
(
Xθ
)

= D0x
pEt
(
(1 + ∆XD) ·Xθ +XD

)
,

for any admissible strategy θ, where XD is defined in (3.52) and Xθ is given by

(3.58) Xθ = pθ · S +
p(p− 1)

2
θtrcθ · A+

(
(1 + θtrz)p − 1− pθtrz

)
⋆ µ.
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Thus, U(t, xEt(θ · S)) is a local supermartingale (local martingale for θ = θ̂) if and only if

(3.59)
1

p(1− p)

(
e∆aD ·Xθ +XD

)
is a local supermartingale (local martingale for θ = θ̂).

Due to Ito’s formula, we easily deduce that (3.59) holds if and only if

(3.60)
∣∣(1 + θtrz)p − 1− pθtrzI{|θtrz|≤α}

∣∣ ⋆ µ ∈ A+
loc,

and P ⊗A-almost all (ω, t), we have

(3.61)
exp(−∆aD)

p(1− p)
·XD = Φp

(
θ̂
)
· A, and min

θ∈Rd
[Φp(θ)] = Φp(θ̂),

where Φp is given by (2.8), that we recall below for the convenience of the reader

(3.62) Φp(θ) :=
btrθ

p− 1
+

1

2
θtrcθ +

∫
(1 + θtrx)p − 1− pθtrx

p(p− 1)
F (dx).

Due to I{|θtrz|>α} ⋆ µ =
∑

I{|θtr∆S|>α} ∈ A+
loc, and

∣∣(1 + θtrz)p − 1− pθtrzI{|θtrz|≤α}

∣∣ ⋆ µ =
∣∣(1 + θtrz)p − 1− pθtrz

∣∣I{|θtrz|≤α} ⋆ µ+

+
∣∣(1 + θtrz)p − 1

∣∣I{|θtrz|>α} ⋆ µ,

we deduce that assertion (i) of the lemma follows from (3.60).
b) By combining the second equality in (3.61) with Lemma A.3, both assertion (ii) and (iii) of
the lemma follows immediately, while assertion (iv) follows from inserting (3.54) into the first
equation of (3.61).
c) By multiplying (3.54) with ∆A, and using ∆Ab =

∫
xF (dx)∆A, ∆Ac = 0, and Ft(dx)∆At =

ν({t}, dx), we get

(3.63)

∫
(1 + θ̂trz)p−1zν({t}, dz) = 0,

on the one hand. On the other hand, by taking jumps in (3.55), inserting (3.63) in the resulting
equation afterwards, and using again ∆Ac = 0, we obtain

1− exp(−∆aD) = exp(−∆aD)∆XD = −

∫
(1 + θ̂trz)p−1ν({t}, dz) + a = −û+ a.

Thus, assertion (v) follows from the above equality and the local boundeness of e−∆aD .
This achieves the proof of the lemma.
The following lemma will show how the minimal Hellinger martingale density of order q is
built-up and is related to the optimal portfolio rate, θ̂, when Up is a forward utility.

Lemma 3.15. Suppose that S is locally bounded, Ze
loc(S) 6= ∅, Assumptions 2.1 with M ≡ 1

holds, D is predictable with finite variation, and Up given by (3.18) is a forward utility. Then,
the following properties hold:
(i) The P̃-measurable functional

(3.64) Wt(z) :=

(
1 + θ̂trt z

)1/(q−1)
− 1

1− at +
∫ (

1 + θ̂trt y
)1/(q−1)

ν({t}, dy)

=:
u(t, z)− 1

1− 1 + û
,
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is (µ− ν)-integrable, (i.e. W ∈ G1
loc(µ) see (3.51) for the definition of this set).

(ii) The process, Z̃, defined by

(3.65) Z̃ := E
(
Ñ
)
, Ñ :=

1

q − 1
θ̂ · Sc +W ⋆ (µ− ν),

is a martingale density for S.
(iii) The following

(3.66) (q − 1)XD +
∑[(

1 +∆XD
)q−1

− 1− (q − 1)∆XD
]
= q(q − 1)h(q)(Z̃, P )

holds, where XD is defined in (3.52).

Proof. Thanks to Lemma 3.14–(v), (γ̃t)
−1 := (1− a+ û)−1 = e∆aD is locally bounded, and

∑

0<t≤·

(Ŵt)
2 :=

∑

0<t≤·

(∫
Wt(x)ν({t}, dx)

)2

=
∑

0<t≤·

(
ût

1− a+ ût

)2

� e3|∆aD | · |aD|var

is a nondecreasing and locally bounded process. Therefore, W ∈ G1
loc(µ) if and only if

[∑
(Wt(∆St))

2 I{∆St 6=0}

]1/2
=

[
(γ̃)−2

(
(1 + θ̂trx)p−1 − 1

)2
⋆ µ

]1/2
∈ A+

loc(P ).

Again, the boundedness of (γ̃)−2 = (1 − a + û)−2 = e2∆aD (see assertion (v) of Lemma 3.14)
implies that the above claim is equivalent to

(3.67)

[(
(1 + θ̂trx)p−1 − 1

)2
⋆ µ

]1/2
∈ A+

loc(P ).

If we put Γ := {z ∈ R
d
∣∣∣ |θ̂trz| ≤ α}, then —due to (

∑
(∆X)2)1/2 ≤

∑
|∆X|— it is easy to

check that (3.67) is implied by the local integrability of

(3.68) V1 :=
(
(1 + θ̂trz)p−1 − 1

)2
IΓ ⋆ µ, and V2 := |(1 + θ̂trz)p−1 − 1|IΓc ⋆ µ.

The local integrability of V1 follows directly from I
{|θ̂tr∆S|≤α}

· [θ̂ · S, θ̂ · S] ∈ A+
loc (since θ̂ is

S-integrable and hence θ̂ · S is a càdlàg semimartingale), and

(q − 1)2

(1− α)2(p−2)
V1 �

∑
(θ̂tr∆S)2I

{|θ̂tr∆S|≤α}
� I

{|θ̂tr∆S|≤α}
· [θ̂ · S, θ̂ · S].

To prove the local integrability of V2, it is enough to prove

(3.69) |

∫
(1 + θ̂T z)p−1θ̂trzI

{|θ̂trz|>α}
F (dz)| ·A ∈ A+

loc.

Indeed, by combining (3.69) with (1 + θ̂trz)pI
{|θ̂trz|>α}

⋆ µ ∈ A+
loc (see Lemma 3.14–(i)), and

(1 + θ̂trz)p−1IΓc ⋆ ν = −

∫

Γc

(1 + θ̂trz)p−1θ̂trzF (dz) ·A+ (1 + θ̂trz)pIΓc ⋆ ν,
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we deduce that (1 + θ̂trz)p−1I
{|θ̂trz|>α}

⋆ µ is locally integrable (since it is nondecreasing and its

compensator is locally integrable). Finally, due to

I
{|θ̂trz|>α}

⋆ µ =
∑

I
{|θ̂tr∆S|>α}

∈ A+
loc,

which follows from the fact that θ̂ · S is a càdlàg semimartingale, we conclude that V2 is locally
integrable. In the remaining part of this proof, we will prove (3.69). Thanks to Proposition A.4,
we have

(3.70) θ̂trcθ̂ · A ∈ A+
loc, and |ξ̂| ·A := |θ̂trb−

∫
θ̂trzI

{|θ̂trz|>α}
F (dz)| ·A ∈ A+

loc.

Since θ̂ satisfies (3.54), then we get (recall that Γ := {x ∈ R
d : |θ̂trx| ≤ α} and q−1 = (p−1)−1)

(3.71) − (q − 1)ξ̂ − θ̂trcθ̂ =
1

p− 1

∫

Γc

(1 + θ̂trz)p−1θ̂trzF (dz) +

∫

Γ

(1 + θ̂trz)p−1 − 1

p− 1
θ̂trzF (dz).

Then, by combining

0 � (1+θ̂trz)p−1−1
p−1 (θ̂trz)I

{|θ̂trz|≤α}
⋆ µ � (1− α)p−2(θ̂trz)2I

{|θ̂trz|≤α}
⋆ µ

� (1− α)p−2I
{|θ̂tr∆S|≤α}

· [θ̂ · S, θ̂ · S] ∈ A+
loc,

(3.70) and (3.71), we conclude that (3.69) holds. This ends the proof of assertion (i).
Thus, Z̃ is well defined and is a positive local martingale. Then, a direct application of Ito’s
formula for Z̃S leads to conclude that Z̃S is a local martingale if and only if

b · A+ (p− 1)cθ̂ ·A+

∫
x
(
(1 + θ̂trx)p−1(1− a+ û)−1 − 1

)
F (dx) ·A ≡ 0.

Then, it is easy to check —by distinguishing the two cases whether ∆A = 0 or ∆A 6= 0— that
the above equation is equivalent to (3.54). Indeed, it is clear that we have b∆A =

∫
xF (dx)∆A

and c∆A = 0, and on {∆A = 0} we have 1− a+ û = 1. This ends the proof of assertion (ii).

In the remaining part of this proof, we focus on proving the last assertion (i.e. assertion (iii)).
By combining (3.56) and (B.121) when Z ≡ 1, we deduce that

(1 + ∆XD)q−1 − 1 = q(q − 1)∆h(q)(Z̃, P ).

This equation is exactly (3.66) on {∆A 6= 0}, while on {∆A = 0} (3.66) follows from combining
(3.55) and (B.122) when Z ≡ 1 (recall here β̃ and θ̂ coincide). This proves (3.66), and the proof
of the lemma is completed.

Remarks 3.16. 1) In the proof of Lemma 3.15, it is easy to notice that the proof of (3.67)
follows exactly from θ̂ ∈ L(S) and the equation (3.54) that θ̂ satisfies. Therefore, the proof is
also valid for the case of p = 0. Thus, if θ̂ ∈ L(S) and is a root of

(3.72) b− cλ+

∫ [(
1 + λtrx

)−1
− 1
]
xF (dx) = 0,

then the process
[(

1 + θ̂trx
)−1

− 1
]
∈ G1

loc(µ) .

2) Also the proof of Lemma 3.17 (see below) is based on (3.54) that θ̂ fulfills and the form of
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Z̃ given by (3.65) only. These two ingredients do not assume any condition on p ∈ (−∞, 1).
As a result, Lemma 3.17 is still valid for the case of p = 0, or equivalently Z̃ is the minimal
Hellinger martingale density of order zero as long as θ̂ ∈ L(S) solves (3.54) and Z̃ is given by
(3.65) when p = 0.

Lemma 3.17. The process Z̃ defined in Lemma 3.15 is the minimal Hellinger martingale density
of order q. That is, Z̃ is a martingale density (belongs to Ze

loc(S,P )) satisfying

(3.73) h(q)(Z̃, P ) � h(q)(Z,P ),

for any Z ∈ Ze
loc(S,P ).

Proof. Thanks to Lemma 3.15–(ii), the proof of the lemma will follow from proving the opti-
mality of Z̃. In virtue of Proposition 3.2 in Choulli and Stricker (2006) (see also Proposition 4.2
in Choulli and Stricker (2005) for the case of quasi-left continuity), it is enough to prove that
(3.73) holds for any positive martingale density Z = E(N) of the form

N = β · Sc + Y ⋆ (µ− ν), Yt(x) = kt(x) +
k̂t

1− at
I{at<1}, k̂t :=

∫
kt(x)ν({t}, dx),

where β ∈ L(S) and
(∑

kt(∆St)
2I{∆St 6=0}

)1/2
∈ A+

loc. Due to the convexity of zT cz and φ(z) :=
(1+z)q−qz−1

q(q−1) , on the set {∆A = 0} we derive

(3.74)

dh(q)(Z,P )

dA
−

dh(q)(Z̃, P )

dA
=

1

2
(βtrcβ − θ̃trcθ̃) +

∫ [
φ(k(x)) − φ(k̃(x))

]
F (dx)

≥ θ̃T c(β − θ̃) +

∫
θ̃trx

(
k(x)− k̃(x)

)
F (dx) = 0.

Here θ̃ = (p−1)θ̂, k̃(x) := (1+ θ̂trx)p−1−1 and φ′(k((x)) = (p−1)θ̂trx = θ̃trx. The last equality
in (3.74) is obtained from the fact that both Z̃ and Z belong to Ze

loc(S), which is equivalent to

(3.75) b+ cβ +

∫
xk(x)F (dx) = 0, and b+ (p − 1)cθ̂ +

∫
xk̃(x)F (dx) = 0.

Now, we compare the two jump processes ∆hEt (Z,P ) and ∆hEt (Z̃, P ), by using again the con-
vexity of φ(z), as follows

∆hEt (Z,P ) −∆hEt (Z̃, P ) = (1− at)

[
φ
(
−

k̂t
1− at

)
− φ

(
γ̃−1
t − 1

)]

+

∫ [
φ(kt(x))− φ

(
(1 + θ̂trt x)p−1γ̃−1

t − 1
)]

νt(dx)

≥ (1− at)(1−
k̂t

1− at
−

1

γ̃t
)
γ̃1−q
t − 1

q − 1

+

∫ [
kt(x) + 1− γ̃−1

t (1 + θ̂trt x)
p−1
](θ̂trt x+ 1)γ̃1−q

t − 1

q − 1
νt(dx)

=
γ̃1−q
t

q − 1

∫ [
(kt(x) + 1)− (γ̃t)

−1(1 + θ̂trx)p−1
]
θ̂trt xνt(dx) = 0.(3.76)
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The last equality in (3.76) follows from (3.75) (by multiplying both equations with ∆A and
using b∆A =

∫
xν({t}, dx), ∆Ac = 0 and Ft(dx)∆At = ν({t}, dx) ) that leads to

∫
x(kt(x) + 1)ν({t}, dx) = 0, and 0 = γ̃−1

t

∫
x(1 + θ̂trt x)p−1ν({t}, dx).

Thus, by combining (3.74) and (3.76), we deduce that Z̃ is the minimal Hellinger martingale
density of order q for S. This achieves the proof of the lemma.
Now, we are ready to provide the proof of Theorem 3.8.

Proof of Theorem 3.8: We start proving (1) =⇒ (2). Thus, suppose that assertion (1) holds.
Therefore, Lemmas 3.14, 3.15, and 3.17 are valid, and the minimal Hellinger martingale density,
Z̃ exists (it is given by Lemma 3.15). Furthermore, an application of Ito’s formula to E(XD)q−1

combined with (3.52) and (3.66), will easily lead to (3.41). This proves assertions (2.b) and (2.c)
of the theorem. To conclude that assertion (2) is satisfied, we need to prove assertion (2.a).
This follows from the forward property of Up with optimal portfolio rate θ̂ and

Up

(
·, xE

(
θ̂ · S

))
= D0x

pE
(
q(q − 1)h(q)

(
Z̃, P

))p−1
E
(
θ̂ · S

)p
(3.77)

= D0x
pE
(
θ̂ · S

)
E
(
γ̃1−q θ̂ · S + q(q − 1)h(q)

(
Z̃, P

))p−1
(3.78)

= D0x
pE
(
θ̂ · S

)
Z̃ = D0x

pẐ.(3.79)

It is clear that (3.77) follows from (3.41) and p − 1 = 1
q−1 , while (3.78) and (3.79) follows from

(B.120) —for the case of Z ≡ 1— whenever the MHM density of order q, Z̃, exists. This proves
assertion (2).

In the remaining part of this proof, we focus on proving (2) =⇒ (1). Thus, we suppose that
assertion (2) is fulfilled. Then, it is obvious that (3.77), (3.78), and (3.79) always hold as
long as the MHM density of order q exists and assertion (2.b) is valid. As a consequence, a

combination of these equalities with assertion (2.a) imply that Up

(
·, xE

(
θ̂ · S

))
is a martingale.

Furthermore, for any admissible θ, we have

(D0x
p)−1Up (·, xE (θ · S)) = E (θ · S)p E

(
θ̂ · S

)1−p
E
(
q(q − 1)h(q)

(
Z̃, P

))p−1
E
(
θ̂ · S

)p−1

= E
(
θ̂ · S

)
Z̃
(
E (θ · S) /E

(
θ̂ · S

))p
= Ẑ

(
E (θ · S) /E

(
θ̂ · S

))p
.

Due to this equality, the equivalence between θ ∈ Θ(x,Up) and (A.114), and Proposition A.5, we
conclude that Up (·, xE (θ · S)) is a supermartingale for any admissible portfolio rate θ. Hence,
Up is a forward utility and assertion (1) holds. This ends the proof of the theorem.

4 Parametrization of the Log-Type Forward Utilities

This section focuses on describing the forward utilities having the form of

(4.80) U0(t, x) := D̂(t) log (x) +D(t).

We will prove that this class of forward utilities is completely parameterized by two local mar-
tingales intimately related to D̂ and D. For these random field utilities, we consider the set of
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admissible portfolios, Aadm(x, log), that is slightly different than the one defined in (2.14).

Aadm(x, log) :=
{
π ∈ L(S)

∣∣ x+π·S > 0, &
(
[U0(τ, x+ (π · S)τ )]

−)
τ∈TT

is uniformly integrable.
}

Then, the set of admissible portfolio rates —denoted by Θ(x, log)— is given by

(4.81) Θ(x, log) :=
{
θ ∈ L(S)

∣∣ E(θ · S) > 0 & θE−(θ · S) ∈ Aadm(x, log)
}
.

Below, we elaborate our main result of this section.

Theorem 4.1. Suppose that U0 defined in (4.80) is a random field utility such that

(4.82) sup
τ∈TT

E
(
|D̂(τ)|

)
< +∞ and sup

τ∈TT

E
(
|D(τ)|

)
< +∞.

Suppose that S is locally bounded, Ze
loc(S) 6= ∅, and Assumption 2.1 with Mt ≡ E

(
D̂(T ) | Ft

)
/E(D̂(T ))

holds. Then the assertions (1) and (2) below are equivalent.
(1) The functional U0 is a forward utility with the optimal portfolio rate θ̂.
(2) The following properties hold:
(2.a) The process D̂ is a positive martingale.

(2.b) The MHM density of order zero with respect to Q := D̂(T )
(
D̂(0)

)−1
· P exists (that we

denote by Z̃Q), and there exists a Q-local martingale LQ such that

(4.83) D(t) = D̂(t)

(
D(0)

(
D̂(0)

)−1
+ LQ

t − h
(0)
t (Z̃Q, Q)

)
, 0 ≤ t ≤ T.

(2.c) P ⊗A−almost all (ω, t), the optimal portfolio rate θ̂ belongs to int (D), and is a root for

(4.84) bQ − cλ+

∫ [(
1 + λtrx

)−1
− 1
]
xFQ(dx) = 0,

where bQ and FQ(dx) are the predictable characteristics of S under Q.

(2.d) The process N̂t := D(t)− D̂(t) log
(
Z̃Q
t

)
is a martingale.

Proof. We start proving the difficult part, which is (1) =⇒ (2). Suppose that assertion (1)
holds. Thanks to Proposition 3.3, the optimal portfolio rate θ̂x does not depend on the initial
capital x ∈ (0,+∞). Thus, a combination of this fact with assertion (1) lead to put θ̂ := θ̂1, and

(4.85) U0

(
t, xEt(θ̂ · S)

)
= log(x)D̂(t) + D̂(t) log

(
Et(θ̂ · S)

)
+D(t) is a martingale,

for any x ∈ (0,+∞), and for any θ ∈ Θ(x, log),

(4.86) U0 (t, xEt(θ · S)) = log(x)D̂(t) + D̂(t) log (Et(θ · S)) +D(t) is a supermartingale.

Thus, D̂(t) is a positive martingale, and D is a càdlàg supermartingale. This proves assertion

(2.a) as well as D(t)/D̂(t) is a supermartingale under Q :=
(
D̂(T )/D̂(0)

)
·P . Thus, there exists

a predictable and nondecreasing process, A
Q
, such that (4.85) and (4.86) translate into (after

applying Ito’s formula and compensating under Q)

(4.87) − ΦQ
0 (θ) ·A−A

Q
� −ΦQ

0 (θ̂) ·A−A
Q
= 0.
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Here the function ΦQ
0 is given by (2.8) by taking p = 0 and R = Q and (bQ, c, FQ) are the

predictable characteristics of S under Q (it is obvious that cQ = c). Therefore, (4.87) implies
that θ̂ minimizes ΦQ

0 over the set D+, and thus θ̂ fulfills the assumptions of Lemma A.3. Hence,
assertion (2.c) follows immediately from this lemma. Then, thanks to the proofs of Lemma 3.15
and Lemma 3.17 (See Remarks 3.16 for details), we deduce that

W̃0(t, y) :=

[(
1 + θ̂try

)−1
− 1

]
∈ G1

loc(µ,Q),

and the minimal Hellinger martingale density of order zero with respect to Q, denoted Z̃Q, exists
and is given by

Z̃Q := E(ÑQ), ÑQ := −θ̂ · Sc,Q + W̃0 ⋆ (µ− νQ).

This proves assertion (2.b). Due to Proposition B.1 (put q = 0 in (B.120)), we obtain

(
Z̃Q
)−1

= E
(
θ̂ · S

)
.

By inserting this equality into (4.85) we derive

(4.88)

U0

(
t, xEt(θ̂ · S)

)
:= D̂(t) log(x) + D̂(t) log

(
Et(θ̂ · S)

)
+D(t)

= D̂(t) log(x) +D(t)− D̂(t) log
(
Z̃Q
t

)
.

Then, assertion (2.d) follows from the fact that both U0

(
t, xEt(θ̂ · S)

)
and D̂ are martingales.

This completes the proof assertion (2).

To prove the reverse implication (i.e. (2) =⇒ (1)), it is easy to remark that (4.88) is valid as

long as assertion (2.b) holds. Then, assertions (2.a) and (2.d) implies that UQ
0

(
t, xEt(θ̂ · S)

)
is

a Q-martingale for any x > 0. Then, assertion (1) will follow immediately once we prove that
UQ
0 (t, xEt(θ · S)) is a Q-supermartingale for any x > 0 and any θ ∈ Θ(x, log). To this end, we

first calculate

UQ
0 (t, xEt(θ · S)) = log(x) + log (Et(θ · S)) +D(t)/D̂(t)

= log
(
Et(θ · S)/Et(θ̂ · S)

)
+ UQ

0

(
t, xEt(θ̂ · S)

)
,

=: log
(
X0(t)

)
+ UQ

0

(
t, xEt(θ̂ · S)

)
.

Then, it is easy to see that X0 = E(θ · S)/E(θ̂ · S) = Z̃QE(θ · S) is a positive Q-local martingale
(which implies that log(X0(t)) is a Q-local supermartingale) , and —due to ey

+
≤ ey + 1—

EQ
(
e(log(X0(τ)))+

)
≤ EQ(X0(τ)) + 1 ≤ 2.

Then, the Lavallée-Poussin argument allows us to conclude that

{[
log(X0(τ))

]+
, τ ∈ TT

}
is Q-uniformly integrable.
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Since UQ
0

(
t, xE(θ̂ · S)

)
is a martingale, we deduce that

{[
UQ
0 (τ, xEτ (θ · S))

]+
, τ ∈ TT

}
is Q-uniformly integrable.

A combination of this fact and the admissibility of θ leads to the uniform integrability of
UQ
0 (t, xEt(θ · S)). As a consequence, this process is a Q-supermartingale, and the proof of

the theorem is completed.

Remark 4.2. It is clear from Theorem 4.1 that if we assume that D̂ and D are predicable with
finite variation, then D̂ is constant. Thus, in this case there is only one forward utility which
is the classical log-utility augmented with a Hellinger process of an optimal pricing density.
For the complete description of the optimal portfolio for the log-utility using the predictable
characteristics, we refer the reader to Göll and Kallsen (2003). It is worth mentioning that
our equation (4.84) is the same equation that Kardaras (2012) derived in the one-dimensional
context . The extension of this equation, called the ”market equation”, to the multidimensional
framework is attempted by Kabanov (2013) .

5 Discrete-time Market Models

This section illustrates our results of Sections 3 and 4 on the discrete-time market model, which
is the most frequently used market models in the economic and/or financial literature.
We consider the market model where trading times are t = 0, 1, .., T , the information flow of
the market model is given by F = (Fn)n=0,1,...,T , and the d-dimensional stock price process is
denoted by S = (Si)i=0,1,...,T . For x ∈ (0,+∞), p < 1, and t = 0, 1, ..., T , we put

(5.89) Up(t, x) :=





D(t)xp, if p 6= 0,

D̂(t) log(x) +D(t), if p = 0,

where D = (D(t))t=0,1,...,T , (D̂(t))t=0,1,...,T , and (D(t))t=0,1,...,T are processes satisfying

(5.90) sup
0≤j≤T

E
[
|D(j)|+ |D̂(j)| + |D(j)|

]
< +∞.

Similarly as in (2.9) for the continuous-time case, we define D+
j by

(5.91) D+
j :=

{
θ ∈ R

d
∣∣∣ 1 + θtrx > 0, Gj(dx) − a.e

}
, Gj(dx) := P (∆Sj ∈ dx | Fj−1),

for any j = 1, 2, ..., T , where ∆Sj := Sj −Sj−1. For any process X = (Xi)i=0,1,...,T , we associate
to it the set of admissible strategies for the jth period of time (j = 1, 2, ..., T ) Θj(X,Up), which
is given by
(5.92)

Θj(X,Up) :=
{
θ ∈ L0(Fj−1) ∩D+

j

∣∣∣ E
(
|Xj∆Sj|(1 + θtr∆Sj)

p−1
∣∣∣Fj−1

)
< +∞, P − a.s.

}
.

In this framework, Assumption 2.1 becomes
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Assumptions 5.1. For any j = 1, 2, ..., T , any θ ∈ D+
j , P -a.e., and every sequence (θn)n≥1 ⊂

int(D+
j ) that converges P − a.s. to θ, we have

lim
n→+∞

E
(
|D(j)Kp(θ

tr
n ∆Sj)|

∣∣Fj−1

)
=

{
+∞, on Γj;

E
(
|D(j)Kp(θ

tr∆Sj)|
∣∣Fj−1

)
, on Γc

j.
(5.93)

where Kp(y) := y(1 + y)1/(q−1) = y(1 + y)p−1 and Γj := {Gj(R
d) > 0 and θ 6∈ int(D+

j )}

Below, we state our parametrization algorithm for forward utilities having the form of (5.89).

Theorem 5.2. Let p ∈ (−∞, 0) ∪ (0, 1). Suppose that S is bounded, Assumption 5.1 holds,
and D satisfies (5.90). Then, the following are equivalent.
(i) Up(t, x) —defined in (5.89)— is a forward utility with the optimal portfolio θ̂ = (θ̂i)i=1,2,...,T .

(ii) The two processes D and θ̂ are given by

θ̂j ∈ Θj(D,Up) is a root of E
(
Dj∆Sj(1 + θtr∆Sj)

p−1
∣∣∣ Fj−1

)
= 0,(5.94)

and D(j − 1) = E
(
D(j)(1 + θ̂trj ∆Sj)

p
∣∣∣Fj−1

)
,(5.95)

for all j = 1, 2, ..., T . Here Θj(D,Up) is defined in (5.92).

Remark 5.3. Theorem 5.2 completely parameterizes the forward utilities of (5.89) in the discrete
time setting. In fact, the unique parameter for these forward utilities is the terminal value of
the process D, which is D(T ). Given this random variable, we calculate the optimal portfolio
for the nth-period of time, θ̂n as a root of equation (5.94). Afterwards, we calculate Dn−1 from
(5.95). Then, we repeat this procedure over and over again until we completely determine the
two processes D and θ̂.

Proof of Theorem 5.2. Remark that, due to (5.90), the process D can be represented by

D(t) = D(0)ZD
t exp(aDt ), ZD

t :=

t∏

i=1

D(j)

E(D(j)|Fj−1)
,

aDt :=
t∑

j=1

log

[
E

(
D(j)

D(j − 1)

∣∣∣Fj−1

)]
, t = 1, 2, ..., T ; ZD

0 = 1, aD0 = 0.

It is easy to verify that ZD is a positive martingale (since pD(j) > 0) and aD is predictable.
Thus, throughout the remaining part of the proof, we will consider the probability measure
Q := ZD

T · P . We will start by proving (i) =⇒ (ii). Thus, suppose that (i) holds. Then there

exists an admissible strategy θ̂ such that for any other admissible strategy θ, the processes

Up

(
j,

j∏

k=1

(1 + θ̂trk ∆Sk)

)
and Up

(
j,

j∏

k=1

(1 + θtrk ∆Sk)

)
are martingale and supermartingale re-

spectively. This implies that for any j = 1, 2, ..., T ,

(5.96) D(0)EQ
(
(1 + θtrj ∆Sj)

p
∣∣∣Fj−1

)
≤ D(0)e−aDj +aDj−1 = D(0)EQ

(
(1 + θ̂trj ∆Sj)

p
∣∣∣Fj−1

)
.

Then, the equality in the RHS term of (5.96) implies (5.95). While the whole inequality (5.96)
can be transformed into

D(0)

∫
(1 + θtrj x)

pGQ
j (dx) ≤ D(0)

∫
(1 + θ̂trj x)

pGQ
j (dx),
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where GQ
j (dx) is give by GQ

j (dx) := Q
(
∆Sj ∈ dx

∣∣∣ Fj−1

)
. Due to Lemma A.3 and Assumption

5.1, we conclude that

(5.97) Ψj(λ) := D(0)

∫
(1 + λtrx)pGQ

j (dx), λ ∈ D+
j ,

is differentiable on int(D+
j ), and its minimum θ̂j belongs to int(D+

j ) and is a root for

0 = ∇Ψj(λ) = pD(0)

∫
(1 + λtrx)p−1xGQ

j (dx).

This is equivalent to (5.94), and assertion (ii) follows.
To prove the reverse (i.e. (ii) =⇒ (i)), we suppose that assertion (ii) holds. Then by multiplying
both sides of (5.95) by xp

∏j−1
k=1(1 + θ̂trj ∆Sk)

p, we obtain

D(j − 1)xp
j−1∏

k=1

(1 + θ̂trk ∆Sk) = E

(
D(j)xp

j∏

k=1

(1 + θ̂trj ∆Sk)
p
∣∣∣Fj−1

)
.

This proves that for any x ∈ (0,+∞) the process Up

(
j, x

j∏

k=1

(1 + θ̂trk ∆Sk)

)
, j = 0, 1, ..., T, is

a martingale. Since pD(j) > 0 and p < 1 for any j = 0, 1, ..., T , then for any admissible portfolio
rate θ, we derive

D(j)(1 + θtrj ∆Sj)
p −D(j)(1 + θ̂trj ∆Sj)

p ≤ pD(j)
(
θj − θ̂j

)tr
∆Sj(1 + θ̂trj ∆Sj)

p−1.

Then, by taking conditional expectation in both sides of the above inequality and using (5.94)
and (5.95), we obtain

E
(
xpD(j)(1 + θtrj ∆Sj)

p
∣∣∣Fj−1

)
≤ E

(
xpD(j)(1 + θ̂trj ∆Sj)

p
∣∣∣Fj−1

)
= xpD(j − 1).

Then by multiplying both sides of this inequality with

j−1∏

k=1

(1 + θtrk ∆Sk)
p, we conclude that

Up

(
j, x

j∏

k=1

(1 + θtrj ∆Sk)

)
= xpD(j)

j∏

k=1

(1 + θtrk ∆Sk)
p, j = 0, 1, ..., T

is a supermartingale for any x > 0 and any admissible θ. This ends the proof of the theorem.

One of the easiest and popular case of discrete-time market model is the binomial model. Let
ξj be a Fj-measurable random variable, which takes only two values, ξuj and ξdj satisfying

0 < ξdj < 1 < ξuj for any j = 1, 2, ..., T . Given the price of the stock at time j − 1 (i.e.

Sj−1), the price at time j will either go up to Sj−1ξ
u
j or go down to Sj−1ξ

d
j . Therefore, we get

Sj = Sj−1ξj = S0

j∏

k=1

ξk, S0 > 0.

We denote by (Aj)j=1,...,T the sequence of events given by

(5.98) Aj := {ξj = ξuj } ∈ Fj .
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For this model, we have #(Ω) = 2N < +∞. Thus, any random variable is integrable, and

Θj(D,Up) = L0(Fj−1) ∩D+
j , j = 1, 2, ..., T.

Furthermore, in this case Assumption 5.1 is always fulfilled due to

(5.99) D+
j =

]
1/(1 − ξuj )Sj−1, 1/(1 − ξdj )Sj−1

[
= int(D+

j ), ∀ j = 1, 2, ..., T.

The description of the power-type forward utilities in this simple framework —generalizes the
results of Musiela and Zariphoupoulou (2009a) to the power case— has a more explicit form
and is given in the following.

Corollary 5.4. The following two assertions are equivalent.
(i) Up(t, x), defined in (5.89), is a forward utility with the optimal portfolio rate θ̂ = (θ̂j)j=1,2,...,T .
(ii) The process D is a supermartingale having the multiplication Doob-Meyer decomposition,
D = D(0)ZD exp(aD) (ZD is a positive martingale and aD is predictable) such that the following
properties hold:
(ii.1) By putting Q :=

(
ZD
T /ZD

0

)
· P , then for j ∈ {1, 2, ..., T}, θ̂j is given by

(5.100) θ̂j =
γj − 1

(ξuj − 1− γjξdj + γj)Sj−1
∈ D+

j , γj :=

(
(ξuj − 1)Q(Aj |Fj−1)

(1 − ξdj )Q(Ac
j |Fj−1)

)1−q

(ii.2) The predictable process aD is given by

aDj = −

j∑

k=1

log
((γp−1

k Q(Ak|Fk−1) +Q(Ac
k|Fk−1))(ξ

u
k − ξdk)

p−1

(ξuk − 1− γkξ
d
k + γk)p−1

)
, j = 1, 2, ..., T.

Proof. This corollary can be obtained as an application of Theorem 5.2. Thus, we will avoid
to repeat the same proof again by giving some remarks emphasizing the nice features of this
case that simplify tremendously the proof. Since D+

j is open and #(Ω) < +∞, the assumptions
(5.90) and (5.93) are automatically fulfilled. The function Ψj given by (5.97) becomes

Ψj(λ) = Q(Aj |Fj−1)(1 + (ξuj − 1)λSj−1)
p +Q(Ac

j |Fj−1)(1 + (ξdj − 1)λSj−1)
p,

which is differentiable on D+
j . Thus, θ̂j is the solution of the equation, Ψ′(λ) = 0, which leads to

(5.100). Finally, aDj is derived by plugging (5.100) into (5.95) and applying the decomposition
of D. This ends the proof of the corollary.

We conclude this subsection by deriving the results for the logarithm case.

Theorem 5.5. Suppose that S is bounded, D̂ and D two processes satisfy (5.90), and Assump-

tion 5.1 for Mt ≡ E
(
D̂T

∣∣ Ft

)
/ED̂(T ) holds. Then, the following are equivalent.

(i) The functional U0(t, x) := D̂(t) log(x) +D(t) (see (5.89)), is a forward utility with the opti-
mal portfolio θ̂ = (θ̂i)i=1,2,...,T .

(ii) D̂ is a positive martingale, the process θ̂ satisfies
(5.101)

θ̂j ∈ Θj(D̂, U0) and θ̂j is a root for E

(
D̂(j)

1 + θtr∆Sj
∆Sj

∣∣∣ Fj−1

)
= 0, j = 1, 2, ..., T,
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and the process D is a supermartingale with predictable part given by

(5.102) −

j∑

k=1

E
(
D̂(k) log(1 + θ̂trk ∆Sk)

∣∣∣Fk−1

)
.

Here Θj(D̂, U0) is given by (5.92).

Proof. Suppose that assertion (i) holds. Then, for any x ∈ (0,+∞), the process

U0

(
j, x

j∏

k=1

(1 + θ̂trk ∆Sk)

)
is a martingale.

Then, we deduce that both processes

D(j) + D̂(j) log

(
j∏

k=1

(1 + θ̂trk ∆Sk)

)
, and D̂(j),

are martingales. This proves that D̂ is a positive martingale. Since for any admissible θ,

U0

(
j, x

j∏

k=1

(1 + θtrk ∆Sk)

)
,

is a supermartingale. Then we derive

(5.103)

E
(
D̂(j) log(1 + θtrj ∆Sj)

∣∣∣Fj−1

)
≤ E

(
D(j − 1)−D(j)

∣∣∣Fj−1

)

= E
(
D̂(j) log(1 + θ̂trj ∆Sj)

∣∣∣Fj−1

)
.

As a result, the equality in the RHS term of (5.103) implies that

AD
j :=

j∑

k=1

E
(
D(k)−D(k − 1)

∣∣∣Fk−1

)
= −

j∑

k=1

E
(
D̂(k) log(1 + θ̂trk ∆Sk)

∣∣∣Fk−1

)
.

This proves (5.102). If we put Q := D̂(T )
(
D̂(0)

)−1
· P , then (5.103) becomes

∫
log(1 + θtrj x)GQ

j (dx) ≤

∫
log(1 + θ̂trj x)GQ

j (dx),

where GQ
j (dx) := Q(∆Sj ∈ dx|Fj−1). This proves that θ̂j maximizes the function

(5.104) Yj(λ) :=

∫
log(1 + λtrx)GQ

j (dx),

on the set D+
j . Due to Lemma A.3 , we conclude that θ̂j ∈ int

(
D+

j

)
, and θ̂j is a root for

0 = D̂(j − 1)∇Yj(λ) = D̂(j − 1)

∫ (
1 + λtrx

)−1
xGQ

j (dx)

= E
(
D̂(j)(1 + λtr∆Sj)

−1∆Sj

∣∣∣Fj−1

)
.
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This proves (5.101), and the proof of assertion (ii) is completed.
To prove that (ii) implies (i), we assume that assertion (ii) holds. Then, due to (5.101), and the
fact that D̂ is a martingale, we calculate

E
(
U0(j, x

∏j
k=1(1 + θ̂trk ∆Sk))

∣∣∣Fj−1

)
= D̂(j − 1) log(x) + E

(
D(j)

∣∣∣Fj−1

)
+

D̂(j − 1)

j−1∑

k=1

log(1 + θ̂trk ∆Sk) +E
(
D̂(j) log(1 + θ̂trj ∆Sj)

∣∣∣Fj−1

)
,

= U0

(
j − 1, x

j−1∏

k=1

(1 + θ̂trk ∆Sk)

)
.

The last equality follows easily from (5.102). This proves that U0

(
j, x

j∏

k=1

(1 + θ̂trk ∆Sk)

)
is a

martingale for any x ∈ (0,+∞). Thanks to (5.101) and the concavity of the log function, we
obtain for any admissible θ

E
(
D̂(j)

[
log(1 + θtrj ∆Sj)− log(1 + θ̂trj ∆Sj)

] ∣∣∣Fj−1

)
≤ 0.

Then, by combining this inequality with

U0

(
j, x

j∏

k=1

(1 + θtrk ∆Sk)

)
= U0

(
j, x

j∏

k=1

(1 + θ̂trk ∆Sk)

)
+ D̂(j)

j∑

k=1

log

(
1 + θtrk ∆Sk

1 + θ̂trk ∆Sk

)
,

we conclude that the process U0

(
j, x

j∏

k=1

(1 + θtrk ∆Sk)

)
is a supermartingale. This completes

the proof of the theorem.

For the binomial model, the sets Θj(D̂, U0) and D+
j are similar to those of the power case. The

characterization of the logarithm forward utilities in binomial model is stated as follows.

Corollary 5.6. The following two assertions are equivalent.
(i) U0(t, x) defined in (5.89), is a forward utility with optimal portfolio θ̂ = (θ̂j)j=1,2,...,T .
(ii) The following properties hold:
(ii.1) D0 is a positive martingale and θ̂j is given by

(5.105) θ̂j =
(ξuj − 1)Qj − (1− ξdj )(1 −Qj)

(ξuj − 1)(1 − ξdj )Sj−1
∈ D+

j ,

where Qj := Q(Aj|Fj−1), Q := D0(T )
D0(0)

· P and Aj is given by (5.98).

(ii.2) D is a supermartingale with predictable part given by

(5.106) −

j∑

k=1

[
log
(ξuk − ξdj

1− ξdk
Qj

)
Qj + log

(ξuk − ξdj
ξuk − 1

(1−Qj)
)
(1−Qj)

]
.
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Proof. The proof of this corollary follows from Theorem 5.5, and the fact that the function
Yj(θ) defined in (5.104) takes the form of

(5.107) Yj(θ) = log
(
(1 + (ξuj − 1)θSj−1)

)
Qj + log

(
(1 + (ξdj − 1)θSj−1)

)
(1−Qj),

in the binomial context.

Remark 5.7. An extension of the binomial discrete model is the multi-dimensional discrete
model, where the d-dimensional stock price process branches into n (n > 2) possible values at any
time. For such model, Assumption 5.1 —for the case of D̂ and p = 0 instead of D— and (5.90)
are automatically satisfied since the set D+ is open and #(Ω) < +∞. The characterization
of HARA forward utilities for this model and other illustrative examples can be found in Ma
(2013).

6 Conclusion and Related Open problems

This paper describes completely and explicitly the HARA-type forward utilities when S is locally
bounded and under some mild assumptions (see Assumption 2.1) on the parameters of these
random field utilities and those of the market model. There is no doubt that our approach is the
most explicit that deals with the most general market models. However, there are some points
where our results can be improved and/or extended. Furthermore, our work leads to a num-
ber of related open problems. Below, we outline some of these problems and possible extensions.

(1) Our results can be extended to the case of general S (not necessarily locally bounded) on
the one hand. On the other hand, Assumption 2.1 can be ignored, and this leaded to the new
concept of minimal Hellinger deflator. This last part constitutes our current work —that is in
progress— in Choulli and Ma (2013), where the explicit forms for the forward utilities and their
optimal portfolios are lost and the characterization is achieved by duality only. Also, we can
conjecture that the non-arbitrage assumption of Ze

loc(P ) 6= ∅ is redundant when U is a forward
utility. This can be proved by extending the results of Choulli, Deng and Ma (2013) to the case
of random field utilities.

(2) Can we define a Forward ”Regularisée” for any random field utility? This forward regularisée
will be the smallest forward utility that is bigger or equal to the random field utilities.

(3) The parametrization of forward utilities in discrete time setting is reduced to one parameter
which is the terminal value of the process D. In other words, the forward utility and its optimal
portfolio as well, in that context, are calculated using backward iterations. This leads to the
question whether we can characterize these forward utilities, in the continuous-time framework,
using backward stochastic differential equations (BSDEs). This sounds a very promising and
interesting alternative to the approach of PDEs. For the exponential case, we learned from
Christoph Frei that, this question was addressed recently by Anthropelos (2013).

(4) An other problem is how these forward utilities and their optimal portfolios are altered in
defaultable markets, or more generally by any random exit time. We believe that this question
will lead to the stability of these forward utilities under uncertainty models. As a consequence,
we might be able to explain the interplay between the uncertainty models and models with
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random horizons.

Appendix

This appendix contains two sections.

A Some Useful Intermediatory Results

For the following representation theorem, we refer to Jacod (1979) (Theorem 3.75, page 103)
and to Jacod and Shiryaev (2003) (Lemma 4.24, page 185).

Theorem A.1. Let N ∈ M0,loc. Then, there exist a predictable and Sc-integrable process φ,

N ′ ∈ M0,loc with [N ′, S] = 0 and functionals f ∈ P̃ and g ∈ Õ such that

(i)
( t∑

s=0

f(s,∆Ss)
2I{∆Ss 6=0}

) 1
2
∈ A+

loc,
( t∑

s=0

g(s,∆Ss)
2I{∆Ss 6=0}

) 1
2
∈ A+

loc,

(ii) MP
µ (g | P̃) = 0,

(iii) The process N is given by

(A.108) N = φ · Sc +W ⋆ (µ− ν) + g ⋆ µ+N ′, W = f +
f̂

1− a
I{a<1}.

Here f̂t =

∫
ft(x)ν({t}, dx) and f has a version such that {a = 1} ⊂ {f̂ = 0}.

Moreover

(A.109) ∆Nt =
(
ft(∆St) + gt(∆St)

)
I{∆St 6=0} −

f̂t
1− at

I{∆St=0} +∆N ′
t .

The quadruplet (β, f, g,N ′) is called throughout the paper by Jacod’s components/parameters
of N (under P ).

For any probability measure R, which is equivalent to P , we denote by (bR, c, νR) (where
νR(dt, dx) = FR

t dAt) the predictable characteristics of S with respect to R. Remark that
since R ∼ P , we have FR ∼ F , P ⊗ A−a.e. As a result, the sets D+ and D1 —defined in (2.9)
and (A.110) respectively— do not depend on equivalent probabilities.

Lemma A.2. Suppose that S is locally bounded. Let R be a probability measure equivalent to
P . Then, the interior of D+ satisfies

(A.110) 0 ∈ int(D+) = D1 := {λ ∈ D+ : ∃ δ > 0, 1 + λtrx ≥ δ, F − a.e.}.

Proof. By stopping, there is no loss of generality in assuming that S is bounded by K. For
any λ0 ∈ int(D+), there exists ε > 0 such that for any B(λ0, ǫ) ⊂ D+. Remark that λ :=
λ0(1 +

ǫ
2|λ0|

) ∈ B(λ0, ǫ), hence we have 1 + λtrx > 0, FR − a.e. Therefore, we write

1 + λtr
0 x =

ǫ

ǫ+ 2|λ0|
+

2|λ0|(1 + λtrx)

ǫ+ 2|λ0|
≥

ǫ

ǫ+ 2|λ0|
> 0, FR − a.e

This proves that λ0 ∈ D1 and hence we get int(D+) ⊂ D1. In the remaining part fo the proof
we will prove the reverse inclusion. Let λ0 ∈ D1 with uniform bound from below δ. Then, it is
easy to see that B(λ0, δ/K) ⊂ D+. This proves that λ0 ∈ int(D+), and the proof of the lemma
follows immediately from noticing that 0 ∈ D1.
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Lemma A.3. Suppose S is locally bounded and let R be a probability measure equivalent to P .
Then, the following assertions hold, P ⊗A-a.e.
(i) For any λ ∈ int(D+),

(A.111)

∫
|x|
∣∣(1 + λtrx)1/(q−1) − 1

∣∣FR(dx) < +∞.

(ii) The function ΦR
p (λ) defined in (2.8) is convex, proper, lower semi-continuous, differentiable

on int(D+), and

∇ΦR
p (λ0) = bR +

cλ0

q − 1
+

∫ [
x(1 + λtr

0 x)
1/(q−1) − x

]
FR(dx), ∀ λ0 ∈ int(D+).

(iii) If min
λ∈D

ΦR
p (λ) = ΦR

p (λ0) for λ0 ∈ R
d, and Assumption 2.1 with Mt ≡ E

(
dR
dP

∣∣ Ft

)
holds,

then λ0 ∈ int(D+).

Proof. The proof of this lemma will be achieved in three parts namely parts a), b) and c) where
we will prove assertions (i), (ii) and (ii) respectively.
a) For any λ ∈ int(D+), due to Lemma A.2, there exists δ ∈ (0, 1) such that 1 + λtrx ≥ δ > 0,
F − a.e. Then, an application of Taylor’s expansion to (1 + λtrx)1/(q−1) − 1 = (1 + λtrx)p−1 − 1
leads to the existence of r ∈ (0, 1) such that

|(1 + λtrx)p−1 − 1| = (1− p)|λtrx|(1 + rλtrx)p−2 ≤ δp−2(1− p)|λtrx|.

By combining this
∫
|x|2FR(dx) < +∞, P ⊗ A − a.s. (that follows from the fact that S is

locally bounded), we derive

∫
|x|
∣∣(1 + λtrx)1/(q−1) − 1

∣∣FR(dx) ≤ δp−2|λ|(1− p)

∫
|x|2FR(dx) < +∞, P ⊗A− a.e.

This proves assertion (i) of the lemma.
b) It is obvious that ΦR

p is convex, proper and semi-lower continuous due to Fatou’s Lemma
and fp ≥ 0. Then, the proof of assertion (ii) of the lemma will be completed once we prove
the differentiability of ΦR

p on int(D+). Let λ0 ∈ int(D+). Then, for any y ∈ R
d, thanks to

assertion (i) proved in part a) and Lemma A.2, there exists ε0 > 0 such that for any 0 ≤ ε ≤ ε0,
λ0 + εy ∈ dom(ΦR

p ).

An application of Taylor’s expansion of the function gp(λ
trx) := (1+λtrx)p−1−pλtrx

q(q−1) implies the

existence of r ∈ (0, 1) such that

kε(x) :=
gp(λ

tr
0 x+ εytrx)− gp(λ

tr
0 x)

ε
= yTx

(
(1 + λT

0 x+ rεyTx)1/(q−1) − 1
)
.

Meanwhile, notice that (|kε(x)|)ε is bounded from above by

k(x) := |y||x|max
(∣∣(1 + λtr

0 x)
1/(q−1) − 1

∣∣,
∣∣(1 + λtr

0 x+ ε0y
trx)1/(q−1) − 1

∣∣
)
.

Thanks to Lemma A.3–(i), k(x) is F -integrable due to λ0, λ0 + ε0y ∈ dom(ΦR
p ). It allows us to

apply Dominated Convergence Theorem to (|kε(x)|)ε, which leads to

(A.112) lim
ε→0

ΦR
p (λ0 + εy)− ΦR

p (λ0)

ε
= ytrΦ∗(λ0),
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where Φ∗(λ0) is given by

Φ∗(λ0) := bR +
cλ0

q − 1
+

∫ [
x(1 + λtr

0 x)
1/(q−1) − x

]
FR(dx).

It is clear from (A.112) that ytrΦ∗(λ0) is the directional derivative of ΦR
p at λ0, which is linear

in y. Thus, due to Theorem 25.2 in Rockafellar (1970), ΦR
p is differentiable at λ0 ∈ int(D+).

c) To prove assertion (iii), we start by noticing that λ0 belongs D+ —since D+ ⊂ dom(ΦR
p )—,

and λn := n−1
n λ0 ∈ int(D+) = D1. Thus, a direct application of assertion (ii) to each λn, we

deduce that ΦR
p is differentiable at λn, and due to the convexity of ΦR

p , we get

λtr
n ∇ΦR

p (λn) ≤ (n− 1)
[
ΦR
p (λ0)− ΦR

p (λn)
]
≤ 0.

This implies that
∫

λtr
n x

(1 + λtr
n x)

p−1 − 1

p− 1
FM (dx) ≤ −λtr

n b+ (1− p)λtr
n cλn.

Thus a combination of this with assumption 2.1 imply that λ0 ∈ int(D+) (otherwise, by using
Fatou’s lemma in the above inequality, we will obtain +∞ ≤ λtr

0 b + (1 − p)λtr
0 cλ0 which is

impossible). This completes the proof of the lemma.

Proposition A.4. Suppose that S is locally bounded with the following decomposition

S = S0 + Sc + z ⋆ (µ − ν) + b ·A.

Let θ be an S-integrable process, and α ∈ (0,+∞). Then the following assertions hold.
(i) The process

(A.113) Xθ := θ · S −
∑

θtr∆SI{|θtr∆S|>α},

is a locally bounded semi-martingale.
(ii) If we denote

ξθ := θtrb−

∫
(θT z)I{|θtrz|>α}F (dz),

then |ξθ| ·A ∈ A+
loc.

(iii) The process Xθ − ξθ ·A, is a local martingale.

Proof. The proof of assertion (i) is classic, and can be found in Dellacherie-Meyer(1980) or Jacod
and Shiryaev (2003). Now, we will focus on proving simultaneously the remaining assertions.
Since S is locally bounded, then it is clear that θI{|θ|≤n} ·S and I{|θ|≤n} ·X

θ are locally bounded
semimartingales. Therefore,

∑
θtr∆SI{|θtr∆S|>α, |θ|≤n} is a locally bounded process with finite

variation, and its compensator is given by

V θ,n := (θtrz)I{|θtrz|>α, |θ|≤n} ⋆ ν.

It is obvious that the two processes

θT I{|θ|≤n} · S − θtrbI{|θ|≤n} ·A, and
∑

θtr∆SI{|θtr∆S|>α, |θ|≤n} − V θ,n

are local martingales. Since X̃θ —the compensator of Xθ— exists and is a locally integrable
process, then we derive

V ar
(
X̃θ
)
= lim

n
V ar

(
I{|θ|≤n} · X̃

θ
)
= |ξθ| · A.

this proves both assertions (ii) and (iii). Here, for any process with finite variation, V , we denote
its variation by V ar(V ).
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Proposition A.5. Let p ∈ (−∞, 0) ∪ (0, 1), Z̃ be a martingale density, and θ̂ ∈ Θ(1, Up) such

that Ẑ := Z̃E(θ̂ · S) is a true martingale. If we denote Q̂ := ẐT · P and consider θ ∈ Θ(1, Up)
satisfying

(A.114) sup
τ∈TT

EQ̂
(
Eτ (θ · S)

pEτ (θ̂ · S)
−p
)
< +∞,

then sign(p)E(θ · S)pE(θ̂ · S)−p is a Q̂-supermartingale.

Proof. Notice that the case of p ∈ (0, 1), the proposition is trivial and (A.114) is always true.
In the remaining part of the proof we assume that p < 0 and we consider (Tn)n≥1 a sequence of

stopping times that increases stationarily to T such that Z̃Tn is a true martingale. Therefore,
since Z̃E(θ · S) is a supermartingale, by putting Q̃n := Z̃Tn ·P and using Jensen’s inequality we
derive

EQ̂



(
Et∧Tn(θ · S)/Et∧Tn(θ̂ · S)

)p
2
∣∣Fs


 ≥

(
EQ̂

[
Et∧Tn(θ · S)/Et∧Tn(θ̂ · S)

∣∣Fs

])p
2

=

(
EQ̃n (Et∧Tn(θ · S)|Fs)

Es∧Tn(θ̂ · S)

)p

2
≥

(
Es∧Tn(θ · S)

Es∧Tn(θ̂ · S)

)p

2
,

for 0 ≤ s < t ≤ T . This proves that
(
E(θ · S)/E(θ̂ · S)

)p/2
is a nonnegative Q̂-local submartin-

gale. Then, due to (A.114) and de la Vallée Poussin’s argument, we deduce that this process is
a true Q̂-submartingale. Again, an application of Jensen’s inequality leads to,

EQ̂
[(

Et(θ · S)/Et(θ̂ · S)
)p ∣∣Fs

]
≥

(
EQ̂

[(
Et(θ · S)/Et(θ̂ · S)

)p/2 ∣∣Fs

])2

≥
(
Es(θ · S)/Es(θ̂ · S)

)p
.

Hence, −
(
E(θ · S)/E(θ̂ · S)

)p
is a Q̂-supermartingale and this ends the proof.

In the following, we discuss some useful properties of the minimal Hellinger martingale densities
(MHM-densities hereafter) under local change of probabilities.

B MHM-densities under Local Change of Measure

In this last part of the Appendix, we will extent some properties of the minimal Hellinger
martingale density to the case where one is facing a local change of probability. This extension
is claimed by our parametrization approach of Sections 3 and 4. Through out the rest of the
paper, we consider a real number, p ∈ IR, p 6= 1, q = p

p−1 , and a positive local martingale, Z,
given by

(B.115) Z := E(N), N := β ·Sc+W ⋆ (µ−ν)+ g ⋆µ+N, Wt(x) := ft(x)−1+
f̂t − at
1− at

I{at<1}.

Here
(
β, f, g,N

)
are the Jacod’s components of N . Throughout this section, we will frequently

use the set of martingale density with respect to the density Z defined by

(B.116) Ze
q,loc(S,Z) :=

{
Z process

∣∣∣ Z > 0, ZZ ∈ Ze
q,loc(S)

}
,
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where Ze
q,loc(S) is given by (2.6)-(2.5). Then, the minimal Hellinger martingale density of order

q with respect to Z is given by the following.
Under Z (the local change of measure), the process S posses the following predictable charac-
teristics and continuous local martingale part Sc,Z , bZ , aZ , νZ and FZ given by

(B.117)
Sc,Z := Sc − cβ ·A, bZ := b+ cβ +

∫
f(x)h(x)F (dx), aZt := νZ({t}, IRd),

νZ(dt, dx) := FZ
t (dx)dAt, FZ

t (dx) := (1 + ft(x))Ft(dx).

Proposition B.1. Let p ∈ (−∞, 1) and q its conjugate number (i.e q := p/(p− 1)). Consider a
positive local martingale, Z, and Z̃ ∈ Ze

q,loc(S,Z). Suppose that there exists β̃ ∈ L(S) such that

P ⊗A− a.e. β̃ ∈ D+ , root of

(B.118) 0 = bZ + (p − 1)cλ+

∫ [
(1 + λtrx)p−1 − 1

]
xFZ(dx),

and

(B.119)
W ∈ G1

loc(µ,Z), Wt(x) :=
(1 + β̃tr

t x)p−1 − 1

1− a+
∫
ut(x)νZ({t}, dx)

,

and Z̃ := E(Ñ), Ñ := (p − 1)β̃ · Sc,Z +W ⋆
(
µ− νZ

)
.

Then, the following hold.

(B.120) Z̃q−1 = E
(
H̃Z · S + q(q − 1)h(q)(Z̃, Z)

)
= E

(
β̃ · S

)
E
(
q(q − 1)h(q)(Z̃, Z)

)
.

Here, H̃Z := (γZ)1−qβ̃ and γZ := 1− aZt +
∫
(1 + β̃try)p−1νZ({t}, dy) satisfies

(B.121) γZt =
(
1 + q(q − 1)∆h(q)(Z̃, Z)

)1−p
,

and on {∆A = 0} we have
(B.122)

q(q − 1)dh(q)(Z̃, Z) =
p

2
β̃trcβ̃dA+

∫ [
(1 + β̃trx)p − 1− q(1 + β̃tr

t x)p−1 − 1)
]
FZ(dx)dA.

Proof. Since both the assumptions and the results of the proposition are stable under lo-
calization. In other words, if there exists a sequence of stopping time (Tn)n that increases
to infinity such that the proposition is valid on [[0, Tn]] for each n ≥ 1, then it will be valid
globally. Therefore, there is no loss of generality in assuming that Z is a martingale, and put
Q := ZT /Z0 · P ∼ P . Then, it is easy to see that (bZ , c, FZ) coincide with the predictable
characteristics of S under Q, νZ coincides with the Q-compensator of µ, and the equations
(B.118)–(B.119) translate into the fact that Z̃ is the minimal Hellinger martingale density un-
der Q exists. Thus, a direct application of Corollary 4.7 of Choulli et al. (2007) (see also
Theorem 3.1 of Choulli and Stricker(2009) for complete and other characterizations), leads to
the first equality in (B.120). The second equality in (B.120) follows from Yor’s formula (i.e.
E(X)E(Y ) = E(X + Y + [X,Y ])) and (B.121). Hence, in the remaining part of this proof, we
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will focus on proving (B.121) and (B.122). To this end, we start by calculating the Hellinger
process for Z̃ as follows.

(B.123)

q(q − 1)h(q)(Z̃, Z) = q(q − 1)h(q)(Z̃,Q) = q(q − 1) (p−1)2

2 β̃trcβ̃ · A+

+

∫ [
(1 + β̃trx)q(p−1)(γ̃Q)

−q − 1 + q − q(1 + β̃trx)p−1/γ̃Q

]
F (dx) ·A+

+
∑

(1− aQ)
[
(γ̃Q)

−q − 1− q((γ̃Q)
−1 − 1)

]
.

Therefore, since on the set {∆A = 0} we have γ̃Q = 1, we deduce that (B.122) follows immedi-
ately from the above equation. By taking the jumps in both sides of (B.123), and using the fact
that ∆Ac = 0, bt∆At =

∫
xFQ

t (dx)∆At =
∫
xνQ({t}, dx) and

∫
x(1+ β̃trx)q(p−1)νQ({t}, dx) = 0

(that is derived from (B.118)), we get

q(q − 1)∆h(q)(Z̃, Z) = ûQ(1− aQ + ûQ)−q − aQ − q
(
ûQ/(1 − aQ + ûQ)− aQ

)
+

+(1− aQ)
[
(1− aQ + ûQ)−q − 1− q((1− aQ + ûQ)−1 − 1)

]
,

where ûQ =
∫
(1+ β̃trx)p−1νQ({t}, dx) = γ̃Q−1+aQ. Thus, after simplifying the above obtained

equation, we get (B.121), and the proof of the proposition is completed.
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