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Introduction

Lactose is a constituent of cheese whey, a major by-product of 
dairy industries. The lactose can constitute as much as 50 g·L-1. 
Whey streams could be used as an abundant and renewable raw 
material for microbial fermentations, with lactose providing the 
carbon source. In fact, whey disposal has been under consider-
ation for several years, since it is highly polluting and generated 
in high amounts. Drying is one of the solutions that have been 
considered and has been implemented on an industrial scale. 
However, although the discharge problem is solved, no value is 
added. Whey protein concentrate (WPC) is nowadays one of the 
major products obtained from cheese whey.1 When producing 
WPC, high volumes of a lactose-rich permeate are also gener-
ated. This remains a major pollutant and a profitable use for this 
by-product must be found. The future trend for cheese factories 
is to move towards zero discharge, i.e., move away from high dis-
posal costs and find more environmentally friendly and profitable 
applications for lactose.2 Lactose fermentation to bio-ethanol is 
one of the possibilities. The use of concentrated lactose solutions 
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Lactose is an interesting carbon source for the production of 
several bio-products by fermentation, primarily because it is 
the major component of cheese whey, the main by-product of 
dairy activities. However, the microorganism more widely used 
in industrial fermentation processes, the yeast Saccharomyces 
cerevisiae, does not have a lactose metabolization system. 
Therefore, several metabolic engineering approaches have 
been used to construct lactose-consuming S. cerevisiae strains, 
particularly involving the expression of the lactose genes of the 
phylogenetically related yeast Kluyveromyces lactis, but also 
the lactose genes from Escherichia coli and Aspergillus niger, 
as reviewed here. Due to the existing large amounts of whey, 
the production of bio-ethanol from lactose by engineered  
S. cerevisiae has been considered as a possible route for whey 
surplus. Emphasis is given in the present review on strain 
improvement for lactose-to-ethanol bioprocesses, namely 
flocculent yeast strains for continuous high-cell-density 
systems with enhanced ethanol productivity.

(up to 200 g·L-1) is important since it will permit high ethanol 
titres (up to 10–12% v/v) at the end of fermentation, therefore 
reducing considerably the ethanol distillation costs. However, 
natural lactose-fermenting microorganisms, such as the yeast 
Kluyveromyces marxianus, cannot ferment efficiently (i.e., rap-
idly and with high conversion yields) such high concentrations 
of lactose. Saccharomyces cerevisiae is the organism of choice for 
bioethanol production. However, this yeast is not able of metab-
olizing the sugar lactose. Thus, strain development programs 
through metabolic engineering of S. cerevisiae are required for the 
implementation of lactose-to-ethanol processes with increased 
productivity.

In 1991 Bailey3 proposed the emergence of a new disci-
pline called “metabolic engineering”, which he defined as “the 
improvement of cellular activities by manipulations of enzy-
matic, transport and regulatory functions of the cell with the use 
of recombinant DNA technology.” Initially, metabolic engineer-
ing overlapped with applied molecular biology. Developments in 
genomics and high-throughput system biology tools enhanced 
the rapid characterization of cellular behavior, which led to a 
rapid expansion of metabolic engineering, where strain charac-
terization is often the bottleneck in development programmes. 
Moreover, advanced genetic engineering techniques along with 
the sequencing of whole genomes of several organisms and devel-
opments in bioinformatics have speeded up the process of gene 
cloning and transformation.4 Metabolic engineering processes 
are categorized typically by the approach taken or the aim.4 
These may be: (1) heterologous protein production (2) exten-
sion of substrate range (3) pathways leading to new products 
(4) pathways for degradation of xenobiotics (5) improvement of 
overall cellular physiology (6) elimination or reduction of by-
product formation, and (7) improvement of yield or produc-
tivity. Metabolic engineering of S. cerevisiae strains for lactose 
fermentation fits in the substrate range category of metabolic 
engineering.

Lactose-Consuming Microorganisms

The number of microorganisms that can use lactose as a source 
of carbon and energy is limited, yet including bacteria, yeasts 
and filamentous fungi. Bacteria have evolved different strate-
gies for the uptake and hydrolysis of lactose. The most effective 
implies the simultaneous phosphorylation and translocation 
of the sugar across the cell membrane, existing at least two 
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Lactose metabolism in K. lactis and the GAL/LAC regu-
lon. Similarly to other microorganisms present in milk, K. lactis 
is adapted for the efficient utilization of lactose. The ability of 
this yeast to metabolize lactose results from the presence of lac-
tose permease and β-galactosidase.14 The K. lactis LAC system is 
the best studied within the Kluyveromyces genus and is a good 
model for related species.

The K. lactis lactose permease is a membrane protein of 587 
amino acids encoded by the gene LAC12.15 The lactose uptake in 
K. lactis is mediated by a transport system inducible by lactose 
and galactose (the inducer is intracellular galactose).16 Uptake is 
mediated by a carrier and is saturated at high substrate concen-
trations. Dickson and Barr16 determined a K

m
 of approximately 

2.8 mM for this transport system, while Boze et al.17 reported 
a K

m
 of 1.2–4 mM in a different strain. We have determined 

recently a K
m
 of 1.0–1.8 mM for K. lactis CBS2359, and our 

results of lactose uptake by two recombinant S. cerevisiae strains 
expressing the K. lactis LAC12 gene are also consistent with such 
K

m
 values.18 The transport of lactose in K. lactis is an active pro-

cess, requiring an energy-generating system, which permits the 
intracellular accumulation of lactose against a concentration 
gradient.16,17 The transport is inhibited by the proton ionophore 
2,4-dinitrophenol,16,17 and therefore it has been suggested that the 
transporter operates, at least in part, by a proton symport mecha-
nism.16 In other Kluyveromyces species lactose uptake has also 
been described to proceed via a proton symport mechanism.19-21 
Lac12p shows sequence similarity to the E. coli xylose and arabi-
nose proton symporters15 and a significant sequence and struc-
ture homology with the S. cerevisiae maltose proton symporter 
Mal61p,22 but no significant sequence similarity with the lactose 
permease (lacY gene) of E. coli.15

The β-galactosidase (lactase) is encoded by the LAC4 gene23 
and is described to be intracellular.18,24-26 This enzyme has a K

m
 

for lactose of 12–17 mM and its pH optimum is around 7.25

β-galactosidase hydrolyzes lactose into glucose and galactose. 
Intracellular glucose can enter glycolysis while galactose follows 
the Leloir pathway. In K. lactis, the metabolism of lactose and 

alternative mechanisms for uptake (a lactose-proton symporter 
and a lactose-galactose antiporter). Once inside the bacterial 
cell, the phosphorylated lactose is hydrolyzed by a phospho- 
β-galactosidase (an enzyme that recognises phosphorylated lac-
tose). When the uptake mechanism does not involve phosphory-
lation, lactose is cleaved intracellularly by a β-galactosidase.5

The regulation of lactose utilization by the lac operon in 
Escherichia coli has become a paradigm for prokaryotic gene 
regulation. The E. coli lacZ gene (encoding β-galactosidase) 
has been used commonly as a genetic and biotechnological 
tool, functioning as a reporter gene for protein expression.5 
Moreover, the E. coli lacY gene (encoding lactose permease) 
was the first gene encoding a membrane transport protein 
to be cloned into a recombinant plasmid, overexpressed6 and 
sequenced.7 LacYp is a representative for the Major Facilitator 
Superfamily of transport proteins8 and its structure has been 
recently unveiled.9,10

Lactic acid bacteria (includes several genera such as 
Lactobacillus, Lactococcus, Leuconostoc, Pediococcus and 
Streptococcus) are among the most important lactose-consum-
ing microorganisms, due to their occurrence in milk and dairy 
products. Besides their food-related significance, the importance 
of lactic acid bacteria in biotechnology is extended to the produc-
tion of lactic acid, e.g., from whey fermentation.11

Filamentous fungi often utilize lactose at very low rates.12 In 
fungi there are two principal alternatives for the catabolism of 
lactose: (1) extracellular hydrolysis and subsequent uptake of the 
resulting glucose and galactose monomers and (2) uptake of the 
disaccharide and subsequent intracellular hydrolysis. Fungi spe-
cies such as Aspergillus nidulans, Neurospora crassa or Fusarium 
graminearum follow the second strategy for lactose utilization, 
while others such as Hypocrea jecorina (Trichoderma reesei) and 
Aspergillus niger have the ability to secrete β-galactosidase that 
hydrolyzes lactose in the extracellular medium.12 The yeasts that 
assimilate lactose aerobically are widespread, but those that fer-
ment lactose are rather rare,13 including e.g., Kluyveromyces lactis, 
K. marxianus and Candida pseudotropicalis.

Table 1. GAL/MEL genes of S. cerevisiae and GAL/LAC genes of K. lactis

S. cerevisiae K. lactis

Gene Function Gene Function

Structural/Catabolic genes Structural/Catabolic genes

MEL1 α-Galactosidase LAC12 Lactose/galactose permease

GAL2 Galactose permease LAC4 β-Galactosidase

GAL1a Bifunctional galactokinase/sensor inducer KlGAL1a Bifunctional galactokinase/sensor inducer

GAL10 Uridine diphosphoglucose 4-epimerase KlGAL10 Uridine diphosphoglucose 4-epimerase

GAL7 Galactose-1-phosphate uridylyltransferase KlGAL7 Galactose-1-phosphate uridylyltransferase

GAL5b Phosphoglucomutase KlGAL5b Phosphoglucomutase

Regulatory genes Regulatory genes

GAL4 Transcriptional activator KlGAL4 (LAC9) Transcriptional activator

GAL80 Gal4p repressor KlGAL80 Gal4p repressor

GAL3 Gal80p repressor (sensor/inducer)
aGAL1 has both catabolic (galactokinase) and regulatory (sensor/inducer) functions. bGAL5 is not specific of the GAL regulon, having a more general-
ized role in carbon metabolism.
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metabolic engineering approach. Predominantly three lactose 
consumers have been used as sources of lactose genes: the bacteria 
E. coli, the yeast K. lactis and the filamentous fungi A. niger. Two 
different strategies can be devised: to clone both the lactose per-
mease and β-galactosidase genes or to direct the β-galactosidase 
production to the extracellular medium.

Transfer of E. coli lactose genes. Three different strategies 
have been designed to obtain lactose-consuming S. cerevisiae cells 
using E. coli lactose genes:

(1) As the β-galactosidase from E. coli is cytosolic, lactose has 
to be transported to the cytoplasm to be hydrolised. Thus, the 
cloning of the lacZ gene alone is not enough to obtain recombi-
nants able to utilize lactose. The functional expression of the lacY 
gene will also be required. Guarente and Ptashne41 have shown 
the functional expression of the lacZ gene under the regulation 
of a yeast promoter, which is used widely as a reporter gene. 
However, when cloning the lac operon in a multicopy plasmid 
in S. cerevisiae it was not possible to obtain transformants able 
to utilize lactose.42 The yeast transformants, although expressing 
β-galactosidase, were not able to grow on lactose due to the non-
functionality of the E. coli transport system.

(2) An alternative approach involves the secretion of the  
E. coli β-galactosidase in S. cerevisiae cells. In E. coli, the attempt 
to direct β-galactosidase to the membrane using the signal 
sequence of a membranar protein (lamb) was ineffective.43 In S. 
cerevisiae, different signal sequences have been tried, namely from 
the SUC2,44 MFα 45 and STA2,46 genes, but these attempts were 
also unsuccessful. With the STA2 signal sequence the authors 
were able to detect 76% of β-galactosidase activity in the peri-
plasmatic space but no enzyme activity was detected in the cul-
ture medium. The fusion of glucoamylase residues with E. coli 
β-galactosidase was shown to facilitate its secretion although the 
secretion was not as efficient as with the glucoamylase gene.47 
However, the authors do not mention if the recombinants were 
able to grow on lactose. Using the signal sequence of the mem-
branar protein GgpI (the major yeast glycosylphosphatidylino-
sitol-containing protein), it was possible to direct the E. coli 
β-galactosidase to the extracellular medium and for the first 
time, positive growth on lactose was observed.48

(3) The third approach described in the literature deals with 
the spontaneous lysis of yeast cells overproducing the E. coli 
β-galactosidase enzyme.49 However, it is worth noting that cell 
lysis has a negative impact on downstream processing, which 
represents a disadvantage over the secretion approach. Porro et 
al.49 related the release of β-galactosidase activity in the culture 
medium by recombinant S. cerevisiae with the overexpression of 
the transcriptional activator GAL4, which induced partial lysis of 
the mother cells.50 Fermentation experiments with these transfor-
mants have shown that the release of β-galactosidase in the cul-
ture medium was enough to support growth in culture medium 
containing lactose as the sole carbon source and in whey-based 
culture medium. Ethanol production was observed in station-
ary phase with interesting yields (73–84% of the theoretical 
conversion yield) but unsatisfactory productivities (0.1–0.2 g·L-

1·h-1) (Table 2). Interestingly, diauxic growth was not observed. 
The authors suggest that an excess of Gal4p may modify the 

galactose are closely related. The regulatory circuit of the GAL/
LAC regulon of K. lactis (Table 1) has been studied in detail 
(reviewed in refs. 24, 27 and 28) particularly in comparison with 
the GAL/MEL regulon of S. cerevisiae (Table 1), which is one of 
the most intensively studied and best understood genetic regula-
tory circuits in yeasts and a major model for the study of eukary-
otic regulation (reviewed in refs. 29–31).

S. cerevisiae cannot assimilate lactose, yet it can utilise galac-
tose. Some Saccharomyces yeasts can also assimilate melibiose, 
which is hydrolyzed to glucose and galactose by a secretable 
α-galactosidase encoded by MEL1,32 and other genes of the MEL 
family.33 Galactose is taken up by a permease, encoded by the 
gene GAL2.34 Once inside the cell, catabolism of galactose pro-
ceeds through the highly evolutionarily conserved Leloir path-
way, both in S. cerevisiae and in K. lactis.24,29

Despite the extensive degree of conservation in the group of 
genes involved in the utilization of galactose between the two 
yeasts, differences have arisen as a result of their evolution in dif-
ferent environments: S. cerevisiae has mainly adapted to glucose, 
whereas K. lactis has adapted to lactose. Therefore, the two yeasts 
have differences in the modes of regulation that have important 
consequences in their overall response to carbon sources and 
may account for major physiological differences between these 
yeasts.24,28

The induction of the GAL genes in both S. cerevisiae and  
K. lactis is determined by the interplay between three main GAL-
specific regulatory proteins (Table 1): a transcriptional activator 
(Gal4p, also known as Lac9p in K. lactis), a repressor (Gal80p) 
and a ligand sensor (Gal3p in S. cerevisiae; Gal1p in K. lactis). 
This later activates GAL gene expression after binding galactose 
(the inducer) and ATP.24

Regulation of LAC12 and LAC4 expression in K. lactis is con-
trolled by the same mechanisms that regulate GAL genes. LAC12 
and LAC4 are transcribed divergently from an unusually large 
intergenic region, which works as promoter for the transcription 
of both genes. The LAC12-LAC4 intergenic region contains four 
functional UAS

G
 elements, which are binding sites for the trans-

activator Lac9p. Two functional UAS
G
 elements are located in 

front of each of the genes at almost symmetrical positions. These 
elements cooperate in activating transcription of both genes.35

Metabolic Engineering of Lactose Consuming/
Fermenting S. cerevisiae Cells

One of the first approaches to construct lactose-metabolizing  
S. cerevisiae cells consisted in the production of hybrids of S. 
cerevisiae and K. lactis or K. fragilis, using the protoplast fusion 
technique.36-38 The fusant strains were able to ferment lactose and 
produce more ethanol than the corresponding Kluyveromyces 
parental strain. More recently, the generation of hybrid strains 
of S. cerevisiae and K. lactis able to ferment lactose in sweet and 
salted whey has been reported.39,40 The genetic stability of the 
fusants is a concern when using this methodology.37

As aforementioned, some microorganisms are natural lac-
tose consumers, with their lactose metabolization genes being 
potential candidates for cloning in S. cerevisiae cells in a direct 
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two genes and their intergenic region, was used in the construc-
tion. Thus, transcriptional expression of the genes was controlled 
by the endogenous K. lactis promoter (see above). These authors 
have only obtained Lac+ transformants when using indirect selec-
tion (first selected for G418 resistance and then for growth on 
lactose). Moreover, they reported that the Lac+ transformants 
had integrated 15–25 tandem copies of the vector containing the 
LAC genes into a host chromosome. The transformants obtained 
presented a slow growth phenotype in lactose medium (doubling 
time in lactose minimal media of 6.7 h).53

Jeong et al.54 have constructed the plasmid SH096 by isolating 
the K. lactis lactose-utilizing genes, including LAC4 and LAC12, 
and cloning that DNA into a yeast integrative vector. The yeast 
strains transformed with this vector grew weakly on minimal lac-
tose medium.54

More recently, Rubio-Teixeira et al.55 cloned the LAC4 and 
LAC12 genes in S. cerevisiae but their strategy involved plac-
ing LAC genes under the control of the CYC-GAL promoter 
(a galactose-inducible hybrid promoter) and targeting genomic 
integration to the ribosomal DNA region (RDN1 locus). The 
Lac+ transformants were selected in culture medium contain-
ing lactose as the sole carbon source. However, the transfor-
mants grew slowly in lactose while being stable mitotically. The 
transformants were then crossed with wild-type strains, yielding 
meiotic segregants with good growth and lactose assimilation 
capacity. Finally, two selected haploids were mated to generate a 
fast-growing Lac+ diploid strain. This strain exhibited a respiro-
fermentative metabolism similar to that of K. lactis, with high 
biomass yield but low ethanol production55 (Table 2). The same 
approach was used to construct Lac+ baker’s yeast57 with the abil-
ity to metabolize lactose. Growth of the new strain on cheese 

regulatory pathways, leading to a change in cell wall composi-
tion, which in turn would be responsible for the lysis of older 
cells. As Gal4p is involved in glucose repression of galactose-
utilizing genes, the excess of Gal4p could also be responsible for 
the simultaneous metabolization of glucose and galactose by the 
transformants.49 Compagno et al.51 reported the use of S. cerevisiae 
cells expressing the lacZ gene permeabilized by toluene in the bio-
conversion of lactose/whey to fructose diphosphate. Compagno  
et al.52 have crossed the S. diastaticus yeast strain JM2099 (hav-
ing glucoamylase activities allowing a partial hydrolysis of starch) 
with the laboratory strain W303 to develop a strain able to grow 
simultaneously on starch and whey/lactose. Haploid cells able to 
grow on starch and bearing the appropriate mutation (i.e., leu2) 
have been isolated and transformed with the plasmid pM1 (previ-
ously used in the generation of lactose-utilizing yeast strains49). 
In this way, a yeast strain for the simultaneous utilization of lac-
tose and starch has been developed.

Transfer of K. lactis lactose genes. The utilization of lactose 
by Kluyveromyces strains is based on a lactose transport sys-
tem together with an intracellular β-galactosidase (see above). 
Hence, the same three strategies used with the E. coli lactose 
metabolizing genes have also been used with the Kluyveromyces 
LAC genes. However, as the lactose transport system from 
Kluyveromyces is eukaryotic, it is more prone to work in the 
phylogenetically related S. cerevisiae than the E. coli one. Indeed, 
using simultaneous expression of the lactose permease and intra-
cellular β-galactosidase it was possible to obtain S. cerevisiae cells 
growing on lactose.53-56

Sreekrishna and Dickson53 were the first to construct Lac+  
S. cerevisiae strains by transfer of the LAC12 and LAC4 genes of 
K. lactis. A 13 kb region of the K. lactis genome, comprising the 

Table 2. Fermentation of lactose to ethanol by recombinant S. cerevisiae strains

Characteristics of the 
strain

Cultivation conditions
Ethanol 

 productivity 
(g·L·h-1)

Ethanol 
 produced 

(g·L-1)

Ethanol 
yield 
(%)a

Lactose 
 consumed 

(%)b

Reference

Autolytic cells 
 expressing E. coli lacZ

Shake-flasks; Yeast Nitrogen Base/Lactose (2–6%) 0.1–0.2 5–18 73–84 >97 49

Batch/Fed-batch; YP/Lactose (6%) + whey 1.0 9 60–70 100 52

Expression of K. lactis 
LAC4 and LAC12

Batch; Synthetic lactose (2.2%) medium 0.3 4 34 100 55

Continuous; Semi-synthetic lactose (5%) medium 10–11 20 70–80 >94 58

Batch; Cheese whey permeate (10% lactose) 1.8 53 >98 100 63

Continuous; Cheese whey permeate (5% lactose) 9–10 20 70–80 >98 63

Batch; Whey powder solution (15% lactose) 0.46 55 70 >98 66

Batch; Synthetic lactose (15%) medium 1.5–2.0 63 78–84 >98 68

Secretion of A. niger 
β-galactosidase

Anaerobic shake-flasks; Whey permeate (10% 
 lactose)

0.14–0.6 9.7 86 21 76

Aerobic bioreactor; Synthetic lactose (10%) medium 0.6 30 58 97 76

Batch; Semi-synthetic lactose (5%) medium 1.0 25 >80 >90 78

Continuous; Semi-synthetic lactose (5%) medium 9.0 20 74–83 >90 81

Continuous; Semi-synthetic lactose (10%) medium 3.4–7.0 32–48 70–90 >75 81
aPercentage of the theoretical yield, which is 0.538 g of ethanol produced per g of lactose consumed (i.e., 4 mol of ethanol produced per mol of  
lactose consumed). bPercentage of the initial lactose that was consumed during fermentation.
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recombinant strain was able to flocculate. The flocculation phe-
notype of the recombinant strain was more sensitive to environ-
mental conditions than that of the host by losing its ability to 
flocculate more easily. After the adaptation period referred above, 
it was observed that this recombinant strain metabolized 50 g·L-1 
lactose in less than 40 h, producing 16 g·L-1 ethanol.56

These preliminary results indicated that the recombinant 
strain could be used in a continuous high-cell-density fermenta-
tion system if the flocculation instability could be overcome.58 
Continuous operation in a bioreactor with an appropriate design59 
can be used to select for the most flocculating cells from a mixed 
culture, allowing for the possibility of accumulating a high bio-
mass concentration in the bioreactor with the inherent advan-
tages of operating as a continuous high-cell-density system.60 
The choice of using an airlift bioreactor, which exhibits low shear 
stresses due to the absence of mechanical agitation,61 enabled the 
selection for the most flocculating yeast cells. The non-flocculent 
cells were washed-out from the bioreactor and the existence of 
a sedimentation zone in the top of the reactor coupled with the 
semicylindrical fence in the outlet region helped in the retention 
of the cells with higher sedimentation ability (Fig. 1). Selection 
of a 100% flocculent culture was achieved within just 13 days of 
continuous operation. For the continuously operating bioreactor, 
an ethanol productivity of 11 g·L-1·h-1 (corresponding to a feed 
lactose concentration of 50 g·L-1 and a dilution rate of 0.55 h-1) 
was obtained (Table 2), which is 7 times larger than the continu-
ous conventional systems.58 The system stability was confirmed 
by keeping it in operation for 6 months.58 Also, the resistance 
of this system to nonflocculent contaminants was proved by  
artificially contaminating the bioreactor operating at 0.45 h-1 

whey affected neither the quality of bread nor the yeast gassing 
power.57

In our laboratory, a flocculent S. cerevisiae Lac+ strain was con-
structed56 using the same plasmid (pKR1B-LAC4-1) employed 
by Sreekrishna and Dickson53 but with a different selection pro-
cedure. The plasmid KR1B-LAC4-1 was co-transformed with 
a linear fragment of the plasmid YAC4 (containing the URA3 
gene) into an ura- strain (S. cerevisiae NCYC869-A3). Selection 
was done for ura- complementation in minimal medium plates 
containing galactose as carbon source. Xgal (5-bromo-4-chloro-
3-indolyl- β-D-galactopyranoside) was included in the plates, 
allowing the identification of clones with β-galactosidase activ-
ity (blue colonies). Only four blue colonies were obtained (out 
of 1212) and only 2 kept a stable Lac+ phenotype. One of these 
transformants exhibited unusual morphology and pseudo-myce-
lium and therefore was rejected. The other (named S. cerevisiae 
NCYC869-A3/T1, or simply T1) was selected for more detailed 
characterization. Surprisingly, the recombinant strain metabo-
lized the same amount of lactose (10 g·L-1) regardless of the ini-
tial lactose concentration and ethanol production was very low. 
Moreover, the doubling time of the recombinant strain in lactose 
minimal medium was 5 h.56 After an adaptation period, where 
the strain was maintained in periodically-refreshed liquid lactose 
medium, the performance of the recombinant strain in lactose 
culture medium was significantly improved and an ethanol con-
version yield close to the theoretical value could be obtained. T1 
kept the plasmid pKR1B-Lac4-1 in its autonomous form contrary 
to the Lac+ transformants obtained by Sreekrishna and Dickson.53 
The recombinant T1 presented different flocculation behaviour 
from the host strain S. cerevisiae NYCY869-A3 although the 

Figure 1. Schematic representation and photography (credits: Lucília Domingues) of the airlift bioreactor.
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Strain T1-E was able to ferment efficiently high concentrations 
of lactose to ethanol, producing a maximum of 8% (v/v) etha-
nol from mineral medium with 150 g·L-1 lactose68 (Table 2). It 
was also capable of fermenting three-fold concentrated cheese 
whey, containing 150 g·L-1 lactose, yielding an ethanol titre of 
7% (v/v)66 (Table 2).

Finally, the use of thermosensitive autolytic mutants has been 
reported in order to release Kluyveromyces β-galactosidase into 
the culture medium.69,70 Recombinant S. cerevisiae strains that 
are able of secreting K. lactis β-galactosidase have also been con-
structed.71,72 These approaches were used with the aim of devel-
oping a system for K. lactis β-galactosidase production and not 
for lactose bioconversion to ethanol. More recently, and with 
the same aim, a hybrid protein between K. lactis and A. niger 
β-galactosidase was constructed that increased the yield of the 
recombinant protein released to the growth medium.73

Transfer of A. niger lactose genes. The filamentous fungi  
A. niger is an efficient producer of several secreted glycoproteins, 
some of which are used in industrial processes. Among these is 
β-galactosidase, mainly used to hydrolyze lactose in acid whey.74 
The cloning of the lacA gene (coding for A. niger β-galactosidase) 
with its own signal sequence resulted in recombinant S. cerevisiae 
cells secreting β-galactosidase.75-78

Kumar et al.75 have obtained S. cerevisiae cells growing on lac-
tose by transforming the cells with a yeast multicopy expression 
vector carrying the cDNA for A. niger secretory β-galactosidase 
under the control of ADH1 promoter and terminator. 
Ramakrishnan and Hartley76 studied the fermentation properties 
of the transformants and transformed polyploid distiller’s yeast 
(Mauri) with the same vector. Diauxic growth patterns were not 
observed for the transformants growing on lactose while a typical 
biphasic growth was observed on a mixture of glucose and galac-
tose under aerobic and anaerobic conditions. Rapid and complete 
lactose hydrolysis and higher ethanol (0.31 g per g of sugar) and 
biomass (0.24 g per g of sugar) production were observed with 
distiller’s yeast grown under aerobic conditions.76 However, plas-
mid stability was low.

In our laboratory, flocculent S. cerevisiae strains secreting 
β-galactosidase were constructed77,78 using the vector developed 
by Kumar et al.75 Optimization of bioreactor operation together 
with culture conditions (lactose and yeast extract concentration) 
led to a 21-fold increase in the extracellular β-galactosidase pro-
duced when compared with preliminary shake-flask fermenta-
tions.79 To improve the genetic stability of the strains the lacA 
gene expression cassette was targeted to the δ-sequences in the 
genome.80 Even though our main goal was to produce heter-
ologously A. niger β-galactosidase, we have observed that these 
strains produced ethanol from lactose/whey with close to theo-
retical yields in batch78 and in high-cell-density continuous fer-
mentations81 with complete lactose utilisation (Table 2). The 
use of this strain in the dairy industry is very attractive for the 
simultaneous production of ethanol and β-galactosidase and 
the reduction of the organic load of the whey. The recombi-
nant enzyme can be used for the generation of other products 
within the dairy industry (e.g., lactose-free products, hydrolyzed  
whey syrups).

dilution rate with a 1 x 107 cells·mL-1 culture of recombinant  
E. coli expressing GFP (Green Fluorescent Protein).62

When operating in continuous high-cell-density system 
using cheese whey permeate as substrate an ethanol productiv-
ity near 10 g·L-1·h-1 (corresponding to 0.45 h-1 dilution rate) 
was obtained63 (Table 2). While producing ethanol, the recom-
binant S. cerevisiae strain cleared the cheese whey permeate of 
most organic substances, allowing for a significant reduction 
in the pollutant load of cheese whey. The use of two-fold con-
centrated cheese whey permeate was also considered, resulting 
in a fermentation product with 5% (w/v) ethanol.63 However, 
it was not possible to operate continuously using the high-cell-
density airlift bioreactor with concentrated cheese whey due to 
a deflocculating effect attributed to the salts concentration.63 A 
hydrodynamic and rheological analysis of the continuous airlift 
bioreactor operating at high-cell-density with the recombinant 
T1 strain was conducted.64 Measurements of liquid circula-
tion velocity revealed a critical value of biomass concentration 
at which a dramatic deceleration of net liquid flow appeared 
with increasing biomass quantity. Rheological analysis dem-
onstrated an exponential increase in viscosity of the yeast floc 
suspension at the same biomass concentration (around 73 g·L-1) 
corresponding to 42.8% v/v of solid fraction.64 A multi-route, 
non-structural kinetic model was developed for interpretation 
of ethanol fermentation of lactose using the recombinant floccu-
lent T1 strain.65 In this model, the values of different metabolic 
pathways were calculated applying a modified Monod equation 
rate in which the growth rate is proportional to the concentra-
tion of a key enzyme controlling the single metabolic pathway. 
Three main metabolic routes for S. cerevisiae were considered: 
oxidation of lactose, reduction of lactose (producing ethanol), 
and oxidation of ethanol. A very good agreement between exper-
imental data and simulated profiles of the main variables (lac-
tose, ethanol, biomass and dissolved oxygen concentrations) was 
achieved.65

Unexpectedly, the strain lost its improved phenotype after 
storage at -80°C. Thus, another adaptation period was required 
for the already adapted culture of T1 that had been kept at 
-80°C.56 With the objective of obtaining a stable recombinant 
that could be used industrially, a long-term evolutionary engi-
neering experiment was conducted and a stable evolved strain 
was obtained and named T1-E.66 We identified two molecular 
events that targeted the LAC construct in the evolved strain: a 
1,593-bp deletion in the intergenic region (promoter) between 
LAC4 and LAC12 and a decrease of the plasmid copy number 
by about 10-fold compared to that in the original recombinant. 
Moreover, we have compared the transcriptomes of the original 
and the evolved recombinant strains growing in lactose, using 
cDNA microarrays. Microarray data revealed 173 genes whose 
expression levels differed more than 1.5-fold.67 About half of these 
genes were related to RNA-mediated transposition and the others 
were genes involved in DNA repair and recombination mecha-
nisms, response to stress, chromatin remodeling, cell cycle con-
trol, mitosis regulation, glycolysis and alcoholic fermentation.67 
The evolved T1-E strain retained improved lactose fermentation 
and enhanced flocculation phenotype even after -80°C storage. 
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using other yeast promoters, direct selection of transformants 
was possible but the slow growth phenotype was still observed. 
This indicates that the cloning of the LAC4 and LAC12 genes 
per se is not enough to obtain a good lactose growth phenotype. 
Thus, the crossovers with wild-type strains or evolutionary engi-
neering approaches were needed for the successful generation of 
efficient lactose-consuming recombinants. In the near future, 
further metabolic engineering efforts combined with improved 
bioprocess design will drive the development of more efficient 
fermentation processes for the conversion of concentrated whey 
to bioethanol. Furthermore, the simultaneous production of 
multiple commodities from whey (for instance β-galactosidase 
and ethanol) will improve the economics of whey fermentation 
processes.
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Conclusions

For the conceivable future, there will be large surplus of whey and 
whey permeates worldwide. There is not one single solution to the 
problem of excess whey. The dairy industry should explore fur-
ther the new possibilities for lactose as a raw material for process-
ing in food and especially non-food industries.2 The development 
of processes and products for high volume markets will deter-
mine if a larger utilization of the lactose present in cheese whey 
is possible. Lactose-to-ethanol processes may be one of the solu-
tions. Genetic engineering approaches have been used for the last 
25 years with the aim of developing S. cerevisiae strains for such 
processes. Different strategies have been employed, as reviewed 
here, namely using the lactose metabolization genes from the 
bacteria E. coli, the yeast K. lactis and the filamentous fungi  
A. niger. When considering the metabolic engineering of S. cere-
visiae cells for lactose-to-ethanol bioprocesses, the best results 
have been obtained with recombinants constructed with the K. 
lactis genes. Nevertheless, the direct cloning of LAC4 and LAC12 
from K. lactis with its own promoter did not allow the direct 
selection of transformants in lactose plates and resulted in recom-
binants with a slow growth phenotype in lactose medium. When 
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