We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Carbonic anhydrase activators

    Claudiu T Supuran

    *Author for correspondence: Tel.: +39 055 4573729; Fax: +39 055 4573385;

    E-mail Address: claudiu.supuran@unifi.it

    Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy

    Published Online:https://doi.org/10.4155/fmc-2017-0223

    Mammalian carbonic anhydrases (CAs; EC 4.2.1.1) of which 16 isoforms are known, are involved in important physiological functions. Their inhibition is exploited pharmacologically for the treatment of many diseases (glaucoma, edema, epilepsy, obesity, hypoxic tumors, neuropathic pain, etc.) but the activators were less investigated till recently. A review on the CA activation is presented, with the activation mechanism, drug design approaches of activators and comparison of the various isoforms activation profiles being discussed. Some CAs, which are abundant in the brain, were recently demonstrated to be activatable by drug-like compounds, affording the possibility to design agents that enhance cognition, with potential therapeutic applications in aging and neurodegenerative diseases as well as tissue engineering.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Supuran CT. Structure and function of carbonic anhydrases. Biochem. J. 473(14), 2023–2032 (2016). • Updated review on the carbonic anhydrases (CAs), their structural and functional features.
    • 2 Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov. 7(2), 168–181 (2008).
    • 3 Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? J. Enzyme Inhib. Med. Chem. 31(3), 345–360 (2016). • All CA inhibition mechanisms, five of which known, reviewed.
    • 4 Xu Y, Feng L, Jeffrey PD, Shi Y, Morel FM. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452(7183), 56–61 (2008).
    • 5 Ferry JG. The gamma class of carbonic anhydrases. Biochim. Biophys. Acta 1804(2), 374–381 (2010).
    • 6 Macauley SR, Zimmerman SA, Apolinario EE et al. The archetype gamma-class carbonic anhydrase (Cam) contains iron when synthesized in vivo. Biochemistry 48(5), 817–819 (2009).
    • 7 Tripp BC, Bell CB 3rd, Cruz F, Krebs C, Ferry JG. A role for iron in an ancient carbonic anhydrase. J. Biol. Chem. 279(8), 6683–6687 (2004).
    • 8 Domsic JF, McKenna R. Sequestration of carbon dioxide by the hydrophobic pocket of the carbonic anhydrases. Biochim. Biophys. Acta 1804(2), 326–331 (2010).
    • 9 Tu CK, Silverman DN, Forsman C, Jonsson BH, Lindskog S. Role of histidine 64 in the catalytic mechanism of human carbonic anhydrase II studied with a site-specific mutant. Biochemistry 28(19), 7913–7918 (1989). •• Shows the role of His64 as proton shuttle.
    • 10 Briganti F, Mangani S, Orioli P, Scozzafava A, Vernaglione G, Supuran CT. Carbonic anhydrase activators: x-ray crystallographic and spectroscopic investigations for the interaction of isozymes I and II with histamine. Biochemistry 36(34), 10384–10392 (1997). •• First x-ray crystal structure of a CA–activator complex.
    • 11 Alterio V, Di Fiore A, D'Ambrosio K, Supuran CT, De Simone G. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem. Rev. 112(8), 4421–4468 (2012).
    • 12 Supuran CT. Carbonic anhydrases: from biomedical applications of the inhibitors and activators to biotechnological use for CO2 capture. J. Enzyme Inhib. Med. Chem. 28, 229–230 (2013).
    • 13 Del Prete S, Vullo D, Fisher GM et al. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum – the η-carbonic anhydrases. Bioorg. Med. Chem. Lett. 24, 4389–4396 (2014).
    • 14 Supuran CT. Diuretics: from classical carbonic anhydrase inhibitors to novel applications of the sulfonamides. Curr. Pharm. Des. 14(7), 641–648 (2008).
    • 15 Carta F, Supuran CT. Diuretics with carbonic anhydrase inhibitory action: a patent and literature review (2005–2013). Expert Opin. Ther. Pat. 23(6), 681–691 (2013).
    • 16 Masini E, Carta F, Scozzafava A, Supuran CT. Antiglaucoma carbonic anhydrase inhibitors: a patent review. Expert Opin. Ther. Pat. 23(6), 705–716 (2013).
    • 17 Supuran CT. Structure-based drug discovery of carbonic anhydrase inhibitors. J. Enzyme Inhib. Med. Chem. 27(6), 759–772 (2012).
    • 18 Scozzafava A, Supuran CT, Carta F. Antiobesity carbonic anhydrase inhibitors: a literature and patent review. Expert Opin. Ther. Pat. 23(6), 725–735 (2013).
    • 19 Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nat. Rev. Drug Discov. 10(10), 767–777 (2011).
    • 20 Monti SM, Supuran CT, De Simone G. Anticancer carbonic anhydrase inhibitors: a patent review (2008–2013). Expert Opin. Ther. Pat. 23(6), 737–749 (2013).
    • 21 Supuran CT. Carbonic anhydrase inhibition and the management of hypoxic tumors. Metabolites 7, E48 (2017).
    • 22 Carta F, Di Cesare Mannelli L, Pinard M et al. A class of sulfonamide carbonic anhydrase inhibitors with neuropathic pain modulating effects. Bioorg. Med. Chem. 23(8), 1828–1840 (2015).
    • 23 Supuran CT. Carbonic anhydrase inhibition and the management of neuropathic pain. Expert Rev. Neurother. 16(8), 961–968 (2016).
    • 24 Di Cesare Mannelli L, Micheli L, Carta F, Cozzi A, Ghelardini C, Supuran CT. Carbonic anhydrase inhibition for the management of cerebral ischemia: in vivo evaluation of sulfonamide and coumarin inhibitors. J. Enzyme Inhib. Med. Chem. 31(6), 894–899 (2016).
    • 25 Margheri F, Ceruso M, Carta F et al. Overexpression of the transmembrane carbonic anhydrase isoforms IX and XII in the inflamed synovium. J. Enzyme Inhib. Med. Chem. 31(Suppl. 4), 60–63 (2016).
    • 26 Bua S, Di Cesare Mannelli L, Vullo D et al. Design and synthesis of novel nonsteroidal anti-inflammatory drugs and carbonic anhydrase inhibitors hybrids (NSAIDs-CAIs) for the treatment of rheumatoid arthritis. J. Med. Chem. 60(3), 1159–1170 (2017).
    • 27 Temperini C, Scozzafava A, Supuran CT. Carbonic anhydrase activation and the drug design. Curr. Pharm. Des. 14(7), 708–715 (2008).
    • 28 Isik S, Guler OO, Kockar F, Aydin M, Arslan O, Supuran CT. Saccharomyces cerevisiae β-carbonic anhydrase: inhibition and activation studies. Curr. Pharm. Des. 16(29), 3327–3336 (2010).
    • 29 Vullo D, De Luca V, Scozzafava A et al. The first activation study of a bacterial carbonic anhydrase (CA). The thermostable α-CA from Sulfurihydrogenibium yellowstonense YO3AOP1 is highly activated by amino acids and amines. Bioorg. Med. Chem. Lett. 22(20), 6324–6327 (2012).
    • 30 Innocenti A, Zimmerman SA, Scozzafava A, Ferry JG, Supuran CT. Carbonic anhydrase activators: activation of the archaeal beta-class (Cab) and gamma-class (Cam) carbonic anhydrases with amino acids and amines. Bioorg. Med. Chem. Lett. 18(23), 6194–6198 (2008).
    • 31 Leiner M. Das ferment kohlensäureanhydrase im tierkörper. Naturwissenschaften 28, 316–317 (1940).
    • 32 Leiner M, Leiner G. Die aktivatoren der kohlensäureanhydrase. Naturwissenschaften 29, 195–197 (1941).
    • 33 Leiner M, Leiner G. Die Messmethoden zur untersuchung der katalytischen wirksamkeit der kohlensäureanhydrase. Biochem. Z. 311, 119–145 (1941).
    • 34 Main RE, Locke A. Activation of carbonic anhydrase by histamine. J. Biol. Chem. 140, LXXXI (1941).
    • 35 Kiese M. Die aktivierung der kohlensäureanhydrase. Naturwissenschaften 29, 116–117 (1941).
    • 36 Clark AM, Perrin DD. A re-investigation of the question of activators of carbonic anhydrase. Biochem. J. 48(4), 495–503 (1951).
    • 37 Ho C, Sturtevant JM. Activation of bovine carbonic anhydrase by ethylenediamine tetraacetic acid. Biochem. Biophys. Res. Commun. 3, 20–23 (1960).
    • 38 Silverman DN, Backman L, Tu C. Role of hemoglobin in proton transfer to the active site of carbonic anhydrase. J. Biol. Chem. 254(8), 2588–2591 (1979).
    • 39 Supuran CT. Carbonic anhydrase activators. Part 4. A general mechanism of action for activators of isozymes I, II and III. Rev. Roum. Chim. 37, 411–421 (1992). •• Although published in a minor journal, the paper proposes the CA activation mechanism that was subsequently demonstrated by crystallography and other techniques.
    • 40 Supuran CT, Balaban AT. Carbonic anhydrase activators. Part 8. pKa–activation relationship in a series of amino acid derivatives activators of isozyme II. Rev. Roum. Chim. 39, 107–113 (1994).
    • 41 Supuran CT, Claramunt RM, Lavandera JL, Elguero J. Carbonic anhydrase activators. XV. A kinetic study of the interaction of bovine isozyme II with pyrazoles, bis- and tris-azolyl-methanes. Biol. Pharm. Bull. 19(11), 1417–1422 (1996).
    • 42 Supuran CT, Balaban AT, Cabildo P, Claramunt RM, Lavandera JL, Elguero J. Carbonic anhydrase activators. VII. Isozyme II activation by bisazolyl-methanes, -ethanes and related azoles. Biol. Pharm. Bull. 16(12), 1236–1239 (1993).
    • 43 Briganti F, Scozzafava A, Supuran CT. Carbonic anhydrase activators. Part 19 spectroscopic and kinetic investigations for the interaction of isozymes I and II with primary amines. Met. Based Drugs. 4(4), 221–227 (1997).
    • 44 Nair SK, Christianson DW. Unexpected pH-dependent conformation of His-64, the proton shuttle of carbonic anhydrase II. J. Am. Chem. Soc. 113, 9455–9458 (1991). • Important crystallographic study on the orientation of His64 in the active site of CA II.
    • 45 Temperini C, Scozzafava A, Vullo D, Supuran CT. Carbonic anhydrase activators. Activation of isozymes I, II, IV, VA, VII, and XIV with l- and d-histidine and crystallographic analysis of their adducts with isoform II: engineering proton-transfer processes within the active site of an enzyme. Chemistry 12(27), 7057–7066 (2006).
    • 46 Temperini C, Scozzafava A, Vullo D, Supuran CT. Carbonic anhydrase activators. Activation of isoforms I, II, IV, VA, VII, and XIV with L- and D-phenylalanine and crystallographic analysis of their adducts with isozyme II: stereospecific recognition within the active site of an enzyme and its consequences for the drug design. J. Med. Chem. 49(10), 3019–3027 (2006).
    • 47 Temperini C, Innocenti A, Scozzafava A, Supuran CT. Carbonic anhydrase activators: kinetic and x-ray crystallographic study for the interaction of D- and L-tryptophan with the mammalian isoforms I-XIV. Bioorg. Med. Chem. 16(18), 8373–8378 (2008).
    • 48 Temperini C, Innocenti A, Scozzafava A, Mastrolorenzo A, Supuran CT. Carbonic anhydrase activators: L-adrenaline plugs the active site entrance of isozyme II, activating better isoforms I, IV, VA, VII, and XIV. Bioorg. Med. Chem. Lett. 17(3), 628–635 (2007).
    • 49 Temperini C, Scozzafava A, Puccetti L, Supuran CT. Carbonic anhydrase activators: x-ray crystal structure of the adduct of human isozyme II with L-histidine as a platform for the design of stronger activators. Bioorg. Med. Chem. Lett. 15(23), 5136–5141 (2005).
    • 50 Temperini C, Scozzafava A, Supuran CT. Carbonic anhydrase activators: the first x-ray crystallographic study of an adduct of isoform I. Bioorg. Med. Chem. Lett. 16(19), 5152–5156 (2006).
    • 51 Duda D, Tu C, Qian M et al. Structural and kinetic analysis of the chemical rescue of the proton transfer function of carbonic anhydrase II. Biochemistry 40(6), 1741–1748 (2001).
    • 52 Duda D, Govindasamy L, Agbandje-McKenna M, Tu C, Silverman DN, McKenna R. The refined atomic structure of carbonic anhydrase II at 1.05 A resolution: implications of chemical rescue of proton transfer. Acta Crystallogr. D Biol. Crystallogr. 59, 93–104 (2003).
    • 53 Elder I, Tu C, Ming LJ, McKenna R, Silverman DN. Proton transfer from exogenous donors in catalysis by human carbonic anhydrase II. Arch. Biochem. Biophys. 437(1), 106–114 (2005).
    • 54 Aggarwal M, Kondeti B, Tu C, Maupin CM, Silverman DN, McKenna R. Structural insight into activity enhancement and inhibition of H64A carbonic anhydrase II by imidazoles. IUCrJ 1(Pt 2), 129–135 (2014).
    • 55 Maupin CM, Castillo N, Taraphder S et al. Chemical rescue of enzymes: proton transfer in mutants of human carbonic anhydrase II. J. Am. Chem. Soc. 133(16), 6223–6234 (2011).
    • 56 Vullo D, Nishimori I, Innocenti A, Scozzafava A, Supuran CT. Carbonic anhydrase activators: an activation study of the human mitochondrial isoforms VA and VB with amino acids and amines. Bioorg. Med. Chem. Lett. 17(5), 1336–1340 (2007).
    • 57 Pastorekova S, Vullo D, Nishimori I, Scozzafava A, Pastorek J, Supuran CT. Carbonic anhydrase activators: activation of the human tumor-associated isozymes IX and XII with amino acids and amines. Bioorg. Med. Chem. 16(7), 3530–3536 (2008).
    • 58 Nishimori I, Onishi S, Vullo D, Innocenti A, Scozzafava A, Supuran CT. Carbonic anhydrase activators. The first activation study of the human secretory isoform VI. Bioorg. Med. Chem. 15(15), 5351–5357 (2007).
    • 59 Parkkila S, Vullo D, Puccetti L, Parkkila AK, Scozzafava A, Supuran CT. Carbonic anhydrase activators: activation of isozyme XIII with amino acids and amines. Bioorg. Med. Chem. Lett. 16(15), 3955–3959 (2006).
    • 60 Vullo D, Innocenti A, Nishimori I, Scozzafava A, Kaila K, Supuran CT. Carbonic anhydrase activators: activation of the human isoforms VII (cytosolic) and XIV (transmembrane) with amino acids and amines. Bioorg. Med. Chem. Lett. 17(15), 4107–4112 (2007).
    • 61 Vullo D, Nishimori I, Scozzafava A, Supuran CT. Carbonic anhydrase activators: activation of the human cytosolic isozyme III and membrane-associated isoform IV with amino acids and amines. Bioorg. Med. Chem. Lett. 18(15), 4303–4307 (2008).
    • 62 Innocenti A, Hilvo M, Parkkila S, Scozzafava A, Supuran CT. Carbonic anhydrase activators. Activation of the membrane-associated isoform XV with amino acids and amines. Bioorg. Med. Chem. Lett. 19(13), 3430–3433 (2009).
    • 63 Clare BW, Supuran CT. Carbonic anhydrase activators. 3: structure–activity correlations for a series of isozyme II activators. J. Pharm. Sci. 83(6), 768–773 (1994).
    • 64 Supuran CT, Dinculescu A, Balaban AT. Carbonic anhydrase activators. Part 5. CA II activation by 2,4,6-trisubstituted pyridinium cations with 1-(ω-aminoalkyl) side chains. Rev. Roum. Chim. 38, 343–349 (1993).
    • 65 Supuran CT, Barboiu M, Luca C, Pop E, Brewster ME, Dinculescu A. Carbonic anhydrase activators. Part 14. Synthesis of mono- and bis- pyridinium salt derivatives of 2-amino-5-(2-aminoethyl)- and 2-amino-5-(3-aminopropyl)-1,3,4-thiadiazole, and their interaction with isozyme II. Eur. J. Med. Chem. 31, 597–606 (1996).
    • 66 Ilies MA, Banciu MD, Ilies M et al. Carbonic anhydrase activators. Part 17. Synthesis and activation study of a series of 1-(1,2,4-triazole-(1H)-3-yl)-2,4,6-trisubstituted-pyridinium salts against isozymes I, II and IV. Eur. J. Med. Chem. 32, 911–918 (1997).
    • 67 Ilies M, Banciu MD, Ilies MA, Scozzafava A, Caproiu MT, Supuran CT. Carbonic anhydrase activators: design of high affinity isozymes I, II, and IV activators, incorporating tri-/tetrasubstituted-pyridinium-azole moieties. J. Med. Chem. 45, 504–510 (2002).
    • 68 Dave K, Scozzafava A, Vullo D, Supuran CT, Ilies MA. Pyridinium derivatives of histamine are potent activators of cytosolic carbonic anhydrase isoforms I, II and VII. Org. Biomol. Chem. 9(8), 2790–2800 (2011).
    • 69 Dave K, Ilies MA, Scozzafava A, Temperini C, Vullo D, Supuran CT. An inhibitor-like binding mode of a carbonic anhydrase activator within the active site of isoform II. Bioorg. Med. Chem. Lett. 21(9), 2764–2768 (2011). • Very interesting binding mode for a CA activator (CAA) as shown by kinetic and x-ray crystallographic studies.
    • 70 Scozzafava A, Supuran CT. Carbonic anhydrase activators – part 21. Novel activators of isozymes I, II and IV incorporating carboxamido and ureido histamine moieties. Eur. J. Med. Chem. 35(1), 31–39 (2000).
    • 71 Scozzafava A, Supuran CT. Carbonic anhydrase activators. Part 24. High affinity isozymes I, II and IV activators, derivatives of 4-(4-chlorophenylsulfonylureido-amino acyl)ethyl-1H-imidazole. Eur. J. Pharm. Sci. 10(1), 29–41 (2000).
    • 72 Supuran CT, Scozzafava A. Carbonic anhydrase activators: amino acyl/dipeptidyl histamine derivatives bind with high affinity to isozymes I, II and IV and act as efficient activators. Bioorg. Med. Chem. 7(12), 2915–2923 (1999).
    • 73 Briganti F, Scozzafava A, Supuran CT. Novel carbonic anhydrase isozymes I, II and IV activators incorporating sulfonyl-histamino moieties. Bioorg. Med. Chem. Lett. 9(14), 2043–2048 (1999).
    • 74 Supuran CT, Scozzafava A. Carbonic anhydrase activators: synthesis of high affinity isozymes I, II and IV activators, derivatives of 4-(arylsulfonylureido-amino acyl)ethyl-1H-imidazole. J. Enzyme Inhib. 15(5), 471–486 (2000).
    • 75 Scozzafava A, Iorga B, Supuran CT. Carbonic anhydrase activators: synthesis of high affinity isozymes I, II and IV activators, derivatives of 4-(4-tosylureido-amino acyl)ethyl-1H-imidazole (histamine derivatives). J. Enzyme Inhib. 15(2), 139–161 (2000).
    • 76 Saada MC, Vullo D, Montero JL, Scozzafava A, Winum JY, Supuran CT. Carbonic anhydrase I and II activation with mono- and dihalogenated histamine derivatives. Bioorg. Med. Chem. Lett. 21(16), 4884–4887 (2011).
    • 77 Saada MC, Vullo D, Montero JL, Scozzafava A, Supuran CT, Winum JY. Mono- and di-halogenated histamine, histidine and carnosine derivatives are potent carbonic anhydrase I, II, VII, XII and XIV activators. Bioorg. Med. Chem. 22(17), 4752–4758 (2014).
    • 78 Draghici B, Vullo D, Akocak S, Walker EA, Supuran CT, Ilies MA. Ethylene bis-imidazoles are highly potent and selective activators for isozymes VA and VII of carbonic anhydrase, with a potential nootropic effect. Chem. Commun. (Camb.) 50(45), 5980–5983 (2014).
    • 79 Le Duc Y, Licsandru E, Vullo D, Barboiu M, Supuran CT. Carbonic anhydrases activation with 3-amino-1H-1,2,4-triazole-1-carboxamides: discovery of subnanomolar isoform II activators. Bioorg. Med. Chem. 25(5), 1681–1686 (2017).
    • 80 Licsandru E, Tanc M, Kocsis I, Barboiu M, Supuran CT. A class of carbonic anhydrase I – selective activators. J. Enzyme Inhib. Med. Chem. 32(1), 37–46 (2017).
    • 81 Scozzafava A, Supuran CT. Carbonic anhydrase activators: human isozyme II is strongly activated by oligopeptides incorporating the carboxyterminal sequence of the bicarbonate anion exchanger AE1. Bioorg. Med. Chem. Lett. 12(8), 1177–1180 (2002).
    • 82 Scozzafava A, Supuran CT. Carbonic anhydrase activators: high affinity isozymes I, II, and IV activators, incorporating a beta-alanyl-histidine scaffold. J. Med. Chem. 45(2), 284–291 (2002).
    • 83 Abdo MR, Vullo D, Saada MC et al. Carbonic anhydrase activators: activation of human isozymes I, II and IX with phenylsulfonylhydrazido l-histidine derivatives. Bioorg. Med. Chem. Lett. 19(9), 2440–2443 (2009).
    • 84 Saada MC, Montero JL, Vullo D, Scozzafava A, Winum JY, Supuran CT. Carbonic anhydrase activators: gold nanoparticles coated with derivatized histamine, histidine, and carnosine show enhanced activatory effects on several mammalian isoforms. J. Med. Chem. 54(5), 1170–1177 (2011).
    • 85 Zhang Y, Legrand YM, Petit E, Supuran CT, Barboiu M. Dynamic encapsulation and activation of carbonic anhydrase in multivalent dynameric host matrices. Chem. Commun. (Camb.) 52(21), 4053–4055 (2016).
    • 86 Abdelrahim MY, Tanc M, Winum JY, Supuran CT, Barboiu M. Dominant behaviours in the expression of human carbonic anhydrase hCA I activity. Chem. Commun. (Camb.) 50(59), 8043–8046 (2014).
    • 87 Maccallini C, Di Matteo M, Vullo D et al. Indazole, pyrazole, and oxazole derivatives targeting nitric oxide synthases and carbonic anhydrases. ChemMedChem 11(16), 1695–1699 (2016).
    • 88 Casini A, Caccia S, Scozzafava A, Supuran CT. Carbonic anhydrase activators. The selective serotonin reuptake inhibitors fluoxetine, sertraline and citalopram are strong activators of isozymes I and II. Bioorg. Med. Chem. Lett. 13(16), 2765–2768 (2003).
    • 89 Abdülkadir Coban T, Beydemir S, Gülcin I et al. Sildenafil is a strong activator of mammalian carbonic anhydrase isoforms I-XIV. Bioorg. Med. Chem. 17(16), 5791–5795 (2009).
    • 90 Sugimoto A, Ikeda H, Tsukamoto H et al. Timolol activates the enzyme activities of human carbonic anhydrase I and II. Biol. Pharm. Bull. 33(2), 301–306 (2010). •• The only successful computational study ever reported for a CAA.
    • 91 Angeli A, Vaiano F, Mari F, Bertol E, Supuran CT. Psychoactive substances belonging to the amphetamine class potently activate brain carbonic anhydrase isoforms VA, VB, VII, and XII. J. Enzyme Inhib. Med. Chem. 32(1), 1253–1259 (2017). •• This work shows that many psychoactive substances show highly effective CA-activating effects against many isoforms present in the brain.
    • 92 Earnhardt JN, Wright SK, Qian M et al. Introduction of histidine analogs leads to enhanced proton transfer in carbonic anhydrase V. Arch. Biochem. Biophys. 361(2), 264–270 (1999).
    • 93 Elder I, Han S, Tu C et al. Activation of carbonic anhydrase II by active-site incorporation of histidine analogs. Arch. Biochem. Biophys. 421(2), 283–289 (2004).
    • 94 Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype–phenotype correlation. Hum. Mutat. 24, 272 (2004).
    • 95 Ogilvie JM, Ohlemiller KK, Shah GN et al. Carbonic anhydrase XIV deficiency produces a functional defect in the retinal light response. Proc. Natl Acad. Sci. USA 104(20), 8514–8519 (2007).
    • 96 Datta R, Shah GN, Rubbelke TS et al. Progressive renal injury from transgenic expression of human carbonic anhydrase IV folding mutants is enhanced by deficiency of p58IPK. Proc. Natl Acad. Sci. USA 107(14), 6448–6452 (2010).
    • 97 van Karnebeek CD, Sly WS, Ross CJ et al. Mitochondrial carbonic anhydrase VA deficiency resulting from CA5A alterations presents with hyperammonemia in early childhood. Am. J. Hum. Genet. 94(3), 453–461 (2014).
    • 98 Kendall AG, Tashian RE. Erythrocyte carbonic anhydrase I: inherited deficiency in humans. Science 197(4302), 471–472 (1977).
    • 99 Feldshtein M, Elkrinawi S, Yerushalmi B et al. Hyperchlorhidrosis caused by homozygous mutation in CA12, encoding carbonic anhydrase XII. Am. J. Hum. Genet. 87(5), 713–720 (2010).
    • 100 Almstedt K, Rafstedt T, Supuran CT, Carlsson U, Hammarström P. Small-molecule suppression of misfolding of mutated human carbonic anhydrase II linked to marble brain disease. Biochemistry 48(23), 5358–5364 (2009).
    • 101 Sun MK, Alkon DL. Carbonic anhydrase gating of attention: memory therapy and enhancement. Trends Pharmacol. Sci. 23(2), 83–89 (2002).
    • 102 Sun MK, Alkon DL. Pharmacological enhancement of synaptic efficacy, spatial learning, and memory through carbonic anhydrase activation in rats. J. Pharmacol. Exp. Ther. 297(3), 961–967 (2001).
    • 103 Canto de Souza L, Provensi G, Vullo D et al. Carbonic anhydrase activation enhances object recognition memory in mice through phosphorylation of the extracellular signal-regulated kinase in the cortex and the hippocampus. Neuropharmacology 118, 148–156 (2017). • The mechanism by which the activators achieve the spatial learning and memory enhancement has been reported in this paper.
    • 104 Hipkiss AR. Could carnosine or related structures suppress Alzheimer's disease? J. Alzheimers Dis. 11(2), 229–240 (2007).
    • 105 Wang X, Schröder HC, Schlossmacher U et al. Modulation of the initial mineralization process of SaOS-2 cells by carbonic anhydrase activators and polyphosphate. Calcif. Tissue Int. 94(5), 495–509 (2014).
    • 106 Müller WE, Schröder HC, Schlossmacher U, Grebenjuk VA, Ushijima H, Wang X. Induction of carbonic anhydrase in SaOS-2 cells, exposed to bicarbonate and consequences for calcium phosphate crystal formation. Biomaterials 34(34), 8671–8680 (2013). •• Crucial observation regarding the role of the CAAs for inducing biomineralization and bone formation.
    • 107 Akocak S, Lolak N, Vullo D, Durgun M, Supuran CT. Synthesis and biological evaluation of histamine Schiff bases as carbonic anhydrase I, II, IV, VII, and IX activators. J. Enzyme Inhib. Med. Chem. 32(1), 1305–1312 (2017).