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the process of regeneration is most 
readily studied in species of sponge, 

hydra, planarian and salamander (i.e., 
newt and axolotl). the closure of mrl 
mouse ear pinna through-and-through 
holes provides a mammalian model of 
unusual wound healing/regeneration in 
which a blastema-like structure closes 
the ear hole and cartilage and hair fol-
licles are replaced. recent studies, based 
on a broad level of dna damage and 
a cell cycle pattern of G

2
/m “arrest,” 

showed that p21cip1/waf1 was missing from 
the mrl mouse ear and that a p21-null 
mouse could close its ear holes. Given 
the p53/p21 axis of control of dna 
damage, cell cycle arrest, apoptosis and 
senescence, we tested the role of p53 in 
the ear hole regenerative response. using 
backcross mice, we found that loss of p53 
in mrl mice did not show reduced heal-
ing. furthermore, cross sections of mrl.
p53-/- mouse ears at 6 weeks post-injury 
showed an increased level of adipocytes 
and chondrocytes in the region of heal-
ing whereas mrl or p21-/- mice showed 
chondrogenesis alone in this same region, 
though at later time points. in addition, 
we also investigated other cell cycle-
related mutant mice to determine how 
p21 was being regulated. we demonstrate 
that p16 and Gadd45 null mice show little 
healing capacity. interestingly, a partial 
healing phenotype in mice with a dual 
tgfβ/rag2 knockout mutation was seen. 
these data demonstrate an independence 
of p53 signaling for mouse appendage 
regeneration and suggest that the role of 
p21 in this process is possibly through the 
abrogation of the tgfβ/smad pathway.
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Introduction

A large number of species are capable of 
regeneration in some form and degree 
with different structures being regen-
erated. The most efficient regenerators 
include hydra and planaria, which can 
regenerate their whole body from only a 
small part of it. Vertebrates also include 
potent regenerators such as the urodele 
amphibians or newts and salamanders, 
which can regenerate limbs and other 
structures after amputation. Examples of 
mammalian regeneration are not com-
mon; although, many mammalian tissues 
possess the ability to regenerate as individ-
ual cell populations. These include bone, 
immune tissue, peripheral nerve, skeletal 
muscle and liver.1-3

The response to traumatic injury in 
tissues of higher organisms can proceed 
through either the process of wound repair 
and scar formation or through a poorly 
understood mechanism involving the for-
mation of a blastema. Tissue regeneration 
through blastema formation is referred to 
as “epimorphic regeneration”. Blastema 
cells proliferate until the replacement and 
restoration of correct cellular architecture 
and differentiation into multiple cell types 
is achieved.4

Examples of mammalian epimorphic 
regeneration include the regrowth of 
antlers of deer5 and moose3 and punched 
ear hole closure in rabbits.6 Among these 
examples is the MRL mouse, first identi-
fied in 1996 as a mouse model of regen-
eration, which exhibits closure of punched 
ear holes with the formation of a blastema-
like structures. This results in the perfect 
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extended to include S and G
2
 checkpoints 

through the interaction with PCNA and 
14-3-3σ, respectively.22-24

In addition to the cell cycle check-
point function of p21 in a p53-dependent 
manner, p21 also plays a direct p53-inde-
pendent role in cellular senescence.25-27 
Cellular senescence is defined as a perma-
nent cell cycle arrest that can be triggered 
by an increase in reactive oxygen species, 
telomere shortening or by upregulation 
of an oncogene resulting in replicative 
stress.28 The function of senescence in 
cells appears to be a way of providing an 
obstacle to the progression of cancer by 
preventing damaged cells from undergo-
ing aberrant proliferation.29-35 The two 
major pathways for activating senescence 
are controlled by p16Ink or p53/p21, both 
of which lead to Rb hypophosphorylation. 
The p53-dependent senescence is directly 
modulated by p21 through detection of 
cellular stress; however, there have been 
other reports demonstrating that p21 can 
also elicit senescence in a p53-independent 
manner.36,37 For example, p21 was found 
to be essential in upregulating senescence-
specific markers in cells that did not 
express p53.

A recent study18 examining hair follicle 
regeneration relates to our studies of ear  
hole regeneration. It was shown that p53 is 
an important component in the renewal of 
adult tissues that have “increased genomic 
instability phenotypes.”18,34,38 The activity 
of p53 is thought to be involved in clear-
ing out cells that have accumulated DNA 
damage. This results in the induction of 
senescence and immune-mediated clear-
ance.33 It is proposed that the accumula-
tion of damaged cells that persist in adult 
tissue that fail to be cleared by p53-medi-
ated mechanisms act as an obstruc-
tion to stem cell proliferation and tissue 
renewal.39 Thus, p53-induced senescence 
is required for tissue regeneration and the 
removal of p53 causes tissue renewal to 
become delayed due to the accumulation 
of damaged cells.

Given the discussion above, we asked 
several questions:

(1) If DNA damage and a DDR are 
seen and p53 is upregulated while p21 is 
downregulated as seen in the MRL mouse, 
what response should we expect? DNA 
damage should lead to p53 activation and 

hypoxia, oncogene activation or expo-
sure to DNA damaging agents.11,12

Specific signaling pathways cope with 
genotoxic stress by initiating pauses in cell 
cycle progression to allow cells to survive 
and maintain themselves until the dam-
age has been resolved or the stress has 
been removed.13 This is accomplished by 
cell cycle arrest, DNA repair, inhibition 
of ROS, angiogenesis through metabolic 
changes and autophagy. If the dam-
age cannot be repaired, then multiple 
mechanisms can remove such cells via 
senescence, innate immune responses, 
apoptosis and tissue renewal. The activa-
tion and stabilization of p53 due to these 
multiple stress signals, depending on the 
amount of damage and tissue type, dem-
onstrates the importance of p53 in many 
cellular functions. p53 has been directly 
implicated in activating these genotoxic 
pathways.14-18 All of these processes create 
a very complicated view of the functions 
of p53 in particular physiological contexts 
and specifically the pathways involving 
p21Waf1/Cip1.

The p53/p21 pathway functions in 
determining cell arrest, apoptosis or senes-
cence in response to genotoxic stress.15 
p21Waf1/Cip1 was originally identified as 
an inhibitor of cyclin/cyclin-dependent 
kinases, a molecular complex necessary 
to proceed through the cell cycle. As a 
mediator of p53 in growth suppression, it 
is a marker for senescence in fibroblasts.19 
p21Waf1/Cip1 is a member of the CIP/KIP 
family of CDK inhibitors that also include 
p27 and p57 that can inhibit a wide range 
of cyclin/CDKs to control progression 
through the cell cycle. The canonical 
function of the p21 protein is to direct cell 
cycle arrest in response to DNA damage 
in a p53-dependent manner.20,21 The pro-
cess involves the binding of p21 to cyclin-
CDKs, specifically cyclin D-CDK4/6 in 
G

0
, preventing this complex from phos-

phorylating the retinoblastoma protein 
(pRb). Normally, hypophosphorylated 
Rb forms a transcriptional repressive com-
plex with E2F that prevents expression of 
S phase-specific genes. Phosphorylation 
of pRb relieves transcription repression 
of E2F target genes, promoting cell cycle 
progression. p21 prevents Rb phosphory-
lation and maintains G

1
 arrest. The func-

tion of p21 in cell cycle arrest has also been 

replacement of cartilage, hair follicles and 
sebaceous glands, as well as proliferating 
cells.7 Classifying a regenerative process as 
epimorphic regeneration is usually accom-
plished by comparing the process to that 
of limb regeneration in the amphibian. 
MRL mouse ear hole closure does exhibit 
such processes including wound epider-
mal proliferation, basement membrane 
breakdown,8 and dermal proliferation 
leading to hole closure.7

We have recently reported that the 
p21Cip1/Waf1 protein provides a possible link 
between cell cycle control and append-
age regeneration in mice.9 This finding 
is derived from an in vitro study of cells 
from the MRL ear pinna, which dem-
onstrated a higher proliferative rate than 
cells from non-regenerating mouse ears 
and a different cell cycle pattern with a 
significantly higher number of cells in 
G

2
 “arrest” than cells from non-regener-

ating mouse ears. We also found a DNA 
damage response (DDR) and wide-
spread DNA damage demonstrated by 
almost 90% of healer cells being comet-
positive and with increased p53 levels. 
Examination of these cells for defects 
in G

1
 checkpoint genes showed that the 

p21Cip1/Waf1 protein was lacking in healer 
cells. Using Cdkn1atmi/Tyj/J p21-/- mice, 
deficient in the cyclin-dependent kinase 
inhibitor protein p21Cip1/Waf1 for wounding 
experiments, we showed similar regenera-
tive competency as seen in MRL mice, 
which provided a new transgenic mouse 
model of regeneration.

Consistent with the increased DDR in 
cells derived from regeneration-competent 
hosts, we found that the p53 gene was also 
upregulated in MRL regenerative cells 
both pre- and post-injury. It is generally 
considered that p21 is a major down-
stream effector of p53.10 Therefore, we 
investigated the role of p53 in the regen-
erative response.

The Role of p53  
in the Regenerative Response

p53 is a tumor suppressor protein that 
is central to genomic stability and is 
mutated in over 50% of all cancers.11 
This molecule plays an important role 
in the cellular response to multiple types 
of stress including nucleotide depletion, 
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below (fig. 1b), no significant differences 
were seen between the WT, heterozygous 
and homozygous p53 mutant mice with 
ear holes closing between 1.5–2.0 mm 
after 30 days, considered to be a non-
healer phenotype.42 Interestingly, female 
mice, which are usually better healers than 
males, showed no significant differences.42

These results clearly demonstrate 
that p53 is not required for tissue and 
appendage (ear hole closure) epimorphic 
regeneration even in the case of high 
background levels of DNA damage as 
seen in the MRL mouse. This also sug-
gests that p53-induced senescence and 
subsequent removal by the immune 
response is not essential for regenera-
tion in the ear hole closure model. We 
have not ruled out p16-induced senes-
cence, which is independent of p53 and 
p21. However, this typically is associ-
ated with the activation of an oncogene 
and we expect that this pathway is not 
involved in regeneration. We have shown 
that the p16-null transgenic mouse 
does not close ear holes   (fig. 2) and we 
are breeding p21/p16-/- mice to further 

size appeared smaller than the other two 
groups. The males showed larger hole sizes 
just on the border of the healing pheno-
type42 but, again, we found no significant 
differences in healing between any of the 
groups. Although more mice need to be 
analyzed, these early studies indicate that 
p53 is not essential for ear hole closure. 
It is clear from these results that lack of 
p53 does not have a negative effect on 
the regenerative ear hole closure response 
and may even have a beneficial effect. As 
discussed below (fig. 3b), MRL.p53-/- 
healing ear tissue displays interesting dif-
ferences histologically from the MRL/
MpJ healing ear tissue.

(3) Since p53 is a key activator of p21, 
one question concerns why p21 is down 
in the MRL regenerator even though p53 
is up. This would suggest that the MRL 
p53/p21 interaction is defective. Would 
elimination of p53 then lead to a regen-
erative response similar to that seen with 
the elimination of p21? To approach this 
question, we crossed heterozygous B6.p53 
mutant mice43 and then ear-punched all 
offspring at 8–10 weeks of age. As shown 

an apoptotic response10,21 and not to senes-
cence40 in the absence of p21. We actually 
found an increase in TUNEL-positive 
cells in regenerative MRL tissue, indicat-
ing that DNA damage is tolerated in these 
cells. We have not seen evidence for an 
increase in apoptosis in regenerative cells 
in culture.9

(2) Although p53 is upregulated in 
the MRL tissue, is p53 necessary to 
accomplish an ear hole closure regenera-
tive response? To answer this, we crossed 
a p53-/- mouse41 to MRL producing first 
(MRLxp53+/-) F1 mutant mice, then 
MRLx(MRLxp53+/-) BC1 mutant mice, 
and then IC1 intercross mice produc-
ing WT, heterozygous and homozygous 
mutants. As seen in fig. 1a, 30 days after 
ear-punching (2 mm punch) of 8 week old 
mice, all female mice healed with a mean 
ear hole diameter ranging from 0.2–0.4 
mm as is normally seen in parental MRL 
female mice.7 There were no statisti-
cally significant differences between WT  
(n = 11), heterozygous (n = 18) and homo-
zygous p53 nulls (n = 5) even though the 
average homozygous null female hole 

Figure 1. Mice were ear-punched using a 2 mm hole punch and hole diameter was read 2 and 4 weeks post-injury. Red columns = female mice, the 
blue columns = male mice; error bars show standard deviations. (A) MRL/MpJ mice were bred to p53-/- mice41 and IC1 intercrosses were tested as WT, 
heterozygous and homozygous null for the p53 allele. (B) B6.p53-/- mice43 were bred from B6.p53+/- litters and WT, heterozygous and homozygous p53 
null mice were examined.
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alone are non-healers (data not shown). 
Further testing of these mice showed 
unreadable and inflamed ear wounds, 
which were extensively torn, suggesting 
that the mice were still pro-inflammatory. 
This may also explain the unusual results 
seen in Smad3-/- mouse ear wounds,70 
which showed large and highly irregular 
holes.

Differentiation  
in Regenerating Tissue

Examination of the histology of ears from 
ear-punched mice shows that the B6.p53-
null mice do not exhibit newly developed 
tissue and seem to have gone through 
normal healing and scarring as seen in 
B6 mice (fig. 3a). However, analysis of 
ear tissue from the p21-null mice displays 
newly formed dermal tissue, limited chon-
drogenesis and newly formed hair fol-
licles at 6 weeks after wounding, similar 
to MRL.7 Previous reports have shown a 
dependence on p53 for hair follicle regen-
eration.18 Here, we report that the for-
mation of new hair follicles is through 
a p21-independent mechanism. On the 
other hand, MRL.p53-/- ears show unusual 
responses. At 6 weeks, the re-grown ear 
tissue not only has new dermal tissue but 
also extensive adipogenesis and/or chon-
drogenesis indicating more rapid differen-
tiation to adipocytes and chondrocytes in 
new tissue. This supports a recent study 
showing that p53 inhibits adipogenesis.74 
It is possible that this response lacking p53 
would lead to enhanced ear-hole closure 
which is supported by our ear hole closure 
results above (fig. 1a). Also, this relates 
to recent studies showing that IPS induc-
tion is enhanced by the lack of both p53 
and p21.75

Taken together, we show that in the 
MRL ear hole closure model, an example 
of epimorphic regeneration which involves 
the replacement of multiple tissue types 
including cartilage, hair follicles and seba-
ceous glands, there is not a requirement 
for p53.
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mice, which are deficient in the molecules 
downstream of p21, are being tested for 
their ability to regenerate tissue. Given 
that Rb knockout mice die in utero,59 Rb 
heterozygous knockout mice show no ear 
hole closure capacity. p21 acts through Rb 
indirectly to control E2F transcription 
factors and allow for progression through 
the cell cycle.10

One major p53-independent regula-
tory mechanism of p21, which is involved 
in cell growth or inhibition and differ-
entiation, is the Tgfβ1/Smad pathway.60 
Tgfβ1 directs multiple cellular activities 
in embryonic and adult tissues including 
proliferation, differentiation, migration 
and apoptosis, all of which play a role in 
regeneration.61-63 The regulation of p21 by 
Tgfβ1 has been shown to be mediated by 
Smad2 and 3.64,65

Is the Tgfβ/Smad pathway involved in 
the regeneration phenotype of the trans-
genic p21 knockout mouse? Various trans-
genic mouse studies have investigated the 
role of Tgfβ family members in wound 
repair.66 Specifically, Tgfβ1-deficient mice 
with full-thickness excisional back skin 
wounds show a severe delay in late-stage 
wound repair due to increased inflamma-
tion and, even when crossed onto a Scid 
background to compensate for lethal-
ity, healing is delayed due to multifocal 
inflammatory disease.67,68

There is also data showing that Smad3-
null mice present accelerated wound heal-
ing with an increase in tissue renewal 
through re-epithelialization as well as 
reduced inflammation.69,70 This pathway 
is of particular interest, because Smad3 
has been implicated as a candidate gene 
in our genetic mapping studies of healer 
MRL and parental LG mice.71 A notable 
experiment using liver transplantation in 
rats shows that Ad-Smad7, which inhibits 
Smad3, enhances liver regeneration and 
shows normal levels of p27 and p15, but 
no expression of p21, which suggests that 
there is a Smad3/p21 specific pathway.72

During our screen for healer mice, we 
tested a Tgfβ1 knockout mouse. Tgfβ1-
null mice are lethal due to an early inflam-
matory response so they were crossed 
onto a Rag2-null B6/129 background.73 
Preliminary results indicate that there is 
partial healing more so than the negative 
control WT mice (fig. 2). Rag2-/- mice 

investigate the role of senescence in  
regeneration.

Evidence for a p53-Independent 
p21-Activation Pathway

An interesting feature of primary mouse 
ear fibroblasts from MRL mice is that 
approximately 50% of the cells appear to 
be in the G

2
 phase of the cell cycle.9 This 

is similar to the G
2
/M bias observed in 

regenerative tissue from hydra, embryonic 
stem cells and in the liver.44-50 To deter-
mine if our regeneration phenotype is due 
to a lack of cell cycle checkpoint controls, 
we screened various transgenic mice that 
are deficient in cell cycle checkpoint pro-
teins. In collaboration with the MMHCC 
mouse repository in Frederick, Maryland, 
we were able to carry out a preliminary 
screen of transgenic and targeted-mutant 
mice for regeneration phenotypes as  
demonstrated by mean ear hole closure 
over 6 weeks as seen in figure 2. The spe-
cific cell cycle checkpoint proteins exam-
ined were p16 and GADD45, which are 
proteins that have been shown to function 
in the G

1
 and/or G

2
 checkpoints of the cell 

cycle, respectively.51,52

Ear wounds in p16-/- mice on an FVB 
background53 and in GADD45-/- mice on 
a B6/129 background54 showed no hole 
closure. figure 2 shows that neither tar-
geted mutant knockouts healed differently 
than the negative controls. Other proteins 
such as p27 and p15 are also under investi-
gation to determine whether the regenera-
tion phenotype depends on an intact cell 
cycle checkpoint response. If DNA dam-
age and senescence is at the heart of the 
regenerative response, then a p16-/- mouse 
should lead to no healing and that is what 
we see. However, the elimination of p16 
in the context of a healing MRL or p21-/- 
mouse showed no healing beyond the neg-
ative controls. As mentioned above, crosses 
of p21 and p16 mutant null mice are being 
generated since these are the two key mol-
ecules important in senescence.31,55-57

If senescence is not involved, what 
p53-independent control mechanisms of 
p21 might be involved in enabling the 
regeneration phenotype? The p21 pro-
tein has been shown to regulate cell cycle 
progression through the control of the Rb 
protein phosphorylation.58 To this end, 
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Figure 2. Preliminary analysis of mutant mice derived from MMHCC for regeneration capability. The ear pinnae of mice (n = 2 to 5) were wounded by 
hole punching and followed for 6 weeks. Healer (regeneration-competent) controls (MRL/MpJ and p21-/-) and non-healer (regeneration-incompetent) 
controls (B6, FVB) are included in this study. The experimental mice tested include GADD45-/-, p16-/- and tgfβ1, rag2-/-.

Figure 3. Histological analysis of ear sections from ear-punched mice 42 days post-injury. Ears were fixed and embedded,and sections through the 
hole were stained with Alcian blue (cartilage). In (A) sections at low magnification (4X) show the degree of healing with hatched lines indicating the 
likely original hole cut. Above, there is a marker showing 2 mm (the original size of the hole). In (B) there are higher magnifications (20X) of the selected 
healing/regenerating ear tissue showing sections from (a) an MRL/MpJ mouse, (b) 3 different MRL.p53-/- mice, (c) a TgfB1-/-Rag2-/- mouse and (d) a p21-/- 
mouse. Arrows indicate adipocytes (red), chondrocytes (blue-green) and hair follicles (black).
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