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Introduction
Lower Back Pain is a common clinical complaint in these present 

days. In fact most of these symptoms are rises from the biomechanical 
sources, and the Intervertebral Disc (IVD) is the main culprit in that 
case. IVD rests in the spinal cavity with the help of huge body pressure, 
compression force due our body weight (BW) and normal body 
movement [1,2] and given their close proximity to the spinal cord and 
other peripheral nerves [3,4], it is no surprise that complications with the 
IVDs can lead to serious neurological effects and become detrimental 
to multiple areas of the body and the complex loading behaviour [5] of 
the cervical discs and their frequent involvement in pain and pathology, 
it is important to understand their mechanical properties. In human 
body we can three types of cartilage tissue (network of highly densed 
connective tissue) like (i) annulus fibrous tissue (AF tissue) – present 
in synovial bone joint [6] (ii) elastic cartilage – present in outer ear, 
larynx and epiglottis [7] (iii) fibro cartilage – present in IVD, meniscus, 
temporomandibular joint [8]. So IVD is basically a fibrocartilage type 
of body tissue, when the jelly like NP matrix prolapsed it forced out to 
rupture outward and thus creating a pressure on its surroundings nerve 
tissue or column and these may leads to symptoms of sciatica [9,10,11]. 
IVD or simply so called disc is consist of mainly three parts (i) NP 
(Nucleus Pulposus) the inner jellylike substance at the centre part 
of the disc which primarily contribute to the torsional or twisting 
movement of the body, (ii) AF (Anulus Fibrosus)- the outer soft 

biological tissue part relatively much stronger than NP that is the 
central part relatively easily deformable and that is the peripheral part 
[12,13], mainly distribute the stress on spine and degeneration of these 
part is mainly responsible for LBP (lower back pain). AF governs all 
the mechanical properties like viscoelasticity [14], hyperporoelastic 
mechanical profile [15], aggregate or elastic modulus, permeability or 
disc tissue porosity, anisotrohical or heterogenetical biomechanical 
characterization. AF part also governs four main biomechanical 
spinal disc manifestations like: stress-strain rate trend, hysteresis, 
creep [16] and stress relaxation from the mechanical deformation. 
(iii) EP (End Plate) is the peripheral subcutaneous bony part which
surrounds the IVD or disc ring for protection helps in disc recovery.
EP is generally the subchondral bone layer and maintains the contact
between IVD and spinal cord (SC). It has no relation with LBP. The
fluids flow inside the end plate play a main role for the recovery of
the disc in vivo but in case of in vitro the role has limited (Figure 1).
With ageing normally the AF layers gets dehydrated due to loss in
hydration [17], so the disc bulging and finally gives enormous pressure
to its surrounding symptomatic spinal nerves (C3-C4: cervical nerve
roots) by the disc protrusion- which may cause chronic back pain
[18,19,20]. So the main concern about successful disc repairmen
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Abstract
Complex multi-lamellar biocomposite structure of Intervertebral Disc (IVD) imparts flexibility between adjacent 

vertebras, as well as allows transmission of loads from one vertebra to the next along the spine. The disc has 
a 15- 25 concentric layered laminate structure; each layer is reinforced by collagen fibers which are aligned at 
approximately 30 degree angle in successive layers with respect to the transverse plane of the disc. This fibrous 
organization is critical to the proper biomechanical functioning of the disc, such as to convert compressive force 
to lateral force, to withstand extrinsic tensile stresses (circumferential, longitudinal and torsion). As a result spine 
becomes flexible to bend and twist. With the regular aging the disc gets dried up lost its flexibility and biomechanical 
elasticity. That’s why we need tissue engineering of that degenerated tissue to make a proper ailment of that body 
part by the help of some textile fibers like silk- hydrogel, CMC, PVA- collagen, PGA – chitosan composites. The 
synthetic polymer has shown great promise for easiness of production, variability in properties and biodegradability 
and biocompatibity and non-immunogenic response inside the human spinal body for the novel cause of removal 
and restoration of degenerated human intervertebral disc.
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is to synthesised and simulate the biomechanical and kinematics 
properties [21,22] of that AF tissue layers. For that purpose goat 
IVD is used to carry out the biomechanical experiments to study the 
native disc biomechanics. Goat IVD is used because it has almost 
similar kinematics and dynamic profile under loading or stress like 
in case of human IVD [23]. Besides that the silk based novel scaffold 
(fibre-hydrogel ECM (extracellular matrix) composite) [24] has 
been also carried out to various mechanical testing to check out the 
proximity of their mechanical properties to the native goat AF tissue 
construction. AF is approximately a ring (some of the ring of complete 
and continuous and some of them are incomplete and discontinuous) 
like angle-ply structure where the collagen II fibers [25,26] are specially 
oriented +30°/-30° in above and in below the transverse plane of the 
body spinal axis [27,28,29]. The AF structure is more complex than 
NP structure because it consist of circumferentially discontinuous and 
traversed by fibrous assembly that runs radially outwards from the 
spinal axis [30,31,32,33]. Due to special arrangement of the fiber in the 
AF layers these layer can take more load bearing capacity (like mainly 
compression, torsion, shear, tensile etc.) [34,35,36] by readily resolving 
the uploaded body force on it. Also the Poisson’s ratio of NP is lower 
than the AF; so AF got higher degree of deformation [37,38] in it so the 
biomechanics of AF is our main concern than NP layers [39,40].

Scope rationale of this review

The review will address progress made in polymeric implants over 
the last decade, dealing primarily with spinal therapeutic devices and 
replacements. The review is mainly includes the followings;

a.	 Biomechanics of the spinal intervertebral disc or cartilage

b.	 Polymeric materials or scaffolous substrates which are being 
used for replacement of spinal lower back pain. 

In today’s world full of heavy work load the medical problems 
becomes stronger day by day in everyone’s life. Lower back pain 
(LBP) is most common type of medical disease which cause near 
about 7 million people in UK in every year. LBP generally produced 
due to the malnutrition of the cartilage inside our spine. This small 
cartilage discs are called intervertebral disc (IVD) which mainly 
bears 90% of our body load with the incorporation of our spinal 
body axis. With aging the disc gets dehydrated and loss in its height 
therefore as the result it collapsed toward the cervical nerves and 

produce severe back pain and sometime obesity also. The ways to 
remedies for that are taking regularly pain-killer tablets, anesthetic, 
fixing of unhealthy disc and fusion of the disc but in all this process 
the patient lose their natural flexibility and body movement due to the 
heavy weight of that non-biodegradable, non-biocompatible material.  
The current object of this review paper is to make use of Tissue 
Engineering (TE) with the help of making scaffold hydrogel by the 
help of some textile material like: silk, CMC, PVA, PGA, PCL-collagen 
composite material. This scaffold composite material can bear the 
same bio-mechanical properties with superb bio-compatibility and 
bio-degradability, also they are very light in weight and easy to replace 
inside the patient body. In this current paper we had also discuss 
about the different mechanical force can acts inside a disc matrix and 
the measurement techniques generally used those forces. The others 
alternatives options are also discuss which can be very handy in disc 
therapy besides the tissue engineering. The working principle involved 
for an ideal scaffold material has been also discussed which is very 
important for a successful disc replacement with the help of tissue 
engineering techniques.

Spinal therapy

The spinal therapeutic broadly cover both the herniation of 
interverbral disc and the damage of the articular ligaments. This 
review specially limited and focuses on the herniation or degeneration 
and procurement of the intervertebral disc. We specially consider 
the biomechanics of the disc as the disc profile and behavior is fully 
controlled by the disc biomechanology and elasticity (loss of elasticity) 
and flexibility. The tensile, compressional, torsional, hyperflexion [41] 
of neural arch and shear force behavior is very important to predict 
the disc anatomy and body-load bearing capacity. This is the first and 
primarily most important focus of our discussion. In general, spinal 
disc herniation gives the patients symptomatic nerve pain which is 
amenable to treatment with removal of the herniated part of the disc or 
with the disc angioplasty [42] which may vary from patient to patient 
and totally artificial. Other spinal disc therapeutic conditions such as 
fixing the screw after removal of the degenerated disc or a ceramic-
cement fixation over the spinal cord [43,44], but these techniques 
fails due to the reason that the patient loss natural movement and 
flexibility of own’s spinal cord and body weight seems get heavier. 
There is also a chilled feel due to the metallic screw uses inside the body 
during the change of the seasonal weather and the immune response 
and non-biocompatibility of this type of foreign substrate is become 
very detrimental for the patient in the future. For all of those above 
constraints, this all later techniques are fall these falls outside the scope 
of this review.

Polymeric biomaterials are generally derived from three sources: 
natural polymers, including those of plant and animal origin; totally 
synthetic sources; and synthesis based on materials of natural origin. 
The first two categories are self-explanatory; the third is of relatively 
recent vintage. It encompasses materials synthesized to mimic a 
naturally occurring polymer, but not necessarily identical to it. The 
most important materials in this category are the man-made protein 
structures, which resemble natural proteins but differ from them in 
some details of the primary structure. This third class of polymers 
promises innovative materials that have the potential to functionally 
replace diseased or unavailable cell components, such as the extra-
cellular matrix, which plays a structural role in many organs and tissues 
by the super ability of controlling the matrix stiffness (Figure 2) by the 
shock absorption capacity with the macro, micro or nano level inside 
the living tissue [40,41]. Within each application, we will highlight the 
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Figure 1: Anatomical position of human IVD in the spinal cord inside the 
human body [1,16].
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Outline of the review

The discussion will address these aspects in each application:

a.	 The composition and SEM (scanning electron microscopy) 
image analysis of the intervertebral disc to get an idea about it 
structural parameter and components.

b.	 The biomechanology of the disc with the details of various 
mechanical behavioral characteristics.

c.	 Polymers that have been evaluated using in vitro methods

d.	 Outcome of animal studies and (if available) human 
performance data for the benchmarking comparison of 
experimental and actual mechanical modulus of those 
polymeric implants. 

e.	 Commercial success.

f.	 Others methods for disc healing except the tissue engineering 
implants methods.

g.	 Future directions.

Compositions of IVD
The composition of IVD is shown in the Table 1. The 60-

70% of the IVD is water [46,47]. The re mainder is mainly PG 
(Proteoglycan) and collagens. PG is mainly consists of cell ground 
substances GAGs (Glysaminoglycan) [48] which is primarily 
CS (Chondroitin sulfate) and KS (Keratan sulfate) [49,50] with 
the high molecular weight complex proteins, disaccharides [51]. 
This PG acts as the backbone of the HA (Hyaluronic acid) to 
make a macromolecules weight ~ 200 millions [52,53] (Figure 3). 
Approximately 30% dry weight of IVD is PG and there is always a 
variation in gradient of PG and water across the depth of the disc, in 
the upper subchondral bone layer the concentration of PG is less but 
water is high and inside the tissue concentration of the PG is high and 
water is less [51]. HA acts as the binding sites for CS and KS or makes 
the aggregate thus makes the big brush like macromolecules inside the 
IVD cells [46,53].

SEM analysis of native annulus fibrosus tissue

Goat’s intervertebral discs (IVD) corresponding to L-1 to L-7 
were dissected from the spinal column of 6-8 year old goat within 24 
hours of slaughter from nearby slaughter house. Following dissection 
the discs were rinsed in PBS. Subsequently the disk tissues were finely 
cut with a sharp surgical blade ensuring uniform dimensions of (2 × 
5 × 7) mm of annulus tissue sample (Figure 4). The specimens tested 
were cut to widths of 2.3 mm in accordance with American Society for 
Testing and Materials (ASTM) [56,57] standards maintaining a ratio 

advances made in the development of each type of polymer, and the 
benefits they confer. This is the second focus of our discussion.

Types of implantable polymers

Synthetic polymer have been wide used as the implantable materials 
due to the reasons include ease of production; control over the properties 
of the polymer during spinning and over of its end products; ready 
availability and versatility of manipulation. Conversely the polymer 
from natural resources likes collagen being variable on its properties 
from source to source; possibility of bacterial and viral contamination 
and chances of antigenicity is not being very popular implantable 
materials. If these organic materials are of animal origin, there are added 
complication of harvesting the polymer or protein and purifying it. 
For these reasons, synthetic polymers have dominated the spinal 
implantable therapeutic landscape. For examples, the alginate/chitosan 
electrospun, poly-methylmethacrylate hybrid fibers provides the non-
immunogenic spinal disc implants, electrospun PCL, electrospun 
PGA and alginate hydrogel can give suitable lamellar products with 
higher compressive composite materials under the implantation inside 
the body. The photocross-linked CMC can be used for encapsulated 
nucleus pulposus implants cells. It may also achieve the higher 
mechanical stiffness by atelocollagen-silocone composite, ultra-high 
MW polyethylene constructs as in a form of honeycomb structure due 
to its higher capacity of shock-absorption and flexibility of its matrix 
for the micro-interlamellar movements and moderate range of intrinsic 
viscosity between the hydrogel layers. In the recent days natural polymer 
like silk with rapid availability, versatility and huge mechanical stiffness 
and modulus can be used for spinal disc implantable materials as in a 
form of hydrogel where the fibers are orientated in a concentric circles 
with an opposite fiber direction to replicate the native disc anatomy; 
which gives the ultimate mechanical stress-relaxation capacity and 
simulation with the original disc mechanology. All of these above 
mentioned manmade polymers can be synthesized under controllable 
conditions with a predictable and control properties from batch to batch 
with almost no likelihood of microbial infection or contamination. 
Antigenicity cannot be fully achievable but still these polymers provide 
great promise for implantable materials, due to mainly the easiness 
of production that mimic and simulate the body’s own structural 
anatomical architecture in terms of function and metabolic immunity.
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Figure 2: In the process of adaptive remodelling, cells within a polymeric 
material adjust the stiffness of their extracellular matrix (ECM) to suit the 
external loading [45], and so keep matrix strain within the desired normal 
range.
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of 0.5 (ASTM 1990). After collection of those samples with proper 
dimension measurements are proceeds for the different mechanical 
testing characteristics techniques for IVD (for the mechanical testing 
was set at (1 mm/min). 

The thickness of each AF layer increases towards the centre and 
the peripheral region the thickness is around ~ 100 µm where as near 
the centre the AF layer thickness is around ~ 150-175 µm [60,61] and 
the distance between two AF layers decrease towards centre (Figure 5).

SEM picture shows orientation of collagen fibers in AF layer +/- 30⁰ 
in the alternative layer. This opposite angular position with a preferred 
fiber direction gives the opportunities for easy force resolutions under 
a small loading over the annulus tissue. Thus the disc can withstand it 
structural support and compatibility inside the spinal cord of human 
body and bears the body weight normally [62,63]. 

Mechanical Force Exerted on the IVD in the Spinal Cord
The healthy disc can be gets degenerated or unhealthy one due 

to the combine effects of mechanical loading precipitation, genetic 
inheritance, irregular loading history which may cause the generation 
of ‘weak-link’ in the anterior of the disc by breaking the ‘shield-stress’ 
layer inside the posterior lamellar domain or region of the disc. As 
a results, the anterior part of the disc is gets collapsed and form the 
degenerated or unhealthy (herniated disc) due the formation of ‘wedge 
fracture’ [64,65] in the anterior-posterior interface region of the disc. 
The percentage of the stress or body load bearing capacity is different 
for the healthy and unhealthy disc is being totally different due to the 
reason of the profile and surface contour or arial distribution of the 
collagen fiber, extracellular matrix over its structure [66]. Vertebral 
damage could cause back pain indirectly by generating high stress 
concentrations within the adjacent intervertebral discs (Figure 6) and 
subsequently could cause the annulus to collapse into the nucleus 
[67]. This mechanism is supported by a survey of adolescents, which 
confirmed that vertebral body damage is often followed by disc 
degeneration several years later [68].

Disc is tightly fitted in the spinal vertebral cavity under a huge 
compressive force [42]. So the main aspects to look for of these kind 
of tissue is study the compressive force or strength on it. The forces 
exerted on AF layer of the disc (Figure 7) are (i) compressive force 
(uniaxial (unconfined compression which is done normally), biaxial 
(confined compression- specially tested for soft biological tissue like 
AF, cartilage ), triaxial compression) (ii) tensile force (uniaxial, biaxial, 
triaxial tension) (iii) shearing force (iv) torsional or twisting force and 
the (v) water hydrostatic force [44].

There may be three types of compression test can be done on 
AF tissue – uniaxial (only in Y- direction), bidirectional (both in 

X-Y directions) and tridirectional (X-Y-Z directions) [44,45]. The 
unidirectional test is called as unconfined test and the bidirectional 
or tridirectional test is called confined test of AF tissue. In case of 
unconfined mechanical test we consider the amount of water and 
its hydraulic pressure contribution to the mechanical testing [70]. 
Normally under the impulsive compressive force or loads on the AF 
tissue experiences a large lateral displacement due to its high Poisson’s 
ratio of about 0.5 [7]. This expansion is restrained by comparatively 
stiffer underlying subchondral bone which produced a higher shear 
stress (Figure 8) at the cartilage bone interface (cartilage- bone 
boundary)[71].

The Poisson’s ratio (ʋs) of the native AF layer for goat IVD 
with by the using of following formula [56] by considering it as an 
uncompressible, poroviscoelastic material like the AF tissue by the 
following formula (1,2); (Es/Ha) = (1-ʋs) / (1+ʋs) (1-2ʋs)                      (1)

Now by simplifying the above formula; we can get:

=> 2ʋs
2+ʋs.a - a = 0 [where a = 1-(Es/Ha)]                          	                  (2)

The positive root of these quadric equation will give us the Poisson’s 
ratio of the material, Where Ha = aggregate modulus i.e. compressive 
modulus or strength (force), Es = elastic modulus, ʋs = Poisson’s ratio of 
the material respectively and Es (MPa) = force at break of the material 
in compressive test / 1000 x % of elongation.

Compressive test

Compressive strength test has been carried out for large numbers 
of AF tissue with Hounsfield load cell force accuracy = 0.5% applied 
force [72,73]. Two types of - confined and unconfined compression 
test has been carried out and the compressive modulus is produced 
the higher value (Figure. 9(A). The longitudinal and radial pressure on 
annulus tissue is proportionally increased with the magnitude of the 
compressive stress (load) Figure 9 (B), (C).

On loading upon in a typical displacement of annulus tissue in a 
confined test gives us a curve between displacement and time (Figure. 
10(A). Initially the deformation is rapid, as relatively large amounts of 
fluid (water) being going out from the annulus tissue. Then reaching 
at a constant value the displacement slows down after a certain time as 
the fluid flow slows to zero [74,75]. The material properties of annulus 
tissue are determined from this test. The typical compressive stress-
strain behavior under uni-axial force and bi-axial force is shown is as 
in the Figure. 10(B),(C). 

The total compression stress on the disc matrix is further carried 
out by different parts of the disc:

Wtotal = W matrix + Wfibre + Wshear int. + Wnormal int.                                       (1)      

Components AF       NP
Water 60-70 %, no change with age 90 % at birth

80 % at age 20
70 % at older age

Collagens (collagen I, collagen II, collagen X-  collagen X is produced by the 
degenerated disc which has very poor mechanical properties)

Only collagen II, 50-60 % with (dry weight) Only collagen I, 15-20 % with (dry weight)
Little change with age Little change with age

PGs (Proteoglycans) 15-20 % with (dry weight) 65% with (dry weight)
Little change with age Little change with age

Non- collagenous proteins and elastin 5-25% with (dry weight) 20-45% with (dry weight)
Little change with age Little change with age

Extracellular enzymes, age pigments, cells Minor remainder Minor remainder

Table 1: Basic components of the IVD [46].
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A stress-free reference configuration was ensured by enforcing Wi 
(I) = 0 for i = Matrix, Fibers, Shear Int, Normal Int. The sum of the 
structural terms, W, was required to be greater than zero: W(C) ≥ 0. 
The Mooney–Rivlin model [65] for AF and NP tissue like anisotropic, 
nonlinear, hyper-poroelastic tissue material by the help of 9 parameter 
(C1, C2, C3…..C9 and a0 = b0 = d) to determine and describe the FEM 
model [76,77] and to check-out the best-fit curve with our experimental 
curves [78]. All the analysis was done in the Lagrangian tissue strain 
dataset domain and the calculation of the contribution from the 
different component of the tissue comprises the Cauchy-Green 
deformation tensor, C, which was calculated from the Lagrangian 
strains using C = 2E + I for use in finite- deformation stress-stretch 

equations [79,80,81] best-fit curve with the experimental curves by the 
following formula (4,5,6,7,8); 

I1 = tr C, I2 = 1/2 [(tr C)2 – tr C2]                                    	                 (4)                

I3 = det. C, I4 = a0.C.a0                                                   	                   (5)

I5 = a0.C
2. a0, I6 = b0.C.b0                                                	                  (6)

I7 = b0.C. b0, I8 = cos (2Φ) a0.C.b0                                  	                 (7)

J = det. F                                                                        	                 (8)

Where; Iα = Lagrangian deformation [82,83] strain vectors working 
inside the AF tissue (α = 1, 2, 3…..8), C = Right Cauchy-Green 
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P

Figure 7: P-Q (Longitudinal-Transversal) curve defining the stress state of a 
structure under typical loading conditions on AF tissue.  The lines originating 
from P = Q = 0 depicted on this plot, showing the specific loading conditions 
[6,7].
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deformation tensor [82,84], E = Stress tensor, 2Φ = Angle between the 
fiber populations inside the AF material matrix [85,86]. So from those 
above equation we get: I1 = I3 and I4 = I5 = I6 = I7 = I8 as a0 = b0 = d = 0 (for 
soft biotissue like AF tissue) [87].

Simple shear test

Pure shear (no hydrostatic stress) [83] is a difficult stress state to 
achieve so simple shear test had been carried out by putting a simple 
shear stress. Then the equivalent pure shear state (stress and strain) was 
calculated with some mathematical formulae between pure shear strain 
energy density (U) and simple shear stress. The schematic experimental 
set-up has Figure 11 (A) and the stress-strain behavior of the AF Figure 
11 (B) under a small shear force has been shown.

The value of shear force modulus [86] value is always less 
than compression modulus value because shear force is a biaxial 
phenomenon (X-Y plane velocity) unlike the compression or tensile 
which is an uniaxial velocity only. The value of the sheer force modulus 
actually determines the interlaminar slippage between the fiber and 
the differential surface velocity between the fibers inside the annulus 
tissue matrix. The noted value of the shear modulus value of bovine 
annulus fibrosus is 21.3 ± 2.3% MPa [87] which is higher due to 
the hyperviscoelastic [88,89], porous and interlocked nature of the 
collageneous fibers and proteins inside the AF material’s matrix. The 
value of shear force is poor in IVD because due to lack of sectional 
movements (sliding, gliding phenomenon inside the IVD matrix etc.) 
for highly porous and viscoelastic structure of AF tissue.

The interlamellar shear strain is due to the conjoint results of 
skewing and stretching or slipping of the ply oriented AF tissue material 
at its peripheral or circumferential areas. The collagen and elastic fibres 
located along the ply boundaries are radially oriented and the localised 
concentration of radially orientated collagen fibres [90] are divided 
in multiple plies in minutely distributed cross bridge architecture. 
The AF tissue is a perfect example of composite material where the 

micro-failure does not normally occur in a single loading and instantly 
because this composite laminated structure can effectively resist crack 
propagation and requires multiple cracks and micro-failure to occur 
prior to final failure of the laminate [91], while more homogeneous 
structure needs a single crack to failure. Typically annulus tissue needs 
damage initiation by various modes like fibres pullout from the matrix, 
matrix deterioration by cracking, excess longitudinal tension and then 
damage accumulation by fibres buckling which leads to final failure of 
the tissue [92]. Failure chances due to cracking increases with aging as 
the numbers of degenerated circumferential plies of cartilage increases 
and thickness of each layer increases. For this reason the potential of 
interlaminar shear stress increases due to over delimitation probability 
of the relative weaker fibrosus part of annulus tissue [93] and to 
know more better about the micro-mechanics of the annulus tissue 
Cartesian coordinate system had been already applied to a particular 
rectangular region of the specimen called region of interest by the 
various researchers. They had used particle image velocimetry (PIV) 
technique to quantify the shear factors but somehow were not able to 
determine the values of various shear factors [94]. Generally the polar 
co-ordinates (X, Y, Z, θ) are widely used to find out the amplitude of 
the average angle, angle of inter-annulus layer shear orientation during 
this whole study and analysed the micro-structural assumption in 
longitudinal and transverse direction inside the specimen by building 
up a lamination theory in axial, circumferential and radial mode [95]. 
This idea needs an assumption that ±θ angular deformation is always 
held in consecutive plied layers in the AF tissue and only the boundary 
layer having the highest degree of free movement freedom with the 
appropriate co-ordinate shear mechanics [96]. The inter-shear force 
production is strictly dependant on the angle of dynamics created at 
the time of shear test and the length of the specimen tested, which is 
determined by the following formula (9,10); 

Ѳ* = 2 |tan-1 [(1 ∕ tanѲ0) + tanγ]-1 – Ѳ0|                                                (9)

 l* = 2 |[cosѲ0 + sinѲ0 tan(γ)2 + sin2 (Ѳ0)
2] ½ - 1|                                (10)

Where l* = simple shear stretch, Ѳ* = angle of rotation or shear 
angle, γ = strain amplitude (∆L ∕ L at sample initial length, L = 7 mm, 
∆L = deformation) depending upon average angle of orientation of 
collagen bundle at Ѳ0 = 30⁰.

Tensile test

Tensile test was done by loading for circumferential loading for 
axial loading. Each annulus tissue was loaded five times to a maximum 
strain of 55-60% and the specimens were permitted to relax for 5 
minutes in between the load application. In all those above experiments 
sheep disc (AF tissue) has been used because sheep (goat) disc follows 
almost same kinematic and biochemical properties to human discs 
[97]. The time dependent response of the annulus tissue is very difficult 
to establish under in vitro environment due to lack of time-dependent 
transient equilibrium state, so we used the near linear region after the 
non-linear “toe-in” region [98,99] to estimate the Young’s modulus 
where all the collagen bundle are straightened out [100] due to the 
tensile loading and stretching. Depending upon the stress-strain and 
rate of loading the stress-deformation curves obtained may be linear 
or non-linear [101,102] which shows that the modulus is a function 
of the rate of loading (stress or strain range) [tensile modulus of 
L3-L4 = 0.88±0.38 [103]. As the tensile force increased the pore in 
the annulus tissue matrix got diminished in sizes [104], resulting in 
increased diffusional drag force [105] which occurs due to the increase 
in the Donann’s osmotic pressure [106] (according to the Darcy’s law 
interlaminar planes [107,108] in the annulus tissue matrix makes the 
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sample very difficult to extent and finally it breaks at a yield modulus/
force). 

Permeability test

In addition to the confined test we can get information from the 
same experiment called permeability which simply indicates the 
resistance of fluid flow through the IVD matrix. The average fluid 
velocity (Vavg) is proportional to the pressure gradient or pressure head 
(Δp) which is called the Darcy’s law [108] as shown in the equation 
(12);

Vavg = kΔp                             			                   (12)

The constant of proportionality is called the permeability (k), 
which determines the fluid (various nutrients, hormone, growth 
factors or gases like oxygen, carbon dioxide) flow characteristic inside 
the cartilage matrix [7]. The experimental set-up has been shown as 
(Figure 12) and the pressure head is calculated by dividing the fluid 
pressure difference (p1-p2) between inside and outside of the matrix by 
the matrix height (h) as shown in the equation (13);

Δp = p1-p2 / h                           			                 (13)

Indentation test

This test has been carried out to find out the aggregate modulus, 
Poisson’s ratio, permeability by the fitting of the experimental data 
in biphasic model [109]. Indentation test is basically a confined 
compression test alternative for very shorter sample length about 
0.8mm (Figure 13).

Tearing or fracture test

The tearing test or fracture test soft biological tissue like AF tissue 
is carried out by tensile testing machine. By this test we can find out 
the J-integral value [110] which indicates the crack propagation energy 
needed or fracture energy dissipated for per unit of crack extension 
[111]. As the soft tissue is not readily gives the crack so the tear is tested 
in that case by making a V- notch of say (1-3) µm at one end of the 
material  Figure.14 (A). The other end is pulled by a tensile force by 
tensile tester to study the crack propagation [112] through the material 
which yields a similar parameter like in J-integral; similar to the tensile 
stress-strain failure criteria for a material. The value of J integral is 
calculated by the equation (14);

GpIC = KpIC
2 / E                              			                   (14)

Where GpIC = J-integral value indicating the surface roughness, 
KpIC = poroelastic fracture parameter and E = elastic modulus of the 
material respectively [113]. Sample shape and load application for the 
modified single-edge notch and trouser tear tests. Each test yields a 
specific measure of fracture, the energy required to propagate a crack 
in the material [114]. The crack initiation/critical opening stress were 
estimated from the fracture toughness expression;

KpIC = σop √Π.Cps                                         		              (15)

J-value ( kN/m) = GPIC = KpIC 
2 ∕ E                    		              (16)

KPIC define where, σop is the critical opening stress of the collagen 
fibre where all the collagen bundle fibers start to open and becomes 
straight. This can be calculated from the toe-region of the stress-
deformation graph. The viscoelasticity and hyperflexon [114], torsion 
and shear mobility of the collagen fiber makes the main contribution 
to initiate the strain-produced crack in the sample. The critical opening 
stress was calculated from the maximum load on the annulus tissue 

divided by cross-sectional area of the sample [115], which is the 
threshold stress where collagen bundle are about to straighten along 
the tear force direction. The J-value or GPIC is the main factor which 
determines the concentration of PG and other matrix substances inside 
the matrix of annulus tissue.  

Lap or peeling testing 

This test is done to measure the interfibriler layers frictional force in 
between the AF tissue or simply interlayer frictional force by the help of 
nanoindentation through the help of AFM (Atomic force microscopy). 
This interlayer frictional value help us to gain an idea about the force 
required to peel off [116] the each of the AF layers from another layer 
i.e. matrix adhesion rigidity Figure 14 (B).

AFM (Atomic Force Microscopy) test

In this experiment with the help of nano indentation probe [117] 
rod the surface attribute profile or structure of the AF tissue can be 
studied and the matrix stiffness or roughness (roughness is calculated 
by Nano scope IIIA software) can be measured very accurately by this 
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Figure 12: Schematic representation for permeability test for the annulus tissue 
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method according to the Hertz model equation as shown by equation 
(17,18) which is a modified form of Young’s modulus.

E = 3F (1- ʋ2) / 4√R∂3/2                        		                (18)

F = kd                                      			                 (19)

Variable are; F = force, k = spring constant of the nanotip used 
in probing, E = elastic modulus, R = radius of curvature of the tip, ʋ 
= Poission’s ratio or indentation ratio, ∂ = indentation of the sample 
[118]. So overall we can summarize all kind of biomechanical test that 
can be proceed with AF tissue (Figure 15).

Confined torsion test analysis

The confined torsion modulus is much lesser than other values like 
compression, tensile or shear modulus due to the restricted rotational 
movement of the AF tissue material along its axis at a short range [118] 
of angle (14.5⁰). This angle which is called the absolute rotating angle 
(ARA) comes due to the particular bow-like bended structure of the 
human spinal axis. ARA provides the flexibility [119] and the ease of 
body movement by the releasing of pressure due to external loading 
on the spinal body [120]. The annulus fibrosus tissue also takes the 
rotation to this special amount of angle, ARA to maintain its continuity 
of attachments with the intervertebral disc body. The confined torsion 
modulus value of torsional modulus for bovine annulus tissue found 
as 0.075-0.20 MPa [80,121]. The torsion modulus is a very important 
factor which decides twisting forces [122] and rotating properties 
under small load on the disc. 

The mechanical properties of AF depend not only on fiber strength, 
alignment and matrix composition but also on fiber–matrix interactions 
at the interfaces [123]. Collagen I and collagen II and proteoglycans 
produced by the cells play a crucial role in imbibing water, which 
would in turn make the AF matrix more resilient to compressive force 
and increase its global stiffness [80].

Reasons for disc degeneration: With the aging the disc gets 
dehydrated and AF tissue collapsed and put the pressure towards 
the surrounding nerves in the cervical area of the body and produces 

lower back pain to the patient [124]. The healthy (hydrated) disc 
and unhealthy (dehydrated) disc has been shown (Figure 14) and 
degenerated disc show a distinct border between the AF and NP is still 
evident (arrow) [125]. 

The AF has retained a lamellar structure [128] however the NP 
is composed of mostly fibrous tissue (arrow head) (6). There may be 
many reasons for the disc hernia (disc radically outward bulging) 
which ultimately produce damage and unhealthy disc like (i) since IVD 
is the largest avascular tissue [129] in the human body so any change 
in osmotic pressure [130] in the IVD leads to its degeneration. This is 
happen due to the unequal force or stress distribution inside the IVD 
which change the porosity-dependent permeability [131] of the disc 
and ultimately result in loss of disc hydration and disc degeneration 
[130]. (ii) Production of collagen X fiber which has been delocalized 
in degenerated disc associated in chondrosyte clusters which lead to 
cleft formation and disc abnormal activities [131]. (iii) Decrease in 
degree of cross-linking of pyridinoline and replacing of this kind of 
crosslinking by the pentosidine cross-linking [125] which makes the 
tissue more prone to failure and increase the susceptibility of annular 
tear. (iv) Change in PGs synthesis: decrease of aggrecan and increase 
of versican, biglycan, decorin [131], KS, CS in proportional amount 
gives loss in hydration. So the disc will quickly degenerate. Also 
in this type of case the content of fibronectin will increased leads to 
faster disc degeneration [132,133]. (v) increase in MMPs (matrix 
metalloproteinases- a large family extracellular zinc based proteinases 
broadly devided into four subfamilies like collagenases, stromelysins, 
gelatinase and MT-MMPs i.e. membrane-type MMPs, examples: MMP 
1,2,7,9,13) [134,135] and ADAMTS (a disintegrin and metalloprotease 
with thrombospondin motifs) [136,137] (6). (vi)  During the life cycle 
the disc produced a huge amount of different MMPs in in extracellular 
matrix but these MMPs [138] degrade the many main cell components 
with it at the time of its own degeration. MMP 7,13 are more prone 
to disc damage by decreasing the aggrecan, collagen II particularly in 
NP regions (36). (vii) production of TIMPs [139,140] (tissue inhibitors 
of metalloproteinases, irreversible non-covalent complexes to active 
MMPs in a 1:1 stoichiometric fashion [139], TIMP-1 and -2) are 
increased the rate of disc degeneration by triggering the activity of 
MMPs (MMP 7) by its proteolytic action [141-146].

Alternative Idea to Replace the Disc by Some Substitute 
Materials: Implication of the Idea of Tissue Engineering 
(TE)

Low back pain affects nearly 80% the population at least once in 
their lifetime [147]. Degeneration of the intervertebral disc (IVD) 
is responsible for most cases of back pain, resulting - spinal stenosis 
[148], instability, disc herniation [149], radiculopathy [150] and 
myelopath [151]. Intervertebral disc (IVD) degeneration is thought to 
play an important role in producing the onset of lower back pain [51]. 
The center part of the disc, the nucleus pulposus (NP), which supports 
high compressive loads daily, shows early signs of degeneration, long 
before the outer part of the disc, the annulus fibrosus (AF) degenerates. 
So people are started to think about the physical therapy, medication 
or some surgical approach by the FEM (Finite Element Model) with the 
computational help [152] in this path TE is really a helpful substitute 
treatment for disc ailment. For any TE approach, we must consider 
four things, those are: cells, scaffolds, bioreactors and regulators 
[153,154]. Scaffold acts as a framework or matrix where the culture cell 
can grow by time and can adhere on it to regulate cell culture process. 
The bioreactor [155,156] acts as a server or assembly to maintain 
the particular condition where the scaffolds being put on with some 
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regulator which providing a wide choices to control the different 
parameters for a successful tissue engineering. So a proper ECM 
scaffold material should be chosen foe a successful TE for a body organ

Scaffold material used in tissue engineering for IVD 
replacement

There are many natural and synthetic materials which can be used 
as the matrix supporting material in the IVD/AF/NP tissue engineering 
as scaffolds construct, some of them are summarized (Table 2).

There may some others materials which can be used in TE foe a 
successful IVD implantation like- atelocollagen honeycomb [159], 
photocrosslinked CMC (carboxymethylcellulose) for encapsulated 
nucleus pulposus cells [154], electrospun PVA / PVP hydrogel [160] 
for nucleus pulposus, the density (important for scaffold matrix 
stiffness characterization and workability) of the synthesized hydrogel 
material [161,162] is calculated by using n-heptane with the help of 
Denver Instruments M-120 balance by the following equation [79].

ρhydrogel = ρhydrogel x mair / (mair – mheptane)                    	              (19)

Importance of the proper selection of scaffold structural 
material: obtain proper cell mechano-signal

In every cell there are certain receptors: thermoreceptors, 
pressure receptors or mechanoreceptors. These receptors like 
mechanoreceptor receive the mechanical signals and send to the 
brain of the body via nerve impulse, on receiving these biomechano 
signals from this receptor these biosignals [163] are transformed to 
the necessary catastrophic [164,165] biological activities. Now how 
these mechanoreceptor acting as a microtransducer and able to change 
the biosignal to various threshold bioprocess potential to initiate the 
process is largely remain unknown [166]. Now using a stiffer scaffold 
material the mechanorectors of targeted organ cell could not able to 
get proper signal from the stem cell due to changes in protein folding 
as forces are exerted to expose binding sites (Figure 17) and the cells 
on soft matrix with weak intracellular forces cannot sufficiently alter 
the conformation of a mechanically-sensitive protein of interest to 
expose a cryptic binding site [167,168] by making it non-functional. 
On the other hand, cells on stiff matrix generate high tension causes 
the protein to unfold to a state that the binding site is hindered non-
functional. However, cells on matrix with optimal elastic properties 
may put the appropriate amount of forces such that the cell can change 
the conformation of the protein, making the cryptic binding site 
accessible [169]. 

Others Methods for Disc Repair
Besides the tissue engineering there are some others techniques 

are also available in the market which has shown some promises for 
a good disc replacement as listed as (i) disc fusion - but that restricts 
the normalized disc movement by using of the screws. By the analysis 
of FEM (Finite element method) the proper IVD elemental analysis, 
screw optimized position, stress (Vont Mise’s stress), density, volume 
etc [162]. The software mainly used for this purpose is ABAQUS 
Version 6.6 (Simulia, Providence, RI, USA) [170] by considering the 
kangaroo biomechanics model [152] and initial human clinical trial 
have indicated that an elastomeric nucleus replacement may be able to 
overcome these limitations. However, there is a lack of understanding 
of how such a device will behave in a spinal segment under large 
compressive loads. Furthermore, an FEA model has not been used to 
study the ideal characteristics of an in situ curing elastomeric device 
implanted from the posterolateral corner of the IVD. (ii) Gene therapy 
[164,166,167] – By the up and down regulation of DNA inside the 
gene we can repair the unhealthy disc with the help of modern gene 
therapy technique. (iii) Full or partial nucleotomy (85% at an angle 
20⁰ or 72% at an angle 5⁰) with the help of finite element meshes of 
the IVD models including the physiologic, nucleotomy and implant 
model. Nucleotomy is simply cut out the damage central part (NP) of 
the already degenerated disc for disc repairmen [166]. (iv) By taking 
some clever strategies using the concepts that chondrocytes cell moves 
inside the bone tissue in-vivo during the growth of the bone organ of 
the body [171].

Outlook of polymeric spinal implants
In the current study we try to analyze the mechanical properties 

of AF, NP and IVD in more details and also for the scaffolds materials 
that had been synthesized from the different composite materials 
synthesized and cell cultured for variable period from textile fibers like 
silk, PVA, PGA [172]. The reason to choose this textile fiber is that they 
are very bio-compatible and also biodegradable inside the human body. 
For example: the silk has been selected as scaffold material because of 
the following reasons: For simulating lamellae like fibrous structure of 
AF, the materials have to be chosen which may be used for scaffold 
preparation. For this project, silk fiber has been chosen to from the 
fibrous structure. The reason behind choosing silk as a scaffold material 
is that, silk offers: unique mechanical property in different material 
formats (about 2-3 GPa) [173] with the excellent biocompatibility, 
controlled degradability with the versatile process ability which thus 
gives a variable potential for tissue engineering applications. Moreover, 
the ability to process silk into different structural formats using all-

Cell source Scaffold material Major finding Mechanics 
measured

Experimental values Native 
benchmark

AF: Alginate / chitosan 
hybrid fibers

AF cells proliferate  and expressed collagen II, construct were 
nonimmunogenic upon subcutaneous implantationAF cells 

(canine)
AF cells 
(bovine)

Electospun PCL AF cells oriented parallel to nanofibers and deposited aligned collagen 
matrix, resulting in improved tensile mechanics

Uniaxial tensile 
modulus

50 MPa 80-120 MPa

MSCs (bovine) Electrospun PCL Bi –lamellar construct replicate the +/- 30º angle-ply collagen 
architecture, opposing fiber arrangement enhances tensile response 
over parallel fiber families via inter lamellar shearing

Uniaxial tensile 
modulus

14.5 MPa 18 MPa

NP Collagen I Gel formation was tailored to replicate mechanical function , dynamic 
shear

Torsional shear δ= 6.5-8.5º 23-30º

IVD: PGA  (AF) and 
alginate (NP)

Formed AF-NP composite ECM and increased compressive properties 
after implantation

Unconfined 
compression

Ha= 50kPa, k = 5x 
10-14 m2/(Pa s)

3-10 MPa
AF and NP 
cells (bovine)

Table 2: Materials (Scaffolds) used in IVD tissue engineering [19,157,158,161].



Citation: Singha K, Singha M (2012) Biomechanism Profile of Intervertebral Disc’s (IVD): Strategies to Successful Tissue Engineering for Spinal 
Healing by Reinforced Composite Structure. J Tissue Sci Eng 3:118. doi:10.4172/2157-7552.1000118

Page 10 of 13

Volume 3 • Issue 2 • 1000118
J Tissue Sci Eng
ISSN:2157-7552 JTSE an open access journal 

aqueous process render it useful for the delivery of the bioactive 
components via this biomaterial matrix, as well as avoiding concerns 
for residual organic solvents in the devices Sometime they are cross-
linked with chondroitin sulfate (CS) to make it a highly bio-compatible 
composite tissue engineered architected structure [171]. MSC human 
nasal chondrosite cell is used to culture this synthesized scaffolds. 
Using the silk fibers, the aim would be to fabricate a structure similar 
to that of collagen structure of native AF. In that case, the orientation 
angle of fibers, diameter of fibers and fiber content in the scaffold may 
need to be varied [174]. So the objective of current work to simulate 
and experimental evaluation of the biomechanical properties of the 
scaffolds with the native benchmark value of IVD for a successful tissue 
implant which can be successfully replaced the damaged herniated disc 
by the tissue cultured silk scaffold disc as a better option for degenerated 
disc therapy.
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Figure 16: Schematic flow chart of (A) IVD disc degeneration (B) healthy IVD 
(C) degenerated IVD disc [126].
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Figure 17: Schematic diagram of the proposed force-sensing mechanism 
within the stem cells [169].
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