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ABSTRACT

Asthma is a common complex disease of the airways. Genome-wide association studies 
(GWASs) of asthma have identified many risk alleles and loci that have been replicated in 
worldwide populations. Although the risk alleles identified by GWAS have small effects 
and explain only a small portion of prevalence, the discovery of asthma loci can provide an 
understanding of its genetic architecture and the molecular pathways involved in disease 
pathogenesis. These discoveries can translate into advances in clinical care by identifying 
therapeutic targets, preventive strategies and ultimately approaches for personalized 
medicine. In this review, we summarize results from GWAS of asthma from the past 10 years 
and the insights gleaned from these discoveries.
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INTRODUCTION

Asthma is a heterogeneous and genetically complex respiratory disease.1 Approaches for gene 
discovery in asthma were initially candidate gene association studies, followed by family-based 
genome-wide linkage analyses and, most recently, genome-wide association studies (GWASs).2,3 
For the last decade, GWASs of asthma have dominated, providing bias-free discovery of novel 
risk loci.4

The first GWAS of asthma was reported in 2007.5 As of July 10, 2018 there were 72 papers 
written in English on asthma or asthma-related traits reported in the GWAS catalog (https://
www.ebi.ac.uk/gwas/). Among these 72 papers, 24 are GWASs of asthmatic subjects and 
controls, including 7 meta-analyses of asthma GWASs (Table 1); 5 are GWASs of asthma sub-
phenotypes such as severe asthma or asthma exacerbations; 13 are GWASs of asthma-related 
traits such as bronchodilator response (BDR), airway hyperresponsiveness (AHR) and total 
serum immunoglobulin E (IgE) levels; 15 are GWASs of asthma combined with other diseases, 
such as allergic rhinitis, or factors such as smoking interaction or age of onset; 2 are GWASs of 
occupational asthma; 2 are GWASs of aspirin-exacerbated respiratory disease (AERD); and 11 
are GWASs of asthma pharmacologic responses.
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In this review, we summarize the results of the 42 GWASs of asthma, asthma sub-phenotypes 
(e.g., severe asthma, asthma exacerbation) and asthma-related traits (e.g., BDR, AHR, total 
serum IgE) that are registered in the GWAS catalog. We discuss the challenges posed by 
GWASs of complex diseases and strategies to overcome these challenges. Other aspects of 
asthma genetics, such as gene-environment interactions,6-8 occupational asthma,9 AERD10,11 
or pharmacogenetics12,13 are reviewed elsewhere.

GWAS OF ASTHMA

Table 1 summarizes the study populations, sample sizes, and results of the 17 GWASs and 7 
meta-analyses of asthma. Additional information on characteristics of the study populations 
is included in Supplementary Table S1.

Eight GWASs and 6 meta-analyses reported one or more association with genome-wide 
significance in the discovery population. Two additional GWASs reported genome-wide 
significance in a combined — discovery and replication — sample. These 16 studies together 
described 35 loci that were significant in at least 1 study (Tables 2 and 3, Supplementary 
Tables S2 and S3). Sixteen of the 35 loci showed nominal significance when replicated in 
other GWASs, and 14 of those 16 loci showed genome-wide significant associations in at least 
2 papers. Taken together, 5 GWASs and 5 meta-analyses of asthma identified genome-wide 
significant single nucleotide polymorphisms (SNPs) (P < 5 × 10−8) at the 17q12-21 (ORMDL3, 
GSDMB), making this the most widely replicated asthma loci. The 6p21 (HLA region), 2q12 
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Table 2. Asthma susceptibility loci meeting criteria for genome-wide significance in either discovery or combined stage in each GWAS
Year Author Region Reported genes Lead SNP Location 

(Bp)
RAF in 

controls
P value OR 95% CI Stage Replication  

P value
Reference

2007 Moffatt MF* 17q21 ORMDL3 rs7216389 39913696 NA 1.00.E-10 NA NA Discovery 7.94.E-04 5
2010 Sleiman PM 1q31 DENND1B rs2786098 197356778 0.78 8.55.E-09 1.59 1.28–1.61 Discovery 6.47.E-04 77

17q21 ORMDL3/GSDMB rs4795400 39910767 NA 2.08.E-08 1.28 NA Discovery NA
2011 Ferreira MA†,‡ 1q21 IL6R rs4129267 154453788 0.40 2.30.E-08 1.09 1.06–1.12 Combined 3.30.E-03 82

2q12 IL1RL1 rs3771166 102369762 0.61 7.90.E-15 1.16 1.11–0.20 Discovery NA
5q22 WDR36 rs1043828 111128310 0.35 1.10.E-08 1.11 1.07–1.15 Discovery NA
5q31 RAD50 rs6871536 132634182 0.19 2.40.E-09 1.14 1.09–1.19 Discovery NA
9p24 IL33 rs1342326 6190076 0.16 3.50.E-14 1.20 1.14–1.26 Discovery NA
11q13 C11orf30/LRRC32 rs7130588 76559639 0.36 1.80.E-08 1.09 1.06–1.13 Combined 3.28.E-02
15q22 RORA rs11071559 60777789 0.86 3.80.E-09 1.18 1.11–1.23 Discovery NA
15q22 SMAD3 rs744910 67154447 0.49 2.70.E-09 1.11 1.07–1.15 Discovery NA
17q21 ORMDL3 rs8079416 39936460 0.44 2.40.E-22 1.19 1.15–1.23 Discovery NA
22q12 IL2RB rs2284033 37137994 0.57 5.00.E-10 1.12 1.09–1.16 Discovery NA

2011 Noguchi E§ 6p21 HLA-DPB1 rs987870 33075103 0.14 7.50.E-09 1.51 1.31–1.74 Discovery 1.20.E-02 83
8q24 SLC30A8 rs3019885 117013406 0.31 1.30.E-14 1.55 1.39–1.73 Discovery 8.70.E-03

2011 Hirota T 4q31 USP38 rs7686660 143082006 0.27 1.87.E-12 1.16 1.11–1.21 Combined 3.33.E-09 84
5q22 TSLP rs1837253 111066174 0.35 1.24.E-16 1.17 1.13–1.22 Combined 1.02.E-12
6p21 PBX2/NOTCH4/C6orf10/

BTNL2/HLA-DRA/HLA-
DQB1/HLA-DQA2/HLA-DOA

rs404860 32216568 0.50 4.07.E-23 1.21 1.16–1.25 Combined 6.42.E-18

10p14 - rs10508372 8930055 0.43 1.79.E-15 1.16 1.12–1.21 Combined 1.31.E-11
12q13 CDK2/IKZF4 rs1701704 56018703 0.18 2.33.E-13 1.19 1.14–1.25 Combined 7.22.E-09

2012 Lasky-Su J 5p15 FLJ25076 rs272474 6462225 NA 3.78.E-08 NA NA Discovery NA 85
6p21 HLA-DQA1 rs9272346 32636595 NA 2.20.E-08 NA NA Combined 6.70.E-03
14q13 AKAP6 rs17441370 32775658 NA 1.37.E-11 NA NA Discovery NA

2014 Galanter JM 17q12 IKZF3 rs907092 39766006 0.70 5.70.E-13 1.49 1.33–1.64 Discovery NA 87
2016 White MJ 10p12 PTCHD3 rs660498 27452030 0.46 2.20.E-07 1.62 1.35–1.95 Discovery NA 88

(continued to the next page)
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Year Author Region Reported genes Lead SNP Location 
(Bp)

RAF in 
controls

P value OR 95% CI Stage Replication  
P value

Reference

2016 Nieuwenhuis MA 17q21 IKZF3/ZPBP2/GSDMB/
ORMDL3

rs2290400 39909987 NA 2.55.E-20 1.31 NA Combined 6.78.E-17 89

Meta-analysis
2010 Moffatt MF∥ 2q12 IL1RL2/IL1RL1/IL18R1/

IL18RAP
rs3771166 102369762 0.62 3.40.E-09 1.15 1.10–1.20 Discovery NA 16

6p21 CCHCR1/HLA-DQB1 rs9273349 32658092 0.58 7.00.E-14 1.18 1.13–1.24 Discovery NA
9p24 RANBP6/IL33 rs1342326 6190076 0.16 9.20.E-10 1.20 1.13–1.28 Discovery NA
15q22 SMAD3 rs744910 67154447 0.49 3.90.E-09 1.12 1.09–1.16 Discovery NA
17q12 STARD3/TCAP/PGAP3/

ERBB2/IKZF3/ZPBP2
rs9303277 39820216 0.51 1.62.E-16 0.82 0.79–0.86 Discovery NA

17q21 GSDMB/ORMDL3 rs2305480 39905943 0.55 9.60.E-08 1.18 1.11–1.23 Discovery NA
17q21 GSDMA/PSMD3/MED24 rs3894194 39965740 0.45 4.60.E-09 1.17 1.11–1.23 Discovery NA
22q12 IL2RB rs2284033 37137994 0.56 1.20.E-08 1.12 1.08–1.16 Discovery NA

2011 Torgerson DG 2q12 IL1RL1 rs3771180 102337157 0.86 1.50.E-15 1.20 1.11–1.29 Combined 5.30.E-07 19
3q27 RTP2 rs2017908 187699930 0.13 4.42.E-09¶ 1.63 1.43–1.82 Discovery 8.80.E-01
5q22 TSLP rs1837253 111066174 0.74 1.00.E-14 1.19 1.12–1.27 Combined 1.60.E-06
9p24 IL33 rs2381416 6193455 0.70 1.70.E-12 1.18 1.08–1.28 Combined 1.30.E-06
17q21 GSDMB rs11078927 39908152 0.55 2.20.E-16 1.27 1.20–1.34 Combined 1.50.E-08

2012 Ramasamy A 2q12 IL1RL1/IL18R1 rs13408661 102338622 0.84 1.00.E-09 1.23 1.15–1.31 Combined 3.20.E-05 91
6p21 BTNL2/HLA-DRA rs9268516 32411712 0.24 1.00.E-08 1.15 1.10–1.21 Combined 1.00.E-03

2016 Pickrell JK 1q23 ADAMTS4 rs4233366 161189357 NA 4.80.E-15 1.09 1.07–1.11 Discovery NA 21
1q24 CD247 rs1723018 167464183 NA 1.40.E-08 0.95 0.93–0.96 Discovery NA
1q25 TNFSF4 rs6691738 173182897 NA 2.90.E-08 0.94 0.92–0.96 Discovery NA
1q32 ADORA1 rs6683383 203131376 NA 1.10.E-08 1.06 1.04–1.08 Discovery NA
1p36 PEX14 rs662064 10497194 NA 3.20.E-08 0.94 0.92–0.96 Discovery NA
2q12 IL1RL1 rs202011557 102297183 NA 5.10.E-31 0.84 0.82–0.87 Discovery NA
2p25 - rs13412757 8317950 NA 1.30.E-08 1.06 1.04–1.08 Discovery NA
2q37 D2HGDH rs34290285 241759225 NA 1.80.E-15 1.11 1.08–1.14 Discovery NA
3q28 LPP rs73196739 188684683 NA 6.50.E-09 0.92 0.90–0.95 Discovery NA
4p14 TLR1 rs5743618 38797027 NA 3.90.E-11 1.08 1.06–1.11 Discovery NA
5q22 TSLP rs1837253 111066174 NA 3.30.E-31 0.88 0.86–0.90 Discovery NA
5q31 RAD50 rs2244012 132565533 NA 2.10.E-16 1.10 1.08–1.13 Discovery NA
5q31 NDFIP1 rs200634877 142150197 NA 2.50.E-08 0.94 0.92–0.96 Discovery NA
6q15 BACH2 rs58521088 90275479 NA 7.10.E-11 0.93 0.92–0.95 Discovery NA
6p21 HLA-DQA1 rs3104367 32635710 NA 1.00.E-40 0.87 0.86–0.89 Discovery NA
6p21 HLA-C/MICA rs2428494 31354420 NA 1.40.E-16 0.92 0.90–0.94 Discovery NA
7q22 CDHR3 rs6959584 106035809 NA 2.00.E-08 1.09 1.06–1.12 Discovery NA
8q21 - rs10957978 80372904 NA 1.10.E-11 0.93 0.92–0.95 Discovery NA
9p24 IL33 rs144829310 3208030 NA 1.30.E-31 1.17 1.14–1.20 Discovery NA
10p14 - rs12413578 9007290 NA 8.10.E-12 0.89 0.86–0.92 Discovery NA
11q13 C11orf30/LRRC32 rs7936323 76582714 NA 1.40.E-16 0.92 0.91–0.94 Discovery NA
12q13 STAT6 rs3001426 57115272 NA 1.40.E-10 0.94 0.92–0.96 Discovery NA
14q24 RAD51B rs3784099 68283210 NA 1.60.E-08 0.94 0.92–0.96 Discovery NA
15q22 - rs10519068 60776505 NA 3.80.E-11 1.10 1.07–1.13 Discovery NA
15q22 SMAD3 rs56375023 67156025 NA 2.40.E-21 0.90 0.88–0.92 Discovery NA
16p13 CLEC16A rs7203459 11136846 NA 3.50.E-15 1.09 1.07–1.12 Discovery NA
17q12 ZPBP2 rs11655198 39869916 NA 1.00.E-63 0.85 0.83–0.86 Discovery NA

2017 Yan Q 17q12 IKZF3 rs907092 39766006 0.68 1.16.E-12 1.41 NA Discovery NA 92
2017 Almoguera B 6p21 GRM4 rs1776883 34188667 0.47 5.29.E-09 1.25 1.19–1.31 Discovery NA 34

9p21 EQTN rs72721168 27308290 0.96 7.02.E-10 1.83 1.28–2.37 Discovery NA
2018 Demenais F** 2q12 IL1RL1 rs1420101 102341256 0.37 3.9.E-21 1.12 1.09–1.15 Discovery NA 14

5q22 SLC25A46 rs10455025 111069301 0.34 9.4.E-26 1.15 1.12–1.18 Discovery NA
5q31 IL13 rs20541 111069301 0.79 5.0.E-16 0.89 0.87–0.92 Discovery NA
5q31 NDFIP1 rs7705042 142112854 0.63 7.9.E-9 1.09 1.06–1.12 Discovery NA
6p21 HLA-DRB1 rs9272346 32636595 0.56 5.7.E-24 1.16 1.12–1.19 Discovery NA
6p21 MICB rs2855812 31504943 0.23 8.9.E-12 1.1 1.07–1.13 Discovery NA
6p22 GPX5 rs1233578 28744470 0.13 5.9.E-7 1.09 1.05–1.12 Discovery NA
6q15 BACH2 rs2325291 90276967 0.33 2.2.E-12 0.91 0.89–0.94 Discovery NA

Table 2. (Continued) Asthma susceptibility loci meeting criteria for genome-wide significance in either discovery or combined stage in each GWAS
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(IL1RL1/IL18R1), 5q22 (TSLP) and 9p24 (IL33) loci showed the next 4 most genome-wide 
significant associations (Figure, Table 3).

A recent meta-analysis of 23,948 asthma cases and 118,538 controls from the Trans-National 
Asthma Genetic Consortium (TAGC) revealed 18 loci that met the criteria of genome-wide 
significance,14 including nine previously known asthma loci, 2 loci previously reported for 
asthma plus hay fever, 2 previously associated with asthma in ancestry-specific populations 
and 5 new asthma susceptible loci. The latter included loci at 5q31.3, 6p22.1, 6q15, 12q13.3 
and 17q21.33. Nearly all of the lead SNPs at the new loci were located in noncoding 
regions, and some were expression quantitative trait loci (eQTL) for genes such as NDFIP1 
(chromosome 5q31.3), ZSCAN12 and ZSCAN31 (6p22.1), BACH2 (6q15), STAT6 (12q13.3) and 
GNGT2 (17q21.33). An enrichment in enhancer marks, especially in immune cells, was found 
at the associated loci, suggesting that the associated SNPs, or SNPs in linkage disequilibrium 
(LD) with the associated SNPs, play a role in the regulation of the immune processes.

Since the first GWAS of asthma that identified variants at the 17q21 locus and the correlation of 
those variants with expression of ORMDL3,5 this region has been the most frequently studied 
and replicated locus. This region harbors a dense haploblock of SNPs that overlap at least 4 
genes: IKZF3, ZPBP2, GSDMB and ORMDL3. The locus has since been extended to include regions 
flanking this core region, implicating PGAP3 and ERBB2 at the proximal end and GSDMA at the 
distal end as potentially representing independent asthma loci.15 Nineteen asthma GWASs 
overall reported associations with SNPs at the extended 17q12-21 locus (Table 3). Moffatt et 
al.16 carried out a subgroup analysis of childhood-onset asthma and reported the association of 
this region specific to childhood-onset asthma, but had few later-onset asthma individuals to 
separately analyze that subgroup in their consortium-based meta-analysis of asthma GWASs. 
The TAGC meta-analysis of asthma GWAS also showed that the 17q12-21 locus centered on 
ORMDL3/GSDMB was specific to early-onset asthma, while that SNPs at the PGAP3/ERBB2 loci 
were not.14 They also suggested that the asthma-associated signals near the PGAP3/ERBB2 and 
ORMDL3/GSDMB blocks may affect asthma risk through the expression of different genes in 
different tissues.14,15 Of note, the effects of genotype at this locus on asthma risk and protection 
have been reported to be modified by early-life exposures including environmental tobacco 
smoking17 and rhinovirus (RV)-associated wheezing in the first 3 years of life.18 Despite its 
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Year Author Region Reported genes Lead SNP Location 
(Bp)

RAF in 
controls

P value OR 95% CI Stage Replication  
P value

Reference

8q21 TPD52 rs12543811 80366650 0.66 1.1.E-10 0.92 0.90–0.95 Discovery NA
9p24 RANBP6 rs992969 6209697 0.75 7.2.E-20 0.86 0.83–0.88 Discovery NA
10p14 GATA3 rs2589561 9004682 0.82 3.5.E-9 0.91 0.88–0.94 Discovery NA
11q13 EMSY rs7927894 76590272 0.37 2.2.E-14 1.1 1.08–1.13 Discovery NA
12q13 STAT6 rs167769 57109992 0.4 3.9.E-9 1.08 1.05–1.11 Discovery NA
15q22 RORA rs11071558 60777222 0.14 1.3.E-9 0.89 0.86–0.92 Discovery NA
15q22 SMAD3 rs2033784 67157322 0.3 7.4.E-15 1.1 1.08–1.13 Discovery NA
16p13 CLEC16A rs17806299 11106123 0.2 2.7.E-10 0.91 0.88–0.94 Discovery NA
17q12 ERBB2 rs2952156 39720582 0.7 2.2.E-30 0.87 0.84–0.89 Discovery NA
17q21 ZNF652 rs17637472 49384071 0.39 6.6.E-9 1.08 1.05–1.11 Discovery NA

The most significant SNPs at each locus are shown and ordered by genomic location in each reference. Base pair positions (bp) correspond to GRCh38/hg38 
genome assembly.
SNP, single nucleotide polymorphism; RAF, risk allele frequency; OR, odds ratio; CI, confidence interval; FDR, false discovery rate; GWAS, genome-wide association 
study; GABRIEL, Multidisciplinary Study to Identify the Genetic and Environmental Causes of Asthma in the European Community.
*With the exception of the 17q12-21 locus, none of the markers below 5% FDR, after controlling for stratification, were within 1 Mb of each other; †Discovery GWAS 
was the meta-analysis of results from the Australian GWAS and GABRIEL; ‡RAF was from the Australian GWAS only; §RAF was from the discovery GWAS only; ∥P value 
of random effects; ¶P vaule from the Latino GWAS only; **RAF was allele effect frequency from the European GWAS only.

Table 2. (Continued) Asthma susceptibility loci meeting criteria for genome-wide significance in either discovery or combined stage in each GWAS



strong and consistent association with asthma, there has been little evidence of association 
at this locus in African ancestry populations,14,19 possibly owing to the breakdown of LD on 
African-derived chromosome.15 Taken together, SNPs in this locus are robustly associated 
with childhood-onset asthma in European, Asian and Latino individuals. Stein et al.15 recently 
reviewed studies of the 17q12-21 locus that showed the asthma-associated 17q12-21 SNPs are 
eQTLs for the GSDMA, ORMDL3, GSDMB and PGAP3 in immune cells and/or lung cells. However, 
the role of 17q12-21 genes in asthma pathogenesis is still unknown. An overview of functional 
studies of genes at the 17q12-21 locus was reviewed recently by Das et al.20

Among the approximately half of the published GWAS of asthma that did not identify any 
genome-wide significant associations in their discovery stage, most had sample sizes < 
2,000 subjects (Table 1) suggesting that larger sample sizes (≥10,000) are needed to identify 
asthma associated loci. For example, the TAGC meta-analysis showed that pooling data from 
ethnically diverse populations including 23,948 asthma cases and 118,538 controls,14 and a 
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Table 3. Locus-level replications in subsequent GWAS
Reported genes Region The initial report Genome-wide significant 

replication, reference
Nominal replication, 

referenceStrongest SNP P value Reference
STARD3/TCAP/PGAP3/ERBB2/IKZF3/ZPBP2/
GSDMB/ORMDL3/GSDMA/ZNF652/PSMD3/MED24

17q12-21 rs7216389 1.00.E-10 5 14,16,19,21,77, 
82,87,89,92

34,39,78,81,83, 
85,86,90,91

CCHCR1/PBX2/NOTCH4/C6orf10/BTNL2/GRM4/
HLA region/MICB/MICA

6p21 rs9273349 7.00.E-14 16 14,21,34,83-85,91 19,82,86-89,92

IL1RL2/IL1RL1/IL18R1/IL18RAP 2q12 rs3771166 3.40.E-09 16 14,19,21,82,91 34,81,84-87,90,92
TSLP/WDR36/SLC25A46 5q22 rs1043828 1.10.E-08 82 14,19,21,84 34,85-87,90,92
IL33/RANBP6 9p24 rs1342326 9.20.E-10 16 14,19,21,82 19,34,84-87,89-91
SMAD3/RORA 15q22 rs744910 3.90.E-09 16 14,21,82 19,83,84,91,92
RAD50/IL13/NDFIP1 5q31 rs6871536 2.40.E-09 82 14,21 19,34,83,84,90
C11orf30/LRRC32/EMSY 11q13 rs7130588 1.80.E-08 82 14,21 90
IKZF4/CDK2/STAT6 12q13 rs1701704 2.33.E-13 84 14,21 90
IL2RB 22q12 rs2284033 1.20.E-08 16 82 83,84,87,89,92
BACH2 6q15 rs58521088 7.10.E-11 21 14 NA
TPD52 8q21 rs12543811 1.10.E-10 21 14 NA
GATA3 10p14 rs2589561 3.50.E-09 84 14 NA
CLEC16A 16p13 rs17806299 3.50.E-15 21 14 NA
DENND1B 1q31 rs2786098 8.55.E-09 77 NA 84
SLC30A8 8q24 rs3019885 5.00.E-13 83 NA 88
PEX14 1p36 rs662064 3.20.E-08 21 NA NA
IL6R 1q21 rs4129267 2.30.E-08 82 NA NA
ADAMTS4 1q23 rs4233366 4.80.E-15 21 NA NA
CD247 1q24 rs1723018 1.40.E-08 21 NA NA
TNFSF4 1q25 rs6691738 2.90.E-08 21 NA NA
ADORA1 1q32 rs6683383 1.10.E-08 21 NA NA
- 2p25 rs13412757 1.30.E-08 21 NA NA
D2HGDH 2q37 rs34290285 1.80.E-15 21 NA NA
RTP2 3q27 rs2017908 4.42.E-09 19 NA NA
LPP 3q28 rs73196739 6.50.E-09 21 NA NA
TLR1 4p14 rs5743618 3.90.E-11 21 NA NA
USP38 4q31 rs7686660 1.87.E-12 84 NA NA
FLJ25076 5p15 rs272474 3.78.E-08 85 NA NA
GPX5 6p22 rs1233578 5.90.E-07 14 NA NA
CDHR3 7q22 rs6959584 2.00.E-08 21 NA NA
EQTN 9p21 rs72721168 7.02.E-10 34 NA NA
PTCHD3 10p12 rs660498 2.20.E-07 88 NA NA
AKAP6 14q13 rs17441370 1.37.E-11 85 NA NA
RAD51B 14q24 rs3784099 1.60.E-08 21 NA NA
The table is sorted by the most number of repeatedly replicated loci. There were no replication data of previously reported GWAS in references 5,76,79,80. 
Nominal replication signifies the SNPs at each locus with replication P value less than 0.05 when there were replication data of previously reported GWASs.
GWAS, genome-wide association study; SNP, single nucleotide polymorphism.



23andMe GWAS in 28,399 European ancestry cases and 128,843 controls21 each detected new 
asthma loci. Although very large studies increase clinical heterogeneity, many true asthma 
loci can be detected in very large samples.

GWAS OF ASTHMA SUB-PHENOTYPES AND 
INTERACTIONS
GWASs of asthma sub-phenotypes reduce heterogeneity and can lead to the identification of 
new asthma risk loci, even in smaller samples, due to increased power in studies of extreme or 
more homogeneous phenotypes. These studies may unveil genetic factors that are ‘masked’ in 
very large GWAS of more heterogeneous cases. For example, this is best illustrated by a GWAS 
of early childhood asthma with acute exacerbations leading to hospitalization and emergency 
department visit by Bønnelykke et al.22 The CDHR3 at 7q22.3 was identified in this study as a new 
susceptibility gene; this locus was later shown to be genome-wide significant in the 23andMe 
GWAS in European ancestry individuals,21 but not in the TAGC meta-analysis of ethnically 
diverse individuals.14 Importantly though, subsequent studies showed that CDHR3 functions 
as a receptor for Rhinovirus C (RV-C),23 and that the CDHR3 asthma risk allele was associated 
specifically with RV-C-related respiratory illnesses in the first 3 years of life.24 This “exacerbation 
GWAS” also confirmed previously reported asthma loci at genome-wide significance — GSDMB 
at 17q21, IL33 at 9p24, RAD50 at 5q31 and IL1RL1 at 2q12 loci, but with larger effect sizes despite 
the smaller sample size (Table 2), demonstrating that careful phenotyping and reduced clinical 
heterogeneity can reveal both novel asthma loci and larger effects of associated loci in smaller 
sample sizes than typically required for GWAS.

Another GWAS of exacerbations in 2 pediatric cohorts reported a novel asthma locus at 
the 10q21.3 (CTNNA3) that was genome-wide significant.25 A meta-analysis of GWASs that 
included both physician-diagnosed asthma and hay fever compared to controls with neither 
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Figure. Word cloud consisting of asthma risk genes from asthma GWASs (see Table 2 for references). Genes at 
genome-wide significant loci were selected based on the nearest gene. Word weight was assigned based on the 
number of times these genes were at loci that met the criteria for genome-wide significance. Word cloud was 
made using R package ‘wordcloud’ version 2.5. Figure drawn by H. Jang. 
GWAS, genome-wide association study.



asthma nor hay fever revealed 2 novel susceptible loci: ZBTB10 at 8q21.13 and CLEC16A at 
16p13.13.26 A GWAS of asthma with reduced exposure to tobacco smoke identified a locus that 
included the gene, HAS2 at 8q24.13, as a susceptibility locus,27 and another GWAS of active 
adult-onset nonallergic asthma added novel loci to asthma susceptible genes, CD200 at 3q13.2 
and GRIK2 at 6q16.3, compared to inactive and mild nonallergic asthma.28 A GWAS that 
investigated the age of onset of childhood asthma, revealed loci on 3p26 and 11q24 that were 
associated with early-onset asthma and potentially to more severe disease.29 These GWASs of 
asthma defined by the presence or absence of other conditions identify novel loci, but most 
still require replication and functional characterizations.

Another approach to disentangle the complexity of asthma phenotypes and account for 
potential heterogeneity of risk factors have been genome-wide interaction studies (GWISs). 
A GWIS of genotype-by-sex interactions revealed a male-specific asthma risk locus, which 
includes IRF1 at 5q31.1, in European ancestry individuals, and a female-specific asthma risk 
locus, which included RAP1GAP1 at 1p36.12, in Latino individuals.30 The SNPs at these 2 loci 
showed only nominally significant associations with asthma in an independent GWAS, but 
emerged as sex-specific asthma risk loci when the effects of both genotype and sex as an 
interaction were taken into account. Another GWIS of farm-related exposures on asthma and 
atopy risk did not show any significant associations with either novel or previously reported 
asthma loci, likely due to low statistical power.31 Although this is a promising approach 
to identify loci that may confer risk only in the presence of specific exposures (i.e., gene-
environment interactions), it is challenging to conduct these studies in the very large samples 
because exposures histories are rarely available in those samples.8

Finally, gene discovery in smaller samples may be possible using validated phenotyping 
algorithms that mine electronic medical records (EMRs). This approach has recently been 
developed as a tool for genomic research by the Electronic Medical Records and Genomics 
(eMERGE) network.32,33 A GWAS of asthma in 5,309 cases and 16,335 controls recruited from 
eMERGE network identified novel loci of 6p21.31 (GRM4) and 9p21.2 (EQTN),34 although 
these associations need further replication and functional characterization. Within EMRs, 
longitudinal phenotype data and immense amounts of secondary phenotype data, such as 
laboratory findings and drug responses, can be collected. These data can be analyzed along 
with genetic data to determine whether loci are specific to asthma or shared with other 
allergic phenotypes, or how these relationships change over time. Rapid adoption of EMRs 
and EMR data standardization across hospitals will make available extensive phenotype data 
on many diseases and, combined with patient genotyping, expedite the identification of 
shared and unique genetic signatures for asthma endotypes as well as all common diseases.

GWAS OF ASTHMA-RELATED TRAITS

GWASs have been reported for asthma-related traits such as BDR, AHR, blood eosinophils, 
total serum IgE levels and allergic sensitization. The general assumptions of these studies are 
that it may be easier to find genes influencing components of asthma because they are less 
heterogeneous than asthma per se, and those same genes may also contribute to asthma risk 
and potentially provide more direct pharmacologic targets.

A GWAS of BDR — defined as the percentage change in FEV1 after administration of a 
short-acting β2-adrenergic receptor agonist — identified rare variants (frequency, <5%) 
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near the solute carrier (SLC) genes with genome-wide significance in 1,782 Latino asthmatic 
children.35 Another GWAS of BDR revealed genome-wide significant variants near the ASB3 
gene at 2p16 in a combined analysis of 1,164 multi-ethnic individuals with asthma.36 A 
GWAS of AHR severity — defined as the natural log of the dosage of methacholine causing 
a 20% drop in FEV1 — in 994 non-Hispanic white asthmatic subjects did not identify any 
genome-wide significant genes,37 while another GWAS of AHR severity in 650 European adult 
asthmatics revealed SNPs at the PDE4D gene at 5q11 at genome-wide significance,38 which is 
a previously reported asthma gene.39 Overall however, the BDR and AHR genes identified in 
GWAS with relatively small sample sizes lack replication. In contrast, a large GWAS of blood 
eosinophils,40 pleotropic multifunctional leukocytes that are involved in the pathogenesis 
of inflammatory diseases including asthma, in 21,510 European subjects (comprised of a 
discovery, n = 9,392, and replication, n = 12,118, sample) reported SNPs near the IL1RL1 at 
2q12, IKZF2 at 2q34, GATA2 at 3q21.3, IL5 at 5q31.1 and SH2B3 at 12q24.12 genes with genome-
wide significance. Among them, a variant at IL1RL1 was also associated with asthma in 10 
different populations included in this study. IL1RL1 has been reported as an asthma gene 
through multiple GWAS of asthma (Tables 2 and 3). This finding requires further functional 
characterization if its relationship to eosinophils, asthma, and especially eosinophilic 
asthma, and its potential as a therapeutic target.

The first GWAS of total serum IgE levels, which is a strongly heritable trait,41,42 did not show 
any genome-wide significant associations in the discovery population of 1,530 individuals of 
European ancestry. However, by combining the GWAS results with 4 independent replication 
cohorts, the investigators showed that functional variants near the gene encoding FCER1A 
at 1q23.2 and at the RAD50-IL13 locus at 5q31 were associated with total serum IgE levels 
at genome-wide significant thresholds in a combined analysis in of 11,299 individuals of 
European ancestry.43 The Multidisciplinary Study to Identify the Genetic and Environmental 
Causes of Asthma in the European Community (GABRIEL) consortium identified SNPs 
near HLA-DRB1 at 6p21 as an IgE-associated locus that was independent of associations of 
this locus with asthma, and confirmed the previously reported associations between total 
serum IgE levels and SNPs near the FCER1A, RAD50-IL13 and STAT6 loci, at genome-wide 
significant level.16 Three more GWAS of total serum IgE levels revealed loci near the HLA 
region reaching genome-wide significance;44-46 the EVE consortium confirmed that these 
associations were shared among diverse ethnic groups.47 A GWAS of total serum IgE levels in 
3,334 Latinos and a following admixture mapping in 454 Latinos, 1,564 European Americans 
and 3,187 African Americans revealed a locus near the ZNF365 gene at 10q21, but this finding 
still lacks replication.45 Furthermore, a meta-analysis of GWASs of allergic sensitization in 
15,845 individuals of European ancestry and replication in 16,034 individuals of European 
ancestry identified 10 genome-wide significant loci in or near TLR6 at 4p14, C11orf30 at 
11q13, STAT6 at 12q13, SLC25A46 at 5q22, HLA-DQB1 at 6p21, IL1RL1 at 2q12, LPP at 3q28, 
MYC at 8q24, IL2 at 4q27 and HLA-B at 6p21.48 A recent GWAS of allergic disease in 360,838 
individuals considered individuals with asthma, hay fever and/or eczema.49 They identified 
136 genome-wide significant risk variants at 99 independent loci, most of which had similar 
effects on the individual diseases, reflecting etiologic pathways that are common to all 3 
diseases. However, this did not explicitly test for independent effects of the associated loci 
among individuals with only one of the three diseases. The shared loci were predicted to 
influence the function of immune cells and their target genes suggested opportunities for 
genomics-guided drug repositioning.
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FUNCTIONAL STUDIES OF ASSOCIATED SNPS FROM 
EXISTING GWAS
A limitation of GWAS is that it identifies SNPs but does not provide information on the 
genes that the associated SNPs influence or on the causal SNP(s) among all SNPs in strong 
LD. As a result, nearly all GWASs report the nearest gene(s) as potential asthma candidate 
genes. However, not all SNPs impact the function or expression of the nearest gene, even 
when the SNP is within the gene itself. For example, among disease-associated variants that 
are eQTLs, the target gene will differ from the nearest gene 34% of the time.50 On the other 
hand, SNPs that are eQTLs are more likely to be among significant GWAS SNPs compared 
to SNPs that are not eQTLs,51 and combining eQTL mapping with GWAS can link GWAS-
associated variants with the gene(s) they regulate, particularly if studies are performed 
in disease-relevant tissues.15 For example, Li et al.52 performed cis-eQTL studies in human 
bronchial epithelial cells (BECs) and cells from bronchial alveolar lavage (BAL) using SNPs 
near 34 putative asthma genes at 23 loci from previous GWASs. SNPs at 9 of the 23 loci were 
associated with the expression of nine genes in either BEC or BAL: IL1RL1 (but not IL18R1) at 
2q12, TSLP (but not WDR36) at 5q22, HLA-DQB1 at 6p21, CDHR3 at 7q22, ZBTB10 at 8q21, IL33 at 
9p24, C11orf30 (but not LRRC32) at 11q13, DEXI (but not CLEC16A) at 16p13, and GSDMB (but not 
ORMDL3) at 17q21. There are likely to be additional cis-eQTLs at asthma-associated SNPs at 
some of these loci in other tissues or by considering more SNPs or genes at each locus.

Ferreira et al.53 used a gene-based association test that integrated published asthma GWAS and 
eQTL mapping studies to identify SNPs that are eQTLs and the genes they are associating with. 
They used 16 published eQTL studies in 12 cell types or tissues potentially relevant to asthma: 
whole blood, lymphoblastoid cell lines, peripheral blood mononuclear cells, monocytes, B cells, 
T cells, neutrophils, spleen, lung, small airways, fibroblasts, skin. They suggested that asthma risk 
was associated with the expression of genes related to nucleotide synthesis (B4GALT3 at 1q23.3 
and USMG5 at 10q24.33) and nucleotide-dependent cell activation (P2RY13 and P2RY14 at 3q25.1), 
and referred to these genes as putative novel asthma risk genes. They applied this method to their 
recent large GWAS of allergic disease,49 and identified additional significant and reproducible 
gene-based associations with 19 genes at 11 loci that were missed by single-variant analyses 
reported in the previous GWASs.54 Among these were nine genes with known functions relevant 
to allergic disease: FOSL2 at 2p23, VPRBP at 3p21, IPCEF1 at 6q25, PRR5L at 11p13, NCF4 at 22q12, 
and APOBR, IL27, ATXN2L and LAT at 16p11. These putative novel associations still need further 
replication. Luo et al.55 combined asthma GWAS results and publicly available eQTL data from 
human epithelial cells from small and large airways. They demonstrated that asthma GWAS hits 
were enriched as airway epithelial eQTLs and genes regulated by asthma GWAS loci in epithelium 
were enriched in immune response pathways. Li et al.,52 Ferreria et al.,53 and Luo et al.55 linked 
asthma-associated SNPs to genes they regulate, potentially elucidating molecular mechanisms for 
their associations with asthma.53,55 A great boon to this type of approaches is the Genotype-Tissue 
Expression (GTEx) consortium, which has made available eQTL data for 44 human tissues that 
can be used to identify genes and pathways affected by human disease-associated variation.56

GWAS OF ASTHMA OR ASTHMA-RELATED TRAITS IN THE 
KOREAN POPULATION
In 2008, the first GWAS of an asthma phenotype in 347 Korean subjects (84 cases and 263 
controls) was published for toluene diisocyanate (TDI)-induced asthma, an occupation-
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associated form of asthma.57 Since then, GWASs of asthma in Korea focused on 80,58 
100,59 11760 and 17961 subjects with AERD, which is characterized by the development of 
bronchoconstriction in asthmatic patients after ingestion of non-steroidal anti-inflammatory 
drugs including aspirin. However, no genome-wide significant loci were reported in these 
GWASs, likely due to small sample sizes.

A GWAS of total serum IgE levels was reported in 877 Korean asthmatic patients without any 
genome-wide significant hits,62 but a GWAS of asthma in the Korean population has not yet 
been published. Performing GWASs of asthma in Korean children and adults is called for in 
the near future in order to identify the major genetic susceptibilities that maybe unique to 
this population.

ISSUES AND CHALLENGES IN GWAS OF ASTHMA

Despite their power for identifying asthma risk loci, there are many limitations of GWASs. In 
particular, GWASs identify mostly common variants which tend to have small effect sizes. As 
a result, GWAS-discovered variants are largely common (MAF > 10%) and account for a small 
proportion of both the population prevalence and the genetic component of asthma (i.e., the 
heritability).63-65 These results in limited predictive power of these variants.66,67 Although rare 
and low-frequency variants have potentially larger phenotypic effects, they have not explained 
a significant fraction of the ‘missingness’ of asthma heritability thus far.68 Recently, in a whole-
genome sequencing study, Smith et al.69 found a rare loss of function mutation in IL33 that was 
associated with both lower blood eosinophils in 103,104 European subjects and reduced risk 
of asthma in 6,465 European asthmatic subjects and 302,977 controls. This study suggests that 
rare variants with large effect sizes are segregating in the population. While it is unlikely that 
such rare variants will account for significant proportions of the population risk for asthma, 
they can identify new pharmacologic targets and therefore serve a very important function.

Another limitation of GWAS is the statistical approach that tests for association with each of 
potentially tens of millions of SNPs. As a result, adjustments for multiple testing, typically 
using a Bonferroni corrected P value of <5 × 10−8 to control the false positive rate, require 
very large sample sizes (potentially >100,000) to identify loci with modest effect sizes. This 
stringent significance threshold will miss many true associations, particularly with SNPs 
involved in gene-gene and gene-environment interactions or those that are associated with 
specific asthma endotypes or sub-phenotypes. These variants have been referred to as ‘mid-
hanging fruit’ in GWAS,7 and differentiating true from false associations among variants with 
small P values (e.g., <10−4) that do not meet genome-wide significance thresholds in GWASs 
remains a major challenge.

Another limitation has been that most GWAS and large meta-analyses of asthma and 
related traits are in subjects of European ancestry. Thus, most inferences about the genetic 
architecture of asthma is based on observations in this one continental population, whereas 
much less is known about Asian, African and admixed populations. Because populations vary 
with respect to allele frequencies, patterns of LD, and effect sizes of variants that underlie 
disease risk,70-72 inferences based on Europeans may have limited utility in other groups. For 
example, next-generation sequencing studies revealed differences in allele frequencies and 
haplotype structures at the 17q12-21 asthma-locus between Chinese and other ethnic groups.73 
However, half of the 24 asthma GWAS are only in Europeans (Table 1), and those studies are in 
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general the largest GWAS to date. Moreover, until recently, commercial genotyping arrays were 
based on European allele frequencies and LD patterns. As a result, GWAS in non-European 
populations likely missed variants specific to those populations. This also impacts the 
selection of tag SNPs in replication studies in non-European populations. These issues have 
recently been addressed by the development of ethnic-specific and pan-ethnic genotyping 
arrays and publicly available genome sequences that allow for ethnic-specific imputation of 
genome-wide SNPs.74 For the first time, GWAS in Asian, Latino and African populations can 
be performed with excellent SNP coverage. It is crucial to study populations of diverse ethnic 
backgrounds for identifying shared and unique genetic predictors of asthma and for capturing 
more global patterns of genetic risk and gene-environment interaction effects on asthma risk.

CONCLUSIONS

Asthma pathogenesis is complex, resulting from heterogeneous genetic and environmental 
factors that jointly give rise to extensive phenotypic heterogeneity among asthmatics. Age 
at time of exposure to environmental risk factors and the persistence of these exposures 
during the lifespan may be critical modifiers of genotype-specific risk. These considerations 
are rarely, if ever, accounted for in GWAS. Nonetheless, the identification of susceptibility 
variants has already provided mechanistic insights into asthma pathogenesis, suggesting that 
asthma risk variants play a role in the regulation of immune cell functions.14 GWAS findings, 
considered together with deep learning approaches that can incorporate longitudinal EMR 
data,75 have the potential to more fully elucidate the genetic architecture of asthma. Such 
insights can be translated into advances in clinical care through identifying therapeutic 
targets and preventive approaches and ultimately personalized medicine.67
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