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Abstract 
 
The potential of double-skin façade systems as distributed mass dampers to reduce 
vibrations in tall buildings under seismic excitations is investigated in this paper. 
The design problem consists of determining flexural stiffness of the outer skin, as 
well as the stiffness of its links to the primary structure and its damping. These 
structural parameters are estimated through two alternative optimisation procedures, 
aiming at minimising the standard deviation of the displacements of the first storey 
of the primary structure. Numerical results are presented for a set of recorded 
accelerograms to take into account the effects of non-stationary excitations. A direct 
approach for the design of the stiffness link is also presented, based on observations 
deriving from the outcome of the optimisation problem.  
 
Keywords: Earthquake engineering, double-skin façades, non-classically damped 
structures, structural optimisation, tuned-mass dampers, vibration absorbers. 
 
1  Introduction 
 
A double-skin façade (DSF) consists of a multi-layered building envelope with a 
ventilated cavity between outer and inner glazing skins. This system has many 
advantages, as it allows combining the efficiency of an improved control of the 
indoor environment (in terms of air flow, heat flow and noise) with the aesthetically 
pleasant transparency of all-glass façades. From the structural engineering point of 
view, the outer skin of the building envelope can be considered as a secondary 
attachment to the primary load-bearing structure, whose safety has to be checked for 
all the design scenarios, including wind forces and (for earthquake-prone sites) 
seismic forces. This gives rise to a coupled dynamic problem for the combined 
primary-secondary system, and different analysis methods can be used to calculate 

 



2 

the response of the main structure and the attachment. In a typical design situation, 
the DSF anchorage has to be stiff enough to avoid significant dynamic effects on the 
outer skin, therefore minimising the risk of damage accumulation due to the wind 
action or expensive (and dangerous) failures in case of intense seismic events. 
Alternatively, as per any secondary attachment, the vibration of the outer skin can be 
exploited to reduce the dynamic response of the building, provided that the 
secondary subsystem is properly tuned to the primary one. This innovative use of 
DSFs has been recently proposed by Moon [8,9] as a way to control wind-induced 
vibrations in tall buildings, while Abtahi et al. [1] and Fu [3] have successively 
studied the effects of a flexible outer skin on the seismic response of the primary 
structure.  

In this paper, a preliminary study on DSFs as distributed vibration absorbers for 
multi-storey buildings is reported. The response of the coupled system composed by 
the primary structure and the DSF is obtained as a function of four parameters 
representative of the damping and flexural stiffness of the DSF and of the stiffness 
of its links with the primary structure. The design problem is approached, in first 
instance, as an optimisation problem, minimising the standard deviation of the 
response of the primary structure for a set of seismic accelerograms. Results are 
obtained by both Genetic Algorithms (GAs) and Particle Swarm Optimisation 
(PSO). Then, in light of the results obtained by such procedure, a more direct 
approach is investigated for the specific design of the links between the DSF and the 
primary structure. 

 

 
Figure 1: Shear-type primary structure with double-skin façade. 
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2  Structural model 
 
In this paper, a case study has been used to investigate and quantify the effectiveness 
of double-skin façades (DSFs) for reducing the vibration in multi-storey buildings 
subjected to seismic ground motions. In order to provide a realistic assessment of the 
seismic performance of this solution, a set of 20 earthquake records, listed in Table 
1, has been considered as external excitations on the system. 

The mathematical model adopted for the coupled structural system is sketched 
within Figure 1. The primary structure is a six-storey, classically damped, shear-type 
moment-resisting frame. It has been assumed that the storeys have all equal mass  m  
and stiffness  k , while ζ  is the viscous damping ratio.  

The DSF has been divided in two substructures: a first panel, hinged to the 
ground and connected to the three bottom storeys of the frame; and a second panel, 
solely connected to the upper three storeys (see Figure 1). Other configurations 
might be possible, e.g. a continuous DSF throughout the whole height of the primary 
frame, or one panel for each storey, which however have not been considered in this 
paper. The flexural stiffness of each panel has been assumed to be proportional to 
the stiffness k  of the primary structure according to a coefficient ν . The links 
between the primary structure and each panel of the DSF have been idealised as 
elastic springs with stiffness proportional to  k , as well, according to two additional 
coefficients of proportionality, α  and β , for the external and internal springs, 
respectively. 

Each panel has been modelled as a lumped mass system, as shown within Figure 
2. Each mass takes into account for half of the inter-storey mass of the panel, so that 
each secondary lumped mass is   µm 2 , where µ  is the mass ratio between the total 
mass of the primary structure and the total mass of the DSF. Horizontal 
displacements and rotations of each mass have been considered as DoFs (degrees of 
freedom) of the panel. Overall, the combined system has  6+12+12 = 30  DoFs. 

If the coupled system (primary structure and DSF) is undamped, its motion is 
governed by the following system of equations: 
 
 

    
M ⋅ x(t)+K ⋅x(t) = −M ⋅τ xg (t) ,  (1) 

 
Figure 2: Lumped mass system for the double-skin substructures. 
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where M  and K  are mass and stiffness matrices of the coupled system, 
respectively;    x(t)  is the vector collecting displacements and rotations of the system 
masses; τ  is the location vector; and 

   
xg (t)  is the ground acceleration. 

The mass matrix M  and the stiffness matrix K  are defined as the following 
block matrices: 
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where 0M , 1M  and 2M  are the mass matrices of the primary structure and of the 
two panels, respectively; 0K , 1K  and 2K  are the corresponding stiffness matrices; 

01K  and 02K  contain the stiffness terms kα  and kβ  of the elastic springs coupling 
the primary structure with the DSF; and  O  is a zero matrix of appropriate 
dimensions. 

Since no inertia force is associated to the rotations of the lumped masses, the size 
of the Equation system (1) can be reduced by using the static condensation 

Table 1: Earthquake records considered for the numerical applications 
Accelerogram Epicentre Date Peak acceleration (g) Duration 

1 PARKFIELD, CALIFORNIA 27/06/1966 0.434 44.04 

2 PACOIMA DAM, CALIFORNIA 09/02/1971 1.075 41.74 

3 HELENA, MONTANA 31/10/1935 0.147 50.96 

4 WRIGHTWOOD, CALIFORNIA 12/09/1970 0.198 16.72 

5 LAKE HUGHES, CALIFORNIA 09/02/1971 0.146 37.02 

6 IVERSON, CANADA 23/12/1985 1.102 20.34 

7 YONEYAMA BRIDGE, JAPAN 26/02/1971 0.151 17.06 

8 EL CENTRO, CALIFORNIA 18/05/1940 0.348 53.74 

9 T. LINCOLN SCHOOL TUNNEL, CALIFORNIA 21/07/1952 0.179 54.40 

10 MONTE NEGRO, YUGOSLAVIA 19/04/1979 0.171 40.40 

11 LA VILLITA, GUERRERO ARRAY, MEXICO 19/09/1985 0.123 64.02 

12 EL CENTRO, CALIFORNIA 30/12/1934 0.160 44.04 

13 STURNO, ITALY 11/11/1980 0.358 39.34 

14 DUZCE, TURKEY 12/11/1999 0.535 25.89 

15 TAKATORI, JAPAN 16/01/1995 0.611 40.96 

16 TABAS, IRAN 16/09/1978 0.836 32.84 

17 ERZIKAN, TURKEY 13/03/1992 0.515 21.31 

18 KALAMATA, GREECE 13/09/1986 0.248 12.19 

19 LOMA PRIETA, CALIFORNIA 18/10/1989 0.966 25.00 

20 TOLMEZZO, ITALY 06/05/1980 0.351 36.35 
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technique [2]. To do this, the equations of motion are conveniently rewritten in the 
form: 
 

 
    

Mtt ⋅ x t (t)+K tt ⋅x t (t)+K tr ⋅x r (t) = −Mtt ⋅ τ t xg ;

K rt ⋅x t (t)+K rr ⋅x r (t) = 0 ,

⎧
⎨
⎪

⎩⎪
 (3a,b) 

 
where    x t (t)  contains all the lateral displacement components of the vector    x(t) , 
while    x r (t)  collects all the rotations. By solving the algebraic Equation system (3b), 
and substituting the result in the system of differential Equations (3a), a new set of 
equations is obtained: 
 
 

    
Mtt ⋅ x t (t)+ K tt ⋅x t (t) = −Mtt ⋅ τ t xg ,  (4) 

 
where the condensed stiffness matrix    

K tt  is defined as: 
 
     

K tt = K tt −K tr ⋅K rr
−1 ⋅K rt .  (5) 

 
In the following, the more general damped case has been analysed. Specifically, 

the damping matrix of the condensed system has been obtained by using the classic 
theory of modal analysis, assuming that the primary structure and the two double-
skin substructures are, individually, classically damped. It is worth to stress that, 
however, the whole coupled system is not classically damped [5,10,11,6]. 
 
3  Design strategies 
 
3.1 Optimisation of the DSF parameters 
 
The design process of the DSF system proposed in the previous section requires 
determining the three coefficients  ν ,α ,β{ }  governing the stiffness of the DSF 
system, and its viscous damping coefficient fζ . A reasonable way to estimate the 
optimum values for the four parameters is to minimise a significant function (such 
as the standard deviation or the maximum peak) of the structural response. 

In this paper, for each earthquake record of Table 1, the standard deviation of the 
displacements of the first storey of the primary structure, ( )1Cxσ , has been 
minimised. The optimisation problem has been formulated as follows: 
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Given:               m, k,ζ , xg , geometry ;

Find:                 ζ f ,ν ,α , β ;

To minimise:     σ x1
C( ) ;

Such that:          

ζmin ≤ζ f ≤ζmax ;

νmin ≤ν ≤νmax ;

αmin ≤α ≤αmax ;

βmin ≤ β ≤ βmax .

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 (6) 

 
Without lack of generality, the numerical applications here presented have been 

performed considering unitary masses for the 6 storeys of the primary frame, whose 
fundamental period of vibration and viscous damping ratio have been chosen as 

  T1 = 0.583s  and  ζ = 0.02 ; furthermore,  µ = 0.1 is the mass ratio between the 
building and the DSF. The ranges of variation of the four DSF parameters have been 
selected as follows: 

 

 

  

ζ f ∈ 10−4; 2×10−1⎡
⎣

⎤
⎦ ;

ν ∈ 10−6; 5×10−1⎡
⎣

⎤
⎦ ;

α ,β( )∈ 10−6; 10−1⎡
⎣

⎤
⎦ .

 (7) 

 
 

 
Figure 3: First storey displacements for El Centro 1940 earthquake: uncontrolled vs 

controlled system. 
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Both Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) 
techniques have been considered to solve the optimisation problem. The GA is an 
iterative procedure in which a randomly generated initial population (sample of 
possible solutions) “evolves” towards the optimal one by using cross-over of single 
“individuals” (creating new individuals from two “parents”), mutation (random 
change of a parameter in an individual) and other evolutionary-like processes [4]. In 
the PSO, instead, tentative solutions behave as moving particles, whose trajectories 
and velocities, at each iteration, are influenced by local and global best solutions in 
the search space [7]. 

Figure 3 shows the time histories of the displacements computed for the first 
storey of the uncontrolled and controlled primary structure when subjected to the El 
Centro 1940 earthquake (accelerogram 8). The optimal parameters obtained by the 
PSO have been considered for the DSF panels, and the visual comparison confirms 
their excellent performance as vibration absorbers. 

The results obtained by running the two numerical optimisation procedures are 
offered in Table 2. In particular, the estimated optimal parameters are shown 
together with the performance index p , defined as the percentage reduction in the 
displacement standard deviation of the first storey of the primary structure, which is 
proportional to the maximum base shear in the primary frame: 

 

 
  
p = 1− r = 1−

σ x1
C( )

σ x1
U( ) .  (8) 

 
In Equation (8), ( )1

Uxσ  and ( )1Cxσ  represent the standard deviations of the 
uncontrolled and controlled systems, respectively, and r  is their ratio. At first 
glance, all optimal parameters depend on the selected excitations. Also, GA and 
PSO return different solutions for each case; however, only very small variations of 
the performance parameter are observed for the same accelerogram. The PSO 
performs better than the GA, that is, for a selected earthquake record, the optimal 
solution obtained by PSO returns a larger performance index p  with respect to the 
GA. However, in two specific cases (accelerograms 2 and 19) the PSO did not 
manage to locate any combination of the DSF parameters associated with a positive 
value of the performance index p ; for this reason, these solutions have not been 
reported. Interestingly, in all cases but one the PSO return, as optimal value, the 
lower boundary selected for either α  or β . The physical meaning of such 
behaviour is that only 2 of the four elastic links proposed in the initial model are 
actually needed to obtain the best performance for the DSF. It is worth to stress that, 
based on the PSO results, the DSF manages to reduce the standard deviation of the 
measured response to about half of its initial value, showing considerable potential 
for non-stationary applications. 
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3.2 Link design 
 
The realisation of the DSF panels for assigned flexural stiffness and damping (i.e. 
for given ν  and fζ ) may be not feasible in practical applications, in which case the 
values of ν  and fζ  would be assigned a priori. In light of the results obtained by 
the PSO, the authors have then investigated the relationship between the parameters 
α  and β , representing the normalised stiffness of the elastic links between primary 
structure and DSF, in the attempt to achieve a direct design approach that avoids the 
burden of the numerical optimisation. In particular, in the following 0.11fζ =  and 

0.15ν =  have been selected, as these are the values obtained as the average of the 
18 meaningful PSO optimisations. Interesting, very similar average values have 
been obtained with the 20 GA optimisations. 
 For assigned fζ  and ν , the performance index of Equation (8) depends only on 
the stiffness of the links. The ratio of the standard deviation of controlled and 

Table 2: Optimal parameters and performance index by GA and PSO. 

Accelerogram 
Genetic Algorithm Particle Swarm Optimization 

fζ  ν  α  β  ( )%p  
fζ  ν  α  β  ( )%p  

1 0.1399 0.3056 0.0022 0.0046 54.52 0.1404 0.1413 minα  0.0075 55.21 

2 0.0472 0.2938 0.0058 0.0003 45.34 - - - - - 

3 0.1961 0.4366 0.0004 0.0068 45.32 0.1586 0.1215 minα  0.0082 46.03 

4 0.1328 0.3273 0.0018 0.0068 55.31 0.1155 0.0970 minα  0.0098 56.14 

5 0.0546 0.0400 0.0481 0.0009 64.57 0.0460 0.0530 0.0389 minβ  65.21 

6 0.0639 0.0465 0.0408 0.0001 45.15 0.0629 0.0481 0.0364 minβ  45.24 

7 0.1206 0.1119 0.0044 0.0039 58.49 0.1243 0.1084 minα  0.0093 59.67 

8 0.1279 0.1226 0.0019 0.0047 47.91 0.0496 0.5000 0.0068 minβ  50.27 

9 0.0733 0.1448 0.0056 0.0018 40.66 0.1263 0.1256 minα  0.0075 41.94 

10 0.0994 0.1677 0.0037 0.0046 53.63 0.1001 0.1426 minα  0.0095 54.91 

11 0.1192 0.0532 0.0006 0.0084 57.81 0.0975 0.0852 minα  0.0096 58.77 

12 0.1038 0.0302 0.0029 0.0043 61.00 0.0832 0.1663 minα  0.0079 62.48 

13 0.1692 0.0921 0.0002 0.0086 39.47 0.1158 0.0748 0.0260 minβ  39.43 

14 0.1961 0.0035 0.0020 0.0035 30.34 0.1302 0.1121 minα  0.0062 32.49 

15 0.1433 0.0644 0.0039 0.0039 46.29 0.1384 0.0813 minα  0.0089 46.67 

16 0.1152 0.0626 0.0364 0.0000 45.24 0.1924 0.1014 minα  0.0062 45.31 

17 0.1095 0.4837 0.0050 0.0009 45.36 0.0660 0.5000 0.0059 0.0001 45.95 

18 0.0754 0.0451 0.0034 0.0039 65.12 0.0810 0.1683 minα  0.0078 65.70 

19 0.0698 0.0002 0.9995 0.9976 23.69 - - - - - 

20 0.1976 0.4807 0.0067 0.0025 39.55 0.1500 0.0811 minα  0.0120 40.57 
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uncontrolled system,   r α ,β( ) , can in this case be represented as a response surface 
in the three-dimensional space. This is shown within Figures 4 and 5, where the 
colour map (top-left), a three-dimensional view (bottom-right) and two side views 
(top-right and bottom-left) are offered for two different base excitations (namely, El 
Centro 1940 and Loma Prieta 1989). 

A common pattern is easily recognised in these response surfaces: i.e. a clear 
valley can be noticed, corresponding to the dark-blue narrow areas in the colour 
maps. In both cases, these optimal areas have two almost orthogonal branches that 
run parallel to the α -axis and β -axis and are then connected by a rounded bend 
with a relatively small radius of curvature (in the logarithmic scale used for both α  
and β ). This observation suggests the possibility of identifying an analytical 
relationship between α  and β , which could be used for designing the links. It has 
been also noticed that, in most cases, the actual optimal solution is obtained by 
either selecting minα α=  or minβ β=  (i.e. one of the extreme locations of the dark-
blue valleys). Interestingly, completely different dynamics of the DSF panels are 
associated with these two cases. Specifically, for minα α= , relatively large 

 
Figure 4: Function , earthquake in El Centro 1940, California. 

 
( ),r α β
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deflections happens at the top and bottom ends of the DSF panels; while for 
minβ β= , the maximum movements in the DSF panels tend to happen at their mid 

span position. 
In Figure 6, the seismic responses for two different configurations of the 

controlled primary frame are compared for the case of the El Centro 1940 
earthquake. The two configurations are obtained using: i) the optimal parameters 
returned by the PSO (red line, with DSF parameters offered within Table 2); and ii) 
designing the link stiffness following the procedure described in this Section (blue 
line). Only minor differences can be seen between the two time histories. 

Unfortunately, the relationship between α  and β  seems to be dependent on the 
particular dynamic excitation and, at this stage, an analytical expression has not been 
determined, still. Furthermore, it is worth to stress that small variations of the 
parameters α  and β  can produce some abrupt changes in the behaviour of the 
structure, in some cases amplifying the structural response. This is apparent in 
Figure 6, where the red area in the colour map is where the DSF panel actually 
worsen the seismic response of the primary frame. Hence, the relationship between 

 
Figure 5: Function , earthquake in Loma Prieta 1989, California. 

 
( ),r α β
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α  and β  should be assessed with the maximum possible accuracy, and a robust 
methodology needs to be devised. 
 
4  Conclusions and future works 
 
The paper has demonstrated that optimally tuned double-skin façades (DSFs) can be 
engineered as vibration absorbers to mitigate the effects of earthquake loadings on 
building structures. A very simple case study has been presented to prove the 
concepts, revealing that DSF panels can reduce the seismic response up to 35% of 
the uncontrolled case. Both GAs (Genetic Algorithms) and PSO (Particle Swarm 
Optimisation) have been used to find the optimal design parameters for the DSF 
panels, with the PSO showing in general a better performance. A closer look 
analysis of the optimal parameters for a set of twenty recorded accelerograms, with 
different characteristics in terms of duration and frequency content, has suggested a 
less cumbersome and more direct design strategy. That is, once the mass ratio 
between primary frame and the DSF has been fixed, along with its flexural stiffness 
and damping, the stiffness of the links to the primary frame can be chosen by 
considering a well-defined optimal region in the corresponding response surface. 
Interestingly, although similar performance can be achieved, very different 
dynamics of the DSF panels can be obtained by varying the stiffness of the links. 

Encouraged by the positive results of this preliminary study, further research is 
planned. Future work will be devoted to the case of wind loadings and multi-hazard 
scenario (combined wind and earthquake cases). The effects of nonlinear behaviour 
and uncertainties in both the primary frame and in the DSF will be explored. Further 

 
Figure 6: First storey displacements for El Centro 1940 earthquake: uncontrolled vs 

controlled system. 
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configurations of the outer panels will be considered as well, along with the case of 
taller buildings, in excess of twenty storeys. 

 
Acknowledgments 
 
The financial contribution of the Loughborough’s Graduate School to AK’s 
internship at Loughborough University is gratefully acknowledged.  

References 
 
[1] P. Abtahi, B. Samali, M. Zobec and T. Ngo, “Application of flexible façade 

systems in reducing the lateral displacement of concrete frames subjected to 
seismic loads”, Proc. 22nd Australasian Conf. on the Mechanics of Structures 
and Materials, 241-245, 2013. 

[2] A. K. Chopra, Dynamics of Structures, 4th Ed., Prentice-Hall, 2011. 
[3] T. S. Fu, “Double skin façades as mass dampers”, Proc. American Control 

Conf., 4742-4746, 2013. 
[4] D. E. Goldberg, Genetic Algorithms in Search, Optimization & Machine 

Learning, Addison-Wesley, 1989. 
[5] W.C. Hurty, “Vibrations of structural systems by component-mode synthesis”, 

Journal of Engineering Mechanics Division, 86(4), 51–70, 1960. 
[6] S. Kasinos, A. Palmeri and M. Lombardo, “Seismic response of combined 

primary-secondary structures with the component-mode synthesis method”, 
Proc. 15th Int. Conf. on Civil, Structural and Environmental Engineering 
Computing, 2015 (accepted). 

[7] J. E. Kennedy, R. C. Eberhart, “Particle Swarm Optimization”, Proc. IEEE 
International Conference on Neural Networks, 1942-1948, 1995. 

[8] K. S. Moon, “Tall building motion control using double skin façades”, Journal 
of Architectural Engineering, 15(3), 84-90, 2009. 

[9] K. S. Moon, “Structural design of double skin façades as damping devices for 
tall buildings”, Procedia Engineering 14: 1351-1358, 2011. 

[10] G. Muscolino, “Dynamic response of multiply connected primary-secondary 
systems”, Earthquake Engineering & Structural Dynamics, 19(2), 205-216, 
1990. 

[11] G. Muscolino and A. Palmeri, “An earthquake response spectrum method for 
linear light secondary substructures”, ISET Journal of Earthquake Technology, 
44(1), 193-211, 2007. 

 


