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Purpose
This study was conducted to develop and validate an individualized prediction model for
automated detection of acquired taxane resistance (ATR).   

Materials and Methods
Penalized regression, combined with an individualized pathway score algorithm, was applied
to construct a predictive model using publically available genomic cohorts of ATR and 
intrinsic taxane resistance (ITR). To develop a model with enhanced generalizability, we
merged multiple ATR studies then updated the learning parameter via robust cross-study
validation.  

Results
For internal cross-study validation, the ATR model produced a perfect performance with an
overall area under the receiver operating curve (AUROC) of 1.000 with an area under the
precision-recall curve (AUPRC) of 1.000, a Brier score of 0.007, a sensitivity and a specificity
of 100%. The model showed an excellent performance on two independent blind ATR 
cohorts (overall AUROC of 0.940, AUPRC of 0.940, a Brier score of 0.127). When we applied
our algorithm to two large-scale pharmacogenomic resources for ITR, the Cancer Genome
Project (CGP) and the Cancer Cell Line Encyclopedia (CCLE), an overall ITR cross-study
AUROC was 0.70, which is a far better accuracy than an almost random level reported by
previous studies. Furthermore, this model had a high transferability on blind ATR cohorts
with an AUROC of 0.69, suggesting that general predictive features may be at work across
both ITR and ATR.   

Conclusion
We successfully constructed a multi-study–derived personalized prediction model for ATR
with excellent accuracy, generalizability, and transferability.
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Introduction

Taxanes, notably paclitaxel (PTX) and docetaxel (DTX), are
cytotoxic microtubule-stabilizing agents used in various
types of cancers, including gynaecological cancers (ovarian,
cervical, and endometrial cancer) and breast cancers, with
proven survival benefits [1]. Intrinsic or acquired resistance
(AR) to chemotherapy are major clinical obstacles, resulting
in poor response and lower overall survival rates. Yet, there

is no efficient predictive model for resistance due to its com-
plexities. Drug resistance is a result of complex biochemical
and molecular processes. Moreover, crosstalks between dif-
ferent signaling pathways adds an additional layer of intri-
cacy. Identifying the genetic and pathway alterations for
resistant tumor cells and predicting resistance using genomic
data will be valuable in cancer research and clinical manage-
ment. 

To predict anti-cancer drug responses, recent large-scale
pharmacogenomic projects, notably Cancer Cell Line Ency-
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clopedia (CCLE) and Cancer Genome Project (CGP), pub-
lished genomic data and dose responses for drugs across can-
cer cell lines. CCLE and CGP analyzed responses of over
1,000 cell lines to 24 anti-cancer drugs and over 700 cell lines
to 138 drugs, respectively. Two studies tested over 400 cell
lines and 15 drugs in common. One of the common drugs is
PTX and CGP has additional DTX response data. Despite the
pharmacogenomic significance in medical research, incon-
sistency between two studies has been controversial recently.
A past study reported a discordance in measured pharma-
cologic drug response between CCLE and CGP and incon-
sistent correlation between genomic profile and drug res-
ponse, potentially undermining researches based on the
database [2]. Another study obtained fair statistical consis-
tency by revised metrics but attributed PTX to the majority
of inconsistent drug/cell line pairs [3]. Besides, drug resist-
ance of cell lines in CCLE and CGP is known as intrinsic, pos-
ing a difficulty in modeling AR. Past studies on acquired
taxane resistance (ATR) often individually investigated sin-
gle cell lines and drug treatments, and the generalizability
and transferability of their findings remain undetermined.

High-throughput technologies such as array and sequenc-
ing have drastically altered biological research. Since the
high dimensionality of genomic features renders the conven-
tional regression limited, analyzing large-scale bioinformatic
data became particularly challenging. Standard statistical

models require independent assumption, which is violated
by the highly correlated nature of genomic features. Regu-
larized machine learning such as penalized regression has
been developed for high dimension data structures. Penal-
ized regression with its versatility in data mining and machi-
ne learning quickly became one of the most widely used
ensemble learning methods. The regression is highly data
adaptive, suitable for high dimension low sample size data,
and sensitive for interactions and correlations among fea-
tures. In addition, penalized regression is more interpretable
and hence advantageous than “black-box machine learning
models,” especially in the field of medicine.

In this study, we developed and validated a highly accu-
rate multi-study–derived, multivariable predictive model for
ATR using personalized pathways and sophisticated machi-
ne learning algorithms.

Materials and Methods

1. Study selection 

We searched for relevant articles on the PubMed and 
EMBASE using the following search term combinations:

Records identified through
GEO/AE/PM searching (n=186)

Full text article acesseced for eligibility (n=12)

Studies included in further analysis (n=6)

Records after duplicates removed (n=164)

Records screened (n=164)

Studies excluded after screening (n=152):
  Restricted to only acquired taxane resistance,
  excluded non-human/non-mRNA expression arrays

Studies excluded after screening (n=6):
  Ruled out due to limited sample size,
  non-widely used platforms
  (i.g., Affymetrix/lllumina/Agilent) and
  insufficient information for analysis

Fig. 1. Flow diagram describing the selection process of genomic studies for acquired taxane resistance. GEO, Gene Expres-
sion Omnibus; AE, ArrayExpress; PM, PubMed.
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“(taxane OR taxoids OR paclitaxel OR docetaxel OR cabazi-
taxel) AND (drug resistance OR chemoresistance).” The gene
expression datasets were screened and retrieved from NCBI's
Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.
gov/geo/) or ArrayExpress (http://www.ebi.ac.uk/array-
express) at the European Bioinformatics Institute by the fol-
lowing query: “('taxane' [All Fields] OR 'taxoids' [MeSH
Terms] OR AND 'drug resistance' [MeSH Terms]) AND 
expression profiling by array.” Studies with insufficient sam-
ple sizes, animal data and inadequate control groups were
excluded. We only included samples that acquired taxane 
resistance via stepwise selection and the datasets from 
microarray platforms from Affymetrix GeneChip, Agilent
one-color microarrays and Illumina BeadArray. These plat-
forms are widely used with publicly available annotation 

information and more consistent in quality. The flow chart
of study selection is in Fig. 1 and the selected study cohorts
are summarized in Table 1. 

2. Data processing 

All data sets (GSE36135 [4], GSE28784 [5], GSE23779 [6],
GSE12791 [7], GSE33455 [8], CCLE, and CGP) used in this
study are publicly accessible from the GEO via National Cen-
ter for Biotechnology Information (http://www.ncbi.nih.
gov/geo) and ArrayExpress (http://www.ebi.ac.uk/array-
express) at the European Bioinformatics Institute, CCLE
(http://www.broadinstitute.org/ccle/), and CGP (http://
www.cancerrxgene.org/). Raw gene expression profiles for
CCLE and CGP cell lines were publicly accessible from both

Drug 
Cohort sensitivity Cancer cell lines Centre Platform                                             

S R
Intrinsic drug CCLE–PTXa) 239a) 240 240 Human cancer Broad Affymetrix HG U133 
resistance cell lines Institute Plus 2.0 Array

CGP–PTX, 143 143 388 Human cancer Wellcome Affymetrix HG U133A
DTXa) 244 244 cell lines Sanger 
(E-MTAB-783) Institute

Aqucired drug GSE36135 6 6 Parental docetaxel-sensitive Mount Sinai Affymetrix HG U133 
resistance (Domingo- prostate cancer cell lines School of Plus 2.0 Array

Domenech (DU145 and 22Rv1) and Medicine
et al. [4]) selected docetaxel-resistant cells

(DU145-DR and 22Rv1-DR)
GSE28784 3 6 Docetaxel and paclitaxel Georgetown Affymetrix HG 
(Zwart and resistant MDA-MB-231 University U133A Array
Rechache [5]) (breast cancer) cells

GSE12791 8 8 Parental paclitaxel-sensitive Denovo Affymetrix HG
(Luo et al. [7]) breast cancer cell lines Biopharma U133A Array

(MDA-MB-231) and paclitaxel
resistant cells (MDA-PR)

GSE33455 6 6 Parental docetaxel-sensitive Fundació Affymetrix HG U133 
(Marin-Aguilera prostate cancer cell lines Clínic per a Plus 2.0 Array
et al. [8]) (DU145 and PC3) and la Recerca 

selected docetaxel-resistant cells Biomèdica
(DU145-DR and PC3-DR)

GSE23779 3 3 Parental ovarian cancer University of Illumina Human 
(Landen cell lines (SKOV3ip1) and Alabama at Ref-8 v2.0
et al. [6]) paclitaxel-resistant SKOV3TRip2 Birmingham

Table 1. Characteristics of individual studies

S, sensitive; R, resistant; CCLE, Cancer Cell Line Encyclopedia; PTX, paclitaxel; CGP, Cancer Genome Project; DTX, docetaxel.
a)The resistant/sensitive phenotypes to taxane were classified as follows: cell lines in the below median IC50 or area under
curve (referred to as ActArea in CCLE) values were classified as sensitive and those above median IC50 or area under curve
values were classified as resistance.
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the CCLE website and ArrayExpress under the accession
number E-MTAB-783, respectively. For CCLE and CGP data-
sets, the resistant/sensitive phenotype to taxane were clas-
sified as follows: cell lines in the below median IC50 or area
under curve (referred to as ActArea in CCLE) values were
classified as sensitive and those above median IC50 or area
under curve values were classified as resistance. Detailed
step-by-step normalization methods and procedures have
been documented previously [9]. Expression values from
each data set were normalized and log-transformed. Raw
data from Affymetrix platforms, if available, were pre-
processed using Robust Multi-array Average (RMA) [10].
Otherwise, we used pre-processed data as provided by the
original authors. To generate gene level summarization, we
utilized an interquartile range (IQR) method. This allowed
us to designate the probe set ID with the largest IQR of 
expression values out of all multiple probe set IDs as the rep-
resentative of the gene. Missing expression values are desig-
nated using nearest neighbor imputation (R package impute)
[11]. To achieve correct batch effect and cross-study normal-
ization, ComBat, an empirical Bayes method, was applied
[12]. 

3. Development of the algorithm

The pathway dysregulation scores (PDS) for each individ-
ual sample point were calculated using Pathifier algorithm
which is designed to quantify the degree of pathway abnor-
mality [13]. This method uses the algorithm by Hastie and
Stuetzle to find a principal curve which is nonparametric,
nonlinear generalization of the first principal component for
dimension reduction [14]. 

Consider one-dimensional curve f which is a vector f(s) of
n functions of a single parameter variable s in ndimensional
space. Given a finite ndimensional random vector X=(X1,
X2, ..., Xn), the projection index is defined as:  

Vf (x)=sups{v:||xf(s)||=infµ||xf(µ)||}

and the condition for self-consistency is simply f(v)=E(X|
vf (X)=s). The PDS of sample i is defined as the distance along
the curve between principal curve fi and a reference end
point, defined as the centroid of control set of samples (i.e.,
sensitive cells). Every sample is analyzed in relation to this
principal curve and PDSs are assigned using the normalized
projection distance for each sample’s pathway. Pathway 
information used to design the PDS matrix was obtained
from three curated pathway databases (the Kyoto Encyclo-
pedia of Genes and Genomes, the BioCarta and the National
Cancer Institute–Nature Pathway Interaction Database).
Then we used regularized regression on these PDS matrices
to fit the model. Regularization techniques have been descri-

bed in detail in previous reviews [15,16]. The elastic net is a
regularized regression method that linearly combines the
penalties of the lasso and ridge regression methods and is
defined as p,(j)=(||j||1+(1) 2||j||2) [15,16]. It combines
L2 norm (ridge) and L1 norm (lasso) penalty with a tuning
parameter , where ∈[0, 1] that can control the proportion
of ridge/lasso penalty.

Elastic net is optimal for high dimension, low sample size
(HDLSS) genomic data with highly correlated predictors 
because L1 reduces model complexity and L2 prevents over-
simplifying. To make the multi-study–derived classifier, the
leave-one-out cross validation (LOOCV) procedure, which
is repeated N times (the total number of samples), is used to
estimate the average standard error and identify an optimal
value of the regularization parameter with minimum 
deviance. The efficient parameter selection via global opti-
mization (EPSGO) algorithm was then used to further opti-
mize the parameters [17]. EPSGO, based on learning an
online Gaussian process, is a meta-heuristic algorithm which
selects its parameters according to maximum likelihood. This
algorithm, robust against local minima, is far more compu-
tationally efficient than the commonly used grid search
method. For variable selection, the optimal parameter values
were then utilized. We used R package pathifier to calculate
PDS and glmnet package to construct the model and modi-
fied the methods of Hughey and Butte [9] and the functions
from R package C060 [17]. We utilized the caret R package
which implements e1071 and randomForest packages for
support vector machines (SVM) and random forest (RF), 
respectively, using its default optimization by grid search on
set parameter ranges [18].

4. Evaluation strategies  

The performance evaluation metrics used in this study
were the area under the receiver operating curve (AUROC),
the precision-recall curve (AUPRC), Brier score (BS), preci-
sion, recall, accuracy (ACC), Matthews correlation coefficient
(MCC), and F1 score. Receiver operating curve is a plot of
test sensitivity (true positive [TP]/(TP+false negative [FN])
along the y axis versus 1-specificity (1true negative [TN]/
(false positive [FP]+TN)) along the x axis. Area under the
curve (AUC) value ranges from 0.5 (random prediction) to 1
(perfect prediction). Precision-recall curve is a plot charac-
terized by different set of precision (TP/(TP+FP)) and recall
(sensitivity) of the model evaluated with selected thresholds.
BS is calculated as:

where pi is the predicted probability and oi is the actual out-
come of the event and n is the sample size. BS is essentially

BS=n–1∑(oi–pi)2
n

i=1
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Eligibility

Cohort
partitioning

Learning

Evaluation

Internal/External
validation

Systemic search for study selection
  -Identification, screening, eligibility (Fig. 1)
Pre-processing
  -Cleaning, normalization, transformation QC

Acquired taxane resistance (ATR)
  -Marin-Aguilera et al. [8] (n=12)
  -Domingo-Domenech et al. [4] (n=8)
  -Zwart and Rechache [5] (n=9)
  -Luo et al. [7] (n=8)
  -Landen et al. [6] (n=6)

Evaluation of blind set performance
AUROC, AUPRC, Brier, ACC, Precision, Recall, F1

Model evaluation and interpretation
Discover insights

Intrinsic taxane resistance (ITR) 
  -CGP-PTX (n=286)
  -CGP-DTX (n=488)
  -CCLE-PTX (n=479)

Split for training,
validation, test cohort

Build PDS matrix using
individualized PC analysis
(KEGG, PID, BioCarta)

Regularized regression
(ridge, lasso and elastic net coupled with
LOOCV and parameter optimization [EPSGO])

Evaluation of LOOCV 
(Deviance, AUROC, AUPRC, Brier, 
ACC, Precision, Recall, F1)

Personalized
pathway analysis Machine learning module

EM merge

EM merge

Final prediction model

PC2

PC
3

PC1 2

21
–2

–2
–1

–3

–4
–1.0
–0.5

0
0.5
1.0
1.5

4

0
0

Log lambda

Fig. 2. Workflow for the development and validation of machine learning model for predicting acquired taxane resistance
(ATR). The pipeline consists of three main parts: cross-study normalization, transformation into pathway information and
model construction. The study cohort was preprocessed and splited into an internal development and validation cohort and
an external blind validation cohort. An empirical Bayes approach (Combat) method was used for cross-study normalization.
Transforming gene expression level information into pathway-level score for each individual sample was conducted using
three curated pathway databases (Kyoto Encyclopedia of Genes and Genomes [KEGG], Pathway Interaction Database [PID],
and BioCarta). Using these pathway-level score matrix, penalized regression model was constructed. Parameter optimization
of the prediction model was conducted using leave-one-out cross validation (LOOCV) with Efficient Parameter Selection
via Global Optimization (EPSGO) algorithm. QC, quality control; CGP, Cancer Genome Project; PTX, paclitaxel; DTX, doc-
etaxel; CCLE, Cancer Cell Line Encyclopedia; EM, Empirical Bayes Method; PDS, pathway dysregulation scores; PC, principal
component; AUROC, area under the receiver operating curve; AUPRC, area under the precision-recall curve; ACC, accu-
racy.
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the mean squared error of the probability forecast of a 
dichotomous event. Hence, a small BS corresponds to a good
calibration of predictions. F1 score is a weighted mean of pre-
cision and recall, ranging from 0 (worst value) to 1 (best
value). ACC is defined as (TP+TN)/(TP+TN+FP+FN). MCC,
considered as a balanced measure, is a geometric mean cor-

rected for chance agreement ((TPTN)–(FPFN)/square root
((TP+FP)(TP+FN)(TN+FP)(TN+FN))). Prediction per-
formances of all parameters except BS are directly propor-
tional, ranging from 0 to 1. Higher BS denotes worse per-
formance. MCC ranges from –1 (completely incorrect) to 1
(completely correct). All statistical analyses were performed

Fig. 3.  Multi-study–derived, individualized pathway learning model for predicting acquired taxane resistance (ATR). (A)
Pathway deregulation score (PDS) matrix for the three development cohorts (GSE36135, GSE28784, GSE23779). Each row
(744 pathway features from 11,520 input gene features) represents the zscore-normalized PDS for each individual sample
in each cohort. The color bars in the bottom indicate drug sunsitivity status, type of taxane and study cohort. (B) An example
of principal curve of the pathway. The principal curve is individually learned with each pathways of the development 
cohorts. The data points and the principal curve are projected onto the three principal components (PCs). The principal curve
goes through the cloud of samples and is directed so that control samples (sensitive to taxane) are near the beginning of the
curve. (Continued to the next page)
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using R ver. 3.2.3 (R Foundation for Statistical Computing
Platform, Vienna, Austria).

Results

To develop a robust and generalized ATR prediction
model based on personalized pathway information, we 
devised a workflow that integrates multi-study, and multi-
platform penalized machine learning method with individ-
ual pathway deregulations in taxane treatments (PTX, DTX)
in various cancer cell lines (Fig. 2). Three microarray studies
(GSE36135-DTX-prostate, GSE28784-DTX and PTX-breast,
GSE23779-PTX-ovarian) were used as a development study
set for model construction. For external blind validation, two
independent cohorts (GSE12791-PTX-breast and GSE33455-
DTX-prostate) were used to test the algorithm’s generaliz-
ability and transferability. To explore possible transferability
between intrinsic taxane resistance (ITR) and ATR, we used
CCLE and CGP cohorts as a development set and tested ATR
cohorts as an external blind. Detailed descriptions of cohorts
and the technical variables used in the studies are in Table 1.

We merged the three discovery study cohort using the
ComBat method [12]. These merged gene expression level
data were then transformed into pathway-level information
using the Pathifier algorithm which generated a one-dimen-

sional principal curve from a cloud of data points in a high-
dimensional space (Fig. 3B) and yields a PDS for each indi-
vidual sample in a context-specific manner (Fig. 3A, see
Materials and Methods section) [13]. Using pathway infor-
mation extracted from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [19], Pathway Interaction Database (PID)
[20] and the BioCarta [21], we calculated a principal curve
for each pathway and obtained 744PDS from 11520 merged
genes (Fig. 3A and B). We then applied regularized regres-
sion to PDS matrix to build a prediction model for ATR. Elas-
tic-net regularization linearly combines the ridge and lasso
regression [16]. Hyperparameter  adjusts ridge (L2-norm)
and lasso penalties (L1-norm), whereas and  controls the
total level of penalization. The hyperparameters are fine-
tuned for an optimal elastic-net penalty function. We used
an EPSGO algorithm to optimize  and  with minimum 
binomial deviance (Fig. 3C) [17]. At the value that regular-
ization parameter gave the lowest binomial deviance, EPSGO-
tuned elastic-net selected a parsimonious set of 39 predictors
with non-zero pathway dysregulation coefficients (Fig. 3D).
Detailed descriptions of 39 non-zero pathways and their gene
components are in S1 Table and S2A Fig. Out of 39 non-zero
pathways, five most informative pathways with coefficients
greater than 1 were Biocarta’s “HYPOXIA AND P53 IN THE
CARDIOVASCULAR SYSTEM,” BioCarta’s “MULTI-DRUG
RESISTANCE FACTORS,” KEGG’s “BILE SECRETION,”
PID’s “ALPHAE BETA 7 INTEGRIN CELL SURFACE 
INTERACTIONS,” and KEGG’s “ABC TRANSPORTERS”

Fig. 3.  (Continued from the previous page)  (C) Hyperparameter optimization for elastic-net with Efficient Parameter Selection
via Global Optimization (EPSGO). Cross-study validation deviance as a function of both tuning hyperparameters  and  is
shown.  controls the tradeoff between the ridge and lasso penalties, whereas  controls the overall amount of penalization.
The red arrow highlights the final EPSGO solution where the deviance is within 1SE of the minimum (=0.682 and =0.004).
(D) Heatmap of the pathways with non-zero coefficient. From 744 input pathways, 39 pathways with non-zero coefficients
were selected. The names of the final pathways are labelled on the right side of PDS matrix shown in panel A. S, sensitive;
DTX, docetaxel; PTX, paclitaxel.  
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(S2B Fig.). The final elastic-net model produced a perfect per-
formance on leave-one-out cross-study validation. The over-
all AUROC for the three development cohorts were 1.000
with a AUPRC of 1.000, a BS of 0.007 and a sensitivity, speci-
ficity of 100% (Tables 2, 3, Fig. 4A). We further validated the
generalizability of our model using two external validation
cohorts. Our algorithm showed excellent performances on
both independent test sets. The overall AUROC for the two
external blind cohorts were 0.940 (95% confidence interval
[CI], 0.841 to 1.000) with an AUPRC of 0.940 and a BS of 0.127
(Fig. 4B). The sensitivity and specificity of the algorithm were
90.0% and 80.0%, respectively (Table 3). The algorithm
showed excellent performance on leave-one-out cross-vali-
dation compared to RF or SVM (S3 Fig.).

Next, we explored whether a transferability exists between
ITR to and ATR. We classified the CCLE and CGP data as
sensitive (below the median IC50 or area under curve values)
or resistant (above the median IC50 or area under curve val-
ues). After classification, the total of 239, 143, 244 samples
were obtained in the drug-sensitive (S) group and 240, 143,

244 in the resistant (R) groups of CCLE-PTX, CGP-PTX, CGP-
DTX, respectively. In leave-one-out cross-study validation
for CCLE and CGP, our algorithm showed a high discrimi-
nation ability with an overall AUROC of 0.703 (95% CI, 0.674
to 0.731), an AUPRC of 0.712, a BS of 0.218, a sensitivity of
61.7% and a specificity of 67.1% (Tables 4, 5, Fig. 5A). Con-
sidering the accuracies previously reported on consistency
between CGP and CCLE were close to random level at 0.5,
our model’s performance was remarkable. Next, we tested
whether this ITR-based model could predict ATR. Surpris-
ingly, our ITR-based model had a good prediction perform-
ance on ATR (overall AUROC, 0.688 [95% CI, 0.539 to 0.837];
AUPRC, 0.735; BS, 0.226; sensitivity, 68.0%; and specificity,
64.0%), suggesting high transferability between ITR and ATR
(Table 5, Fig. 5B).

Table 2.  Performance measures in ATR cross-study validation
GSE36135 GSE28784 GSE23779

(Domingo-Domenech et al. [4]) (Zwart and Rechache [5]) (Landen et al. [6])
AUROC 1.000 1.000 1.000
AUPRC 1.000 1.000 1.000
Brier 0.022 0 0.001

AUROC, area under the receiver operating curve; AUPRC, area under the precision-recall curve.

Table 3.  Performance measures in overall cross-study validation and external validation for ATR

Cross study validation Blind study validation
AUROC 1.000 (1.000-1.000) 0.940 (0.841-1.000)
AUPRC 1.000 0.940
Brier score 0.007 0.127
Confusion matrix metrics

Sensitivity (Recall/TPR) 1.000 0.900
Specificity 1.000 0.800
Precision (PPV) 1.000 0.818
Likelihood ratio positive (LR+) Inf 4.500
Likelihood ratio negative (LR–) 0.000 0.125
F1 1.000 0.857

Cohort GSE3613 (Domingo-Domenech et al. [4]), GSE33455 (Marin-Aguilera et al. [8]),
GSE28784 (Zwart and Rechache [5]), GSE12791 (Luo et al. [7])
GSE23779 (Landen et al. [6])

Values in parentheses are 95% confidence intervals. ATR, acquired taxane resistance; AUROC, area under the receiver 
operating curve; AUPRC, area under the precision-recall curve; TPR, true positive rate; PPV, positive predictive value.
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Discussion

The transferability and generalizability of our model may
be attributed to using multi-study–derived and pathway-
based regularized regression. Our model showed high gen-
eralizability for ATR by producing near-perfect performance
in both internal cross-study validation and external valida-

tion. We associate the model’s robustness with our two-step
approach of multi-study–derived pathway mapping and 
penalized regression to maximize generalizability. The first
step was to convert genomic information into pathway infor-
mation because pathways represent multifactorial nature of
cancer and drug resistance better than individual genes. The
second step was to use penalized regression to avoid over-
fitting and secure interpretability.

Fig. 4.  Acquired taxane resistance (ATR)–trained model performances on internal and external validation ATR cohorts. 
Receiver operating characteristic (ROC) and precision-recall curve are used to show ability to predict. (A) Model perform-
ances on internal cross-validation ATR cohorts. (B) Model performances on external blind ATR cohorts. DTX, docetaxel;
PTX, paclitaxel; AUC, area under the curve.
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CCLE and CGP have provided, since their publications,
pharmacogenomic information for prediction of drug sensi-
tivity. Yet, recent studies documented that the inconsistency
of two studies, largely on pharmacologic response to anti-
tumor drugs, may be problematic for studies based on these
datasets. A past study observed very poor correlation of IC50

between CCLE and CGP (Pearson rho of 0.18 in IC50 for PTX
with SVM classifier) [2]. Another study reported a similar
finding, citing PTX among the major cause for drug/cell line
inconsistency (Spearman’s rank correlation coefficient 0.1-
0.2) [3]. Recently, Dong et al. [22] applied linear (SVM) and
non-linear (random forest) modeling and addressed that, 
although SVM achieves better performance (0.55) for PTX
than RF predicting model (0.482), the values were not much
higher than random prediction. Our internal cross-study val-
idation using CCLE and CGP cohorts shows the model with

pathway mapping approach is highly consistent between
CCLE and CGP (overall cross-study AUC, 0.703), compared
to the almost random levels reported in previous studies.
Applying this model on ATR cohorts, we further tested
whether a model built from intrinsic resistance dataset can
predict AR. Surprisingly, prediction parameters were as
high, suggesting the model’s generalizability over intrinsic
and acquired resistant cell lines (overall AUC, 0.688). 

By using pathifier and penalized regression, we achieved
parsimony, narrowing 11,520 input gene features down into
39 non-zero pathways. Interestingly, compared to ATR, the
number of coefficients (features) for ITR are much greater
than for ATR (S4A and S4B Fig.). This is suggesting ITR had
a broader feature selection. Although intrinsic and acquired
resistances are explained by different mechanisms, the algo-
rithm may have captured the common pathways shared by

Table 4.  Performance measures in ITR cross-study validation

CCLE-PTX CGP-PTX CGP-DTX
AUROC 0.739 (0.695-0.783) 0.660 (0.597-0.722) 0.692 (0.645-0.738)
AUPRC 0.735 0.679 0.708
BRIER 0.208 0.23 0.221

Values in parentheses are 95% confidence intervals. ITR, intrinsic taxane resistance; CCLE, Cancer Cell Line Encyclopedia;
PTX, paclitaxel; CGP, Cancer Genome Project; DTX, docetaxel; AUROC, area under the receiver operating curve; AUPRC,
area under the precision-recall curve.

Table 5.  Performance measures in overall cross-study validation for ITR and external validation with ATR cohorts

Cross study validation Blind study validation
AUROC 0.703 (0.674, 0.731) 0.688 (0.539, 0.837)
AUPRC 0.712 0.735
Brier score 0.218 0.226
Confusion matrix metrics

Sensitivity (Recall/TPR) 0.617 0.680
Specificity 0.671 0.640
Precision (PPV) 0.653 0.654
Likelihood ratio positive (LR+) 1.876 1.889
Likelihood ratio negative (LR–) 0.571 0.500
F1 0.634 0.667

Cohort CCLE-PTX GSE3613 (Domingo-Domenech et al. [4]),
CGP-PTX GSE28784 (Zwart and Rechache [5]),
CGP-DTX GSE23779 (Landen et al. [6]),

GSE33455 (Marin-Aguilera et al. [8]), 
GSE12791 (Luo et al. [7])

Values in parentheses are 95% confidence intervals. ITR, intrinsic taxane resistance; ATR, acquired taxane resistance; AUROC,
area under the receiver operating curve; AUPRC, area under the precision-recall curve; TPR, true positive rate; PPV, positive
predictive value; CCLE, Cancer Cell Line Encyclopedia; PTX, paclitaxel; CGP, Cancer Genome Project; DTX, docetaxel.
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both ATR and ITR. This may be one of the reasons that our
model developed from ITR data (CCLE, CGP) was transfer-
able to predict ATR with good accuracy. We additionally 
examined whether ATR-based model predicted ITR and 
observed near-random performance (data not shown). This
implies the smaller number of feature selection for ATR
might be due to the presence of AR-specific pathways. Fur-

ther knowledge of resistant mechanisms is needed to fully
understand this outcome.

One advantage of using regression-based models in med-
ical sciences is results are highly interpretable, compared to
“black-box” models such as deep learning, SVM and random
forest. It is interesting to note that KEGG’s “BILE SECRE-
TION” and PID’s “ALPHAE BETA 7 INTEGRIN CELL SUR-

Fig. 5.  Intrinsic taxane resistance (ITR)trained model performances on internal (ITR) and external validation (acquired tax-
ane resistance [ATR]) cohorts. Receiver operating characteristic (ROC) and precision-recall curve are used to show ability to
predict. (A) Model performances on internal validation of ITR cohorts (CCLE-PTX, CGP-DTX, and CGP-PTX). (B) Model
performances on external ATR cohorts. AUC, area under the curve; CCLE, Cancer Cell Line Encyclopedia; PTX, paclitaxel;
CGP, Cancer Genome Project; DTX, docetaxel.
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FACE INTERACTIONS” were among the top 5 most infor-
mative pathways with coefficient greater than 1 (S2B Fig.).
While the other top pathways (Biocarta’s “HYPOXIA AND
P53 IN THE CARDIOVASCULAR SYSTEM,” BioCarta’s
“MULTI-DRUG RESISTANCE FACTORS,” and KEGG’s
“ABC TRANSPORTERS”) have been consistently associated
with chemoresistance with previous studies to suggest 
robustness of the model [23], no direct physiological relation-
ship between bile secretion, integrin 7 and taxane resistance
has been reported in previous studies [24,25]. Integrins are
reported to be implicated in cell adhesion-mediated drug 
resistance and the examples include integrin 1, which was
among 39 non-zero features, for erlotinib resistance in lung
cancer and lapatinib/trastuzumab in breast cancer [26]. Yet,
the role of integrin 7, one of the most informative feature
according to our algorithm, in drug resistance has not been
thoroughly studied. Further investigations into bile secretion
and integrin 7 pathway may provide novel molecular target
candidates for ATR.

An accurate model will be valuable for clinical decision
making, providing most effective and least toxic drug cho-
ices. In this study, we developed a multi-study–derived per-
sonalized prediction model for ATR with excellent accuracy,
generalizability and transferability.
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