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PREFACE TO THE
REVISED EDITION

The purpose of this second edition is simple. It is to make readily accessible
some newer meta-analytic procedures that have become available since the
publication of the first edition. These newer procedures along with the basic
procedures also described will make it possible for readers to conduct their
own meta-analyses and to evaluate more wisely the meta-analyses conducted
by others. :

In the years since publication of the first edition Donald B. Rubin has
continued to tutor me in matters meta-analytic and otherwise quantitative.
When we collaborate, and we frequently do, he does all the work that is hard
(for me, not for him) and original. Then he insists we publish alphabetically.
What a country!

—Robert Rosenthal
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PREFACE TO THE
FIRST EDITION

My interest in meta-analysis grew out of a research result I couldn’t quite
believe. For reasons chronicled elsewhere (Rosenthal, 1985b), I conducted
some studies to investigate the effect of psychological experimenters’ expec-
tations on the responses obtained from:their research subjects. These studies
suggested that experimenters’ expectations might indeed affect the results of
their research. In the late 1950s that result was not very plausible — not to me
and not to my colleagues.

Along series of replications followed which eventually persuaded me that
there must be something to the phenomenon of interpersonal expectations.
Since the early 1960s I have been combining and comparing the results of
series of research studies dealing with experimenters’ and others’ expecta-
tions (Rosenthal, 1961, 1963). The basic quantitative procedures for com-
bining and comparing research results were available even then (Mosteller
& Bush, 1954; Snedecor, 1946).

In the mid-1960s I began teaching a variety of meta-analytic procedures
in courses on research methods though they were not then called meta-
analytic. Neither this teaching nor my writing employing meta-analytic
procedures seemed to have much effect on the probability of others’ employ-
ing these procedures. What did have an effect on others’ employing meta-
analytic procedures was an absolutely brilliant paper by Gene V Glass
(1976a, 1976b). In this paper, Glass named the summarizing enterprise as
“meta-analysis” and gave an elegant example of a way of doing a meta-
analysis. In the process, he persuaded me, a former psychotherapist, that
I probably had helped those patients I’d thought I’d helped.

Since this early work by Glass, and the subsequent work with his col-
leagues frequently cited in this book, there has been an extraordinary rate of
production of meta-analytic research. Since the late 1970s, there have been
hundreds of published and unpublished 'meta-analyses.

The table of contents and the introductory chapter tell in detail what is in
this book. Its purpose, very briefly, is to describe meta-analytic procedures
in sufficient detail so that they can be carried out by readers of this book and

ix




META-ANALYTIC PROCEDURES

so that they can be wisely evaluated when they have been carried out by
others.

The book was designed to be used by advanced undergraduate students,
graduate students, and researchers in the social and behavioral sciences. The
level of mathematical sophistication required is high school algebra. The
level of statistical sophistication required is about half-way througha second
course in data analysis (e.g., Rosenthal and Rosnow, 1984a; 1991).

I am doubly grateful to the National Science Foundation: first, for having
frequently supported, since 1961, the substantive research on interpersonal
expectations — the research that gave me something to meta-analyze; and
second, for having supported in part the development of some of the meth-
odological procedures to be described in this book.

Let me also thank especially these people: Frederick Mosteller for having
markedly enlarged my horizons about meta-analytic procedures some 20
years ago; Jacob Cohen, a fine colleague I have never met, but whose writings
about power and effect size estimation have influenced me profoundly; and
Donald B. Rubin, a frequent collaborator and my long standing tutor on
matters meta-analytic and otherwise quantitative. I have described our col-
laboration to students as follows: “I ask him questions and he answers them.”
Clearly, the ideal collaboration!

The manuscript was improved greatly by the suggestions of Len Bickman,
Debra Rog, Harris Cooper, and an anonymous reviewer, and it was superbly
typed by Blair Boudreau, whose legendary accuracy ruins one’s skill at, and
motivation for, proofreading.

Finally, I thank MaryLu Rosenthal for what she taught me about biblio-
graphic retrieval in the social sciences (M. Rosenthal, 1985) and for the
countless ways in which she improved the book and its author.

—R. R.

A NOTE ON THE
REVISED EDITION

This revision makes readily accessible some newer meta-analytic procedures
that have been developed since the 1984 edition. A new effect size indicator,
x, for one-sample data is introduced as is a new coefficient of robustness of
replication. Procedures for combining.and comparing effect sizes for multi-
ple dependent variables are described and new data are reported on the
magnitude of the problem of incomplete retrieval (the file drawer problem).
Finally, new results are provided on the social, psychological, economic, and
medical importance of small effect sizes.




Introduction

Two sources of pessimism in the social sciences are discussed. Early examples of meta-
analytic procedures are given that illustrate (1) summarizing relationships, (2) determin-
ing moderator variables, and (3) establishing relationships by aggregate analysis. The
current status of meta-analytic procedures is described and an empirical evaluation of the
employment of meta-analytic procedures is provided.

There is a chronic pessimistic feeling in the social and behavioral sciences
that, when compared to the natural sciences, our progress has been exceed-
ingly slow, if indeed there has been any progress at all. From time to time
this chronic state erupts into an acute condition, or crisis, precipitated in
part by “local” (i.e., disciplinary) developments. For example, in the disci-
pline of social psychology, the precipitating factors leading to prolonged
crisis have been brilliantly analyzed by Ralph Rosnow (1981) in his book,
Paradigms in Transition. It seems a good bet, however, that had we been
doing better as a science on a chronic basis, our acute crisis would have been
less severe. Two general purposes of this book are to describe quantitative
procedures that will show (1) how we can “do better” than we have been
doing, and (2) how we have, in fact, been “doing better” than we think we
have been doing.

I. TWO SOURCES OF PESSIMISM
IN THE SOCIAL SCIENCES!

I.A. Poor Cumulation

One of the two sources of pessimism in the social sciences, the one which
is the focus of this book, is the problem of poor cumulation. This problem
refers to the observation that the social sciences do not show the orderly
progress and development shown by such older sciences as physics and chem-
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istry. The newer work of the physical sciences builds directly upon the older
work of those sciences. The social sciences, on the other hand, seem almost to
be starting anew with each succeeding volume of our scientific journals.
While it appears that the natural and physical sciences have problems of
their own when it comes to successful cumulation (Collins, 1985; Hedges,
1987; Hively, 1989; Koshland, 1989; Mann, 1990; Pool, 1988, 1989; Taubes,
1990), there is no denying that in the matter of cumulating evidence we have
much to be modest about. Poor cumulation does not seem to be due primarily
to lack of replication or failure to recognize the need for replication. Indeed,
the calls for further research with which we so frequently end our articles are
carried wherever our scholarly journals are read. It seems rather that we have
been better at issuing such calls than at knowing what to do with the answers.
There are many areas of the social sciences for which we do have the results
of many studies all addressing essentially the same question. Our summaries
of the results of these sets of studies, however, have not been nearly as
informative as they might have been, either with respect to summarized
significance levels or with respect to summarized effect sizes. Even the best
reviews of research by the most sophisticated workers have rarely told us
more about each study in a set of studies than the direction of the relationship
between the variables investigated and whether or not a given p level was
attained. This state of affairs is beginning to change. More and more reviews
of the literature are moving from the traditional literary format to the
quantitative format (for overviews see Cooper, 1984, 1989b; Glass, McGaw,
& Smith, 1981; Hedges & Olkin, 1985; Hunter & Schmidt, 1990; Hunter,
Schmidt, & Jackson, 1982; Light & Pillemer, 1984; Mullen, 1989; Mullen &
Rosenthal, 1985; Rosenthal, 1980, 1984).
Three more specific purposes of this book relevant to the problem of
poor cumulation include the following: :

(1) Defining the concept of 2 study’s “results” more clearly than is our custom in
the social sciences.

(2) Providing a general framework for conceptualizing meta-analysis, i.e., the
quantitative summary of research domains.

(3) Illustrating the quantitative procedures within this framework so they can be
applied by the reader and/or understood more clearly when applied by oth-

€18.

L.B. Small Effects
The second source of pessimism in the social sciences on which we focus

in this book is the problem of small effects. Even when we do seem to come
up with a possibly replicable result, the practical magnitude of the effect is
almost always small, i.e., accounts foronly a trivial proportion of the variance.

INTRODUCTION s

Thus, the complaint goes, even if some social action program works, or if
some new teaching method works, or if psychotherapy works, the size of the
effect is likely to be so small that it is of no practical consequence whatever.
One specific purpose of this book is to describe a procedure for helping
us to evaluate the social importance of the effects of any independent varia-
ble. This is done in detail in the final chapter.

II. EARLY EXAMPLES OF
META-ANALYTIC PROCEDURES

Early applications of meta-analytic procedures were of three types. The
first type was that in which the goal was to summarize for a set of studies what
the overall relationship was between two variables that had been investigated
in each study. Often this goal was approached by trying to estimate the aver-
age relationship between two variables found in a set of studies. Often this
goal was approached by significance testing, i.e., by trying to determine the
probability that the relationship obtained could have been obtained if, in the
population from which the studies had been sampled, the true relationship
were Zero.

The second type of early application of meta-analytic procedures was not
so much concerned with summarizing the relationship between two varia-
bles, but with determining the factors that were associated with variations
in the magnitude of relationships between the two variables (i.e., the factors
that served as moderator variables).

The third type of early application did not examine any relationship
within each study. Instead, each study provided only aggregated data for
each variable, for instance, the average attitude held by the participants in a
study or their average level of cognitive performance. These aggregated or
averaged data were then correlated with each other or with other character-
istics of the study to test hypotheses or to suggest hypotheses to be tested in
subsequent specifically designed studies.

To summarize the differences among these three types of early application
of meta-analytic procedures we can say that: (1) the first type generally re-
sylted in an estimate of the average correlation (or the combined p level asso-
ciated with that correlation) found in all the studies summarized; (2) the sec-
ond generally resulted in a correlation between some characteristic of the
studies and the correlation (or other index of the size of the effect) found in
the studies; and (3) the third simply correlated mean data obtained from each
study with other mean data or with other characteristics obtained from each
study. We turn now to some examples of these three types of early application.
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I.A. Summarizing Relationships .

One of our early examples is drawn not from social but from agricultural
science. Jay Lush (1931) investigated the relationship between the initial
weight of steers and their subsequent gain in weight. Lush had six samples
of steers available and he was interested in computing the average of the six
correlations he had available (medianr = .39).

What made these six samples of steers famous was not Lush’s averaging
of correlations, but George Snedecor’s (1946) putting the six correlations
into his classic textbook of statistics as an example of how to combine corre-
lation coefficients. Subsequent editions have retained that famous example
(e.g., Snedecor & Cochran, 1980, 1989). Snedecor’s long-time coauthor
William G. Cochran had himself been a pioneer in the field of meta-analysis.
Early on he had addressed himself to the statistical issues involved in com-
paring and combining the results of series of studies (Cochran, 1937, 1943).

In his textbook example, Snedecor (1946) did much more than show how
to combine estimates of magnitudes of relationships (r’s). He also showed
how to assess the heterogeneity of a set of correlation coefficients. That is,
he showed how a )? test could be employed to help us judge whether, over-
all, the correlations differed significantly from each other.

Moving from an agricultural to a social science example, my own early
meta-analytic research was also concerned with estimating average correla-
tions. In one summary of what was then known about the effects of experi-
menters’ expectancies on the results of their research, the average correla-
tions (based on a number of studies each based on a number of
experimenters) were reported between experimenters’ expectancies for their
subjects performance and how their subjects subsequently did perform (Ro-
senthal, 1961, 1963). These average correlations were computed separately
for experimenters who were explicitly encouraged to bias their results (me-
diant = —.21) and those who were not (median r = .43). A test (contrast)
was then performed to help judge whether these average correlations dif-
fered significantly from each other. They did differ, suggesting that, while
under ordinary circumstances experimenters tended to get the results they
expected to get, they tended to get significantly opposite results when they
felt unduly influenced (or even bribed) to bias the results of their research

(Rosenthal, 1961, 1963). Analogous analyses were performed on a series of
studies investigating the relationship between experimenters’ personality
and the extent to which they obtained data affected by their expectancy (Ro-
senthal, 1961, 1963, 1964).

Snedecor’s textbook example of testing for the heterogeneity of a set of
correlation coefficients was also applied to the study of experimenter ef-
fects. In one such analysis, eight studies could be found in which experi-
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menters had served as subjects in the same task they were now administer-
ing to others in their role of experimenter. The correlations could therefore
be obtained between the performance of experimenters at a given task and
the average performance of those experimenters’ subjects on the same task.
The application of Snedecor’s test showed the eight correlation coefficients
to be significantly heterogenous (Rosenthal, 1961, 1963).

Snedecor’s textbook example illustrated both the computation of average
r's and a test for heterogeneity of r’s. What his example did not illustrate was
an overall test of significance to help us judge the probability that the partic-
ular set of r's with their associated tests of significance could have been
obtained if the true value of r in the appropriate population were zero. Had
Snedecor wanted to he could readily have illustrated the process of combin-
ing probability levels. At least two major figures in the history of mathemat-
ical statistics, Ronald Fisher (e.g., 1932, 1938) and Karl Pearson (1933a,
1933b) had already described procedures for combining probabilities. Even
earlier, Tippett (1931) had described a related procedure that did not exactly
combine probabilities but “protected” the smallest obtained p by multiplying
it by the number of tests of significance examined.

Mosteller and Bush (1954) broadened the Fisher and Pearson perspec-
tives and made several methods of combining independent probabilities
available to social scientists in general and to social psychologists in particu-
lar. An early and ingenious application of a method of combining probabili-
ties was described by Stouffer and his colleagues (1949). For three samples
of male soldiers, data were available on the favorability of their view of
women soldiers as a function of the presence of women soldiers at their own
camp. Male soldiers tended to be more unfavorable to women soldiers (as
defined by not wanting their sisters to join the Army) when women soldiers
were at their camp.

Returning to our examples of studies of experimenter expectancy effects
we find illustrations of the application of the Stouffer method of combining
probabilities. After the first three experiments showed the effects of experi-
mentally-created expectations on the results of their research, the three
probability levels obtained were combined to give an overall test of signifi-
cance for the set of three studies (Rosenthal, 1966).

IL.B. Determining Moderator Variables

In this section we describe an early application of meta-analytic proce-
dures in which the goal was not to establish an overall relationship between
two variables, but to determine the factors that were associated with varia-
tions in the magnitudes of the relationships between two variables. Such
factors are known as moderator variables because they moderate or alter
the magnitude of a relationship.
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An early application was by Thorndike (1933). He obtained the results of
36 independent studies of the retest reliability of the Binet test of intelli-
gence. Thorndike was not interested in an overall estimate of the retest relia-
bility per se, but in how the magnitude of the retest reliability correlation
varied as a function of the time interval between the first and second testing.
As might be expected, the greater the interval, the lower the retest reliabil-
ity. These intervals ranged from less than one month to 60 months with a
median interval of about two years.

Thorndike did not report an overall estimate of the retest reliability
(r = .84) or the correlation between the magnitude of the retest reliability
and the retest time interval (r(34) = —.39). He did report the estimated
reliabilities separately for various retest intervals; e.g., less than one month
(r = .95) to nearly five years (r = .81). (The average reliabilities reported
here are not those reported by Thorndike but are corrected estimates.)

A somewhat later example of the use of moderator variables is drawn
from the research program on experimenter effects mentioned earlier. Eight
studies had been summarized in each of which the performance of experi-
menters at a given task could be correlated with the average performance of
those experimenters’ subjects on the same task. Rosenthal (1963, 1964) was
interested in learning the degree to which these correlations changed from
the earlier to the later studies. He found a significant and substantial
(r = .81) effect of when the study was done; studies conducted earlier ob-
tained significantly more positive correlations (relative to later-conducted
studies) while later-conducted studies obtained more negative correlations
(relative to earlier-conducted studies).

IL.C. Establishing Relationships by Aggregate Analysis

In this section we describe an early application of the meta-analytic
procedure wherein each study provides only aggregated (average) data for
each variable.

Underwood (1957) was interested in the relationship between the degree
of retention of various kinds of learned materials (e.g., geometric forms,
nonsense syllables, nouns) and the number of previous lists of materials that
had been learned. He hypothesized that the more lists that had been learned
before the recall tests, the greater would be the forgetting. Underwood
found 14 studies that each yielded both required facts: percentage recalled
after 24 hours and the average number of previously learned lists. His hy-
pothesis was strongly supported by the data. The correlation between these
two variables (r based on ranks) was dramatically large: 1(12) = -91! (We
would not expect to find correlations that large within the individual studies

[NTRODUCTION 9

TABLE 1.1
[llustration of Differences in Summarizing Relationships, Determining
Moderator Variables, and Establishing Relationships

A B C

Correlations Between Mean Ratings Mean Level
Teacher Expectations and of Teacher of Pupil

Pupil Performance (r) Excellence Performance

25 8 IS

.20 9 110

.30 9 105

35 7 105

.15 6 100

.10 5 95

Meadn 22 7.3 105.0

NOTES: The mean of column A illustrates the summarizing function; the correlation between
columns Aand B {r = .59) (and A and C; r = .53) illustrates the examination of moderator variables;
and the correlation between columns B and C illustrates the attempt to establish a refationship (r =
.78). This table represents only a hypothetical example.

contributing to the aggregate analysis, however, since it is characteristic of
aggregate analyses to yield larger correlations.)

ILD. Summarizing, Moderating, and Establishing

Relationships Meta-Analytically

As areview of the differences among the early meta-analytic procedures
designed for the three different purposes we have illustrated so far, Table
1.1 has been prepared, a hypothetical example illustrating differences in
summarizing relationships, determining moderator variables, and estab-
lishing relationships. Column A shows the results of six studies of teacher ex-
pectancy effects expressed for each study as the correlation between teacher
expectations and pupil performance. Column B shows the mean rating of the
excellence of the teachers employed in each of the six studies. Column C
shows the mean level of pupil performance found for all the children of each
of the six studies.

The summarizing function of meta-analysis is illustrated by the mean of
Column A, i.e., the mean magnitude of the relationship between teacher
expectations and pupil performance.

The determination of moderator variables is illustrated by the correla-
tion of the data in Column A and the data in Column B. That correlation
(r = .59) shows that larger effects of teacher expectations are associated
with teachers who have on the average been judged to be more excellent.
Another illustration of moderating effects is found in the correlation be-
tween Column A and Column C. That correlation (r = .53) shows that
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larger effects of teacher expectations are associated with pupils who have on
the average shown higher levels of performance.

The attempt to establish a relation by aggregate analysis is illustrated by
the correlation of Columns B and C. That correlation (r = .78) shows that
higher levels of mean pupil performance are associated with higher levels of
rated teacher excellence. It might be tempting to interpret this correlation to
mean that better teachers produce higher levels of pupil performance but that
cannot properly be inferred from the correlation obtained. It would take a
freshly designed study to establish properly the causal factors, if any, contrib-
uting to the obtained correlation. Similarly, the correlations describing the
operation of moderator variables cannot be interpreted causally in most cases
since we did not randomly assign studies to the various levels of the modera-
tor variables. Cooper (1984, 1989b) has made this point clearly and forcefully
in his book in this series. Causal inferences, however, can be made about the
results of the studies being summarized if these results are based on experi-
ments involving random assignment of subjects to treatment conditions.

{II. THE CURRENT STATUS OF
META-ANALYTIC PROCEDURES

We have now examined several early examples of meta-analytic proce-
dures, some going back over half a century. Although several of the proce-
dures have been available for many years (the present writer has been em-
ploying some for about 30 years), there has been no revolution in how we
conduct reviews of the literature or summarize domains of research. That is,
most reviews of the literature still follow a more traditional narrative style.
However, there may be a revolution in the making. As evidence, consider
that in their analysis of the number of publications on meta-analysis from
the years 1976 to 1982, Lamb and Whitla (1983) found a strong linear in-
crease (r = .85) from the 6 papers of 1976 to the 120 papers of 1982. Since
that time the rapid increase in the ernployment of meta-analytic ideas and
meta-analytic procedures is continuing (Hunter & Schmidt, 1990).

The work that probably did the most to capture the imagination of the
social sciences as to the value of meta-analytic procedures was the brilliant
meta-analytic work of Gene Glass and his collaborators. Specifically, Glass
and his colleagues, employing meta-analytic procedures very similar to
those of the present writer (Rosenthal, 1961, 1963, 1969, 1976; Rosenthal
& Rosnow, 1975) but developed independently, were able to demonstrate
dramatically the effectiveness of psychotherapy (Glass, 1976a, 1976b,
1977; Smith & Glass, 1977; Smith, Glass, & Miller, 1980). Partly because
of the work of Glass and his group, the last few years have shown a rapidly

INTRODUCTION 1

growing number of investigators who have been discussing, employing, and
developing a variety of meta-analytic procedures. These investigators in-
clude Bloom, 1964; Cook & Leviton, 1980; Cooper, 1979, 1982, 1984,
1989a; Cooper & Hazelrigg, 1988; Cooper & Rosenthal, 1980; DePaulo,
Zuckerman, & Rosenthal, 1980; Dusek & Joseph, 1983; Eagly & Carli, 1981;
Feldman, 1971; Fiske, 1983; Glass, 1976, 1980; Glass & Kliegl, 1983; Glass
etal., 1981; Green & Hall, 1984; Hall, 1980, 1984; Harris & Rosenthal, 1985,
1988; Hedges, 1981, 1982a, 1982b, 1982c, 1983a, 1983b; Hedges & Olkin,
1980, 1982, 1983a, 1983b, 1985; Hunter & Schmidt, 1990; Hunter et al,,
1982; Kulik, Kulik, & Cohen, 1979; Light, 1979; Light & Pillemer, 1982;
1984; Light & Smith, 1971; Mintz, 1983; Mullen, 1989; Mullen & Rosenthal,
1985; Pillemer & Light, 1980a, 1980b; Rosenthal, 1963, 1964, 1968, 1969,
1976, 1978, 1979, 1980, 1982, 1983a, 1983b, 1983c, 1985a, 1985b, 1986,
1987a, 1987b, 1990; Rosenthal & DePaulo, 1979; Rosenthal & Rosnow,
1975; Rosenthal & Rubin, 1978a, 1978b,"1979a, 1980, 1982b, 1982c, 1983,
1984, 1986, 1988, 1989, 1991; Shapiro & Shapiro, 1983; Shoham-Salomon
& Rosenthal, 1987; Smith, 1980; Smith & Glass, 1977; Smith et al., 1980;
Strube, Gardner, & Hartmann, 1985; Strube & Hartmann, 1983; Sudman &
Bradburn, 1974; Taveggia, 1974; Viana, 1980; Wachter & Straf, 1990;
Walberg & Haertel, 1980; Wilson & Rachman, 1983; Wolf, 1986; Zucker-
man, DePaulo, & Rosenthal, 1981, and the many others cited in the references
of these workers.

In the pages that lie ahead we consider in detail how to employ a variety
of meta-analytic procedures. Our procedures are not perfect, we can use
them inappropriately, and we will make mistakes. Nevertheless, the alter-
native to the systematic, explicit, quantitative procedures to be described is
even less perfect, even more likely to be applied inappropriately, and even
more likely to lead us to error. There is nothing in the set of meta-analytic
procedures that makes us less able to engage in creative thought. All the
thoughtful and intuitive procedures of the traditional review of the litera-
ture can also be employed in a meta-analytic review. However, meta-
analytic reviews go beyond the traditional reviews in the degree to which
they are more systematic, more explicit, more exhaustive, and more quanti-
tative. Because of these features, meta-analytic reviews are more likely to
lead to summary statements of greater thoroughness, greater precision, and
greater intersubjectivity or objectivity (Kaplan, 1964). In the final chapter
of this book we consider systematically the several criticisms that have been
made of meta-analytic procedures and products.
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IV. AN EMPIRICAL EVALUATION
OF META-ANALYTIC PROCEDURES

Harris Cooper and I were interested in assessing empirically the effects
of employing meta-analytic procedures on the conclusions drawn by inves-
tigators in training (i.e., graduate students) and experienced investigators
(i.e., faculty members) (Cooper & Rosenthal, 1980). The basic idea was to
ask the participants to conduct a review of the literature to address the ques-
tion of sex differences in task persistence. Some of the participants were
randomly assigned to the meta-analytic procedure condition, and some
were randomly assigned to the traditional procedure condition. All of the
participants were given the same seven studies that we knew beforehand
significantly supported overall the hypothesis that females showed greater
task persistence.

There was a total of 41 participants initially blocked on sex and faculty
(versus graduate student) status. However, since neither of these variables
affected the results of the experiment, results were reported for all 41 par-
ticipants combined. Participants assigned to the meta-analytic procedure
condition were asked to record the significance level of each study and were
given detailed instructions on how to combine these significance levels to
obtain an overall test of significance for the entire set of seven studies. Par-
ticipants assigned to the traditional procedure condition were asked to em-
ploy whatever procedures they would normally employ to conduct a review
of the literature.

After participants completed their reviews, they were asked whether the
evidence supported the conclusion that females were more task persistent
than males. They could respond: definitely yes, probably yes, can't tell,
probably no, or definitely no. Participants were also asked to estimate the
magnitude of the relationship between gender and persistence. To this ques-
tion they could respond: none at all, very small, small, moderate, large, and
very large.

Despite the fact that the set of seven studies reviewed showed a clearly
significant relationship between sex and task persistence, 73% of the tradi-
tional reviewers found probably or definitely no support for the hypothesis
compared to only 32% of the meta-analytic reviewers. That difference (sig-
nificant at p < .005), suggests that traditional methods of reviewing may
suffer a very considerable loss of power relative to meta-analytic methods.
Put another way, the incidence of type ILerrors (failing to reject nuil hypoth-
eses that are false) may be far greater for the traditional than for the meta-

analytic procedures of summarizing research domains.

NOTE

1. Throughout this book reference to the social sciences or to the behavioral sciences will
refer to both the social and behavioral sciences.

Defining Research Results

The concept of “research results” is clarified and the relationship between tests of signifi-
cance and estimates of effect sizes is emphasized. Various types of effect size estimates and
adjustments of these estimates are deséribgd. Finally, methods of dealing with the problem
of multiple correlated results are described.

Much of the rest of this book-will deal with quantitative procedures for
comparing and combining the results of a series of studies. Before these
procedures can be discussed meaningfully, however, we must become ex-
plicit about what we mean when we refer to the results of an individual
study.

We begin by stating what we do not mean when we refer to the results of a
study: We do not mean the conclusion drawn by the investigator, since that
is often only vaguely related to the actual results. The metamorphosis that
sometimes occurs between the results section and the discussion section is
itself a topic worthy of detailed consideration. For now it is enough to note
that a fairly ambiguous result often becomes quite smooth and rounded in
the discussion section, so that reviewers who dwell too much on the discus-
sion and too little on the results can be quite misled as to what actually was
found.

We also do not mean the result of an omnibus F test with df > 1 in the
numerator or an omnibus x? test with df > 1. In both cases we are getting
quantitative answers to questions that are often—perhaps usually —hope-
lessly imprecise. Only rarely is one interested in knowing for any fixed-
factor analysis of variance or covariance that somewhere in the thicket of df
there lurk one or more meaningful answers to meaningful questions that
er had not the foresight to ask of our data. Similarly, there are few occa-
sions when what we really want to know is that somewhere in a contingency

13




14 META-ANALYTIC PROCEDURES

table there is an obtained frequency or two that has strayed too far from the
frequency expected for that cell under the null hypothesis.

What we shall mean by the results is the answer to this question: What is
the relationship between any variable X and any variable Y? The variables
X and Y are chosen with only the constraint that their relationship be of
interest to us. The answer to this question must come in two parts: (1) the
estimate of the magnitude of the relationship (the effect size) and (2) an
indication of the accuracy or reliability of the estimated effect size (as in a
confidence interval placed around the estimate). An alternative to the sec-
ond part of the answer is one not intrinsically more useful but one more
consistent with the existing practices of social researchers, that is, the test of
significance of the difference between the obtained effect size and the effect
size expected under the null hypothesis of no relationship between variables
Xand Y.

1. EFFECT SIZE AND
STATISTICAL SIGNIFICANCE

Since the argument has been made that the results of a study with respect
to any given relationship can be expressed an an estimate of an effect size
plus a test of significance, we should make explicit the relationship between
these two quantitities. The general relationship is shown below:

Test of - Size of « Size of
Significance Effect Study

Tables 2.1 and 2.2 give useful specific examples of this general equation.
Equation 2.1 shows that x? on df = 1 is the product of the size of the effect
expressed by ¢? (the squared product moment correlation) multiplied by N
(the number of subjects or other sampling units). It should be noted that ¢ is
merely Pearson’s r applied to dichotomous data, i.e., data coded as taking on
only two values suchasOand 1, 1 and 2, or +1 and —1.

Equation 2.2 is simply the square root of equation 2.1, It shows that the
standard normal deviate Z (i.e., the square root of x?on 1 df) is the product
of ¢ (the product moment correlation) and V/N. Equation 2.3 shows that t is
the product of the effect size t/ V1 — 2 and Vdf, an index of the size of the
study. The denominator of this effect size (V1 — r?) is also known as the
coefficient of alienation or k, an index of the degree of noncorrelation
(Guilford & Fruchter, 1978). This effect size, therefore, can be rewritten as
1/k, the ratio of correlation to noncorrelation, a kind of signal-to-noise ratio.
Equations 2.4 and 2.5 share the same effect size, the difference between the
means of the two compared groups divided by, or standardized by, the
unbiased estimate of the population standard deviation.

DEFINING RESEARCH RESULTS

TABLE 2.1

Examples of the Relationship Between Tests of Significance

and Effect Size: x2(1), Z, and t

——

Test of _ Size of Size of
Equation Significance Effect Study
2.1 x2(1) = @ X N
2.2 z = ® WN
2.3 t = _r X Vdf
1-r?
2.4 t = MI’M2>3 X 1
S o + A
m n
S n+n
b
2.6 t =, (MM} M2 VEE
‘ o (n; + ny)
2.7 t = d X Vdf
2

a."Also called g (Hedges, 1981, 1982a).
b: Also called d (Cohen, 1969, 1977, 1988).

TABLE 2.2

Examples of the Relationship Between Tests of Significance
and Effect Size: F and t for Correlated Observations

Test of _ Size of Size of
Equation Significance - Effect x Study
2.8 Fa = R X df error
I—r2
29 Fb = cta? X df error
1 — eta? df means
2.10 Fb = S? means x n
S2 .
2.11 te = r X Vdf
V=12
2.12 e = b x Va
Sp
2.13 e = d’ X Vaf

a. Numerator df = 1.
b. numerator df may take on any value.
c. Correlated observations.
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This latter effect size (M; — M,)/S is the one typically employed by Glass
and his colleagues (1981) with the S computed as[ 2 (X — X)%/(n, —1) 1%
employing only the subjects or other sampling units from the control group,
The pooled S-—that is, the one computed from both groups—tends to pro-
vide a better estimate in the long run of the population standard deviation,
However, when the S’s based on the two different conditions differ greatly
from each other, choosing the control group S as the standardizing quantity
is a very reasonable alternative. That is because it is always possible that the
experimental treatment itself has made the S of the experimental group too
large or too small relative to the S of the control group.

Another alternative when the S’s of the two groups differ greatly is to
transform the data to make the S’s more similar. Such transformations (e.g,,
logs, square roots, etc.) of course require our having access to the original
data, but that is also often required to compute S separately for the control
group. When only a mean square error from an analysis of variance is availa-
ble we must be content to use its square root (S) as our standardizing denom-
inator in any case. Or if only the results of a t test are given, we are similarly
forced to compute the effect size using a pooled estimate of S. (We could use
equations 2.4 or 2.5 to solve for (M; — M,)/S.)

Before leaving the topic of whether to compute S only from the control
group or from both groups we should remind ourselves of the following:
When S’s differ greatly for the two groups so that we are inclined to com-
pute S only from the control group, ordinary t tests may give misleading
results. Such problems can be approached by approximate procedures (Sne-
decor & Cochran, 1989, pp. 96-98) but are perhaps best dealt with by ap-
propriate transformation of the data (Tukey, 1977).

Equation 2.6 shows an effect size only slightly different from that of
equations 2.4 and 2.5. The only difference is that the standardizing quantity
for the difference between the means is o (pooled sums of squares divided
by N) rather than S (pooled sums of squares divided by N —k for k groups).
This is one of the effect sizes employed by Cohen (1969, 1977, 1988) and by
Friedman (1968). Basically this index, Cohen’s d, is the difference between
the means of the groups being compared given in standard score units or
z-scores. Equation 2.7 shows (M; — M, )/o expressed as d and the size of study
term simplified considerably for those situations in which it is known or in
which it can be reasonably assumed that the sample sizes (n, and n,) are equal.

Equation 2.8 of Table 2.2 shows that F with one df in the numerator is the
product of the squared ingredients of the right hand side of equation 2.3 of
Table 2.1. That is just as it should be, of course, given that t? = F when df
1 in the numerator of F.

Equation 2.9 is the generalization of equation 2.8 to the situation of df >
1 in the numerator. Thus eta? refers to the proportion of variance accounted

for just as 12 does, but eta? carries no implication that the relationship be-
tween the two variables in question is linear. Equation 2. 10 shows the effect
size for F as the ratio of the variance of the condition means to the pooled
within group variance, while the size of the study is indexed by n, the num-
per of observations in each of the groups. Because we rarely employ fixed
effect F tests with df > 1 in the numerator in meta-analytic work, equations
2.9 and 2.10 are used infrequently in summarizing domains of research.

LA. Comparingrtod

Equation 2.11 has for its test of significance a t for correlated observa-
tions or repeated measures. It is important to note that this equation for the
correlated t is identical to equation 2.3 (Table 2.1) for the independent sam-
plest. Thus when we employ r as our effect size estimate, we need not make
any special adjustment in moving from t tests for independent to those for
correlated observations. That is not the situation for equations 2.12 and
2.13, however. When the effect size estimates are the mean differences
divided either by S or by o, the definition of the size of the study changes by
a factor of 2 in going from t for independent observations to t for correlated
observations. This inconsistency in definitions of size of study is one of the
reasons I have grown to prefer r as an effect size estimate rather than d, after
many years of using both r and d.

Another reason for preferring r over d as an effect size estimate is that we
are often unable to compute d accurately from the information provided by
the author of the original article. Investigators sometimes report only their
t’s:and df’s but not their sample sizes. Therefore, we cannot use equations
2.4, 2.5, or 2.6 to compute the effect sizes. We could do so only if we
assumed n| = n,. If we did so, for example, from rearranging equation 2.7,
we could get d as follows:

_ 2t
vat [2.14]

If the investigator’s sample sizes were equal, d would be accurate, but as
~ny and n, become more and more unequal, d will be more and more underes-
timated. Table 2.3 shows for eight studies, all witht = 3.00 and df = n; + n,
= 2 = 98, the increasing underestimation of d when we assume equal n’s
and employ equation 2.14. It should be noted, however, that when the split
is no more extreme than 70:30 the underestimation is less than 8%.

A third reason for preferring r to d as an effect size estimate has to do
with simplicity of interpretation in practical terms. In the final chapter of
this book we describe the BESD (binomial effect size display), a method for
displaying the practical importance of the size of an obtained effect. Using
this method we can immediately convert r to an improvement in success rate
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TABLE 2.3

found by rearranging equations 2.1, 2.3, and 2.8 (Cohen, 1965; Friedman,
Underestimation of d by “Equal n” Formula

1968):

Raw Underesrimater

Study n, n, Accurated®  Estimatedd®  Difference (in percentages) o=/ gﬂz
1 50 50 61 61 .00 .00 N [2.15]
2 60 40 .62 .61 ~.01 .02
3 70 30 .66 .61 -.05 .08
4 80 20 .76 .61 ~.15 .20
5 90 10 1.01 .61 .40 .40
6 95 5 1.39 61 —-.78 .56 r= 2
7 98 2 2.16 .61 —1.55 72 2 + df [2.16]
8 99 1 3.05 .61 ~2.44 .80
ad=_ M7*")  _ generalformuia from rearranging equation 2.6. where df = n; +n, — 2, and

Vdf Vyny
bd=_2 = “equaln formula from rearranging equation 2.7. r=/ F(1,—)

N/ F(l,—:) + df error [2.17]

where F(1, —) indicates any F with df = 1 in the numerator.
In case none of these tests of significance have been employed or re-
ported, we can usefully estimate an effect size r from a p level alone as long

associated, for example, with employing a new treatment procedure or a
new selection device, or a new predictor variable. Because of the probabil-
ity of seriously misinterpreting its practical importance (as discussed in
Chapter 7), we shall not use 2 as an effect size estimate (Rosenthal & Rubin; as we know the size of the study (N). We convert the obtained p to its stan-
1982c¢). dard normal deviate equivalent using a table of Z values. We then find r
A final reason for preferring r over d is its greater flexibility; r can always from:
be used whenever d can be but d cannot always be used whenever r can be.
Sometimes, for example, the basic hypothesis is that there will be a particular
ordering of means, e.g., 1, 3, 5, 7 with contrast weights of -3, -1, 1, 3
(Rosenthal & Rosnow, 1985). In such a situation d is useless but r suits very
well indeed.
Although I have grown to prefer r over d for the reasons just given, the
most important point to be made is that some estimate of the size of the
effect should always be given whenever results are reported. Whether we
employ 1, g, d, Glass’s A (difference between the means divided by the S
computed from the control group only) or any of the other effect size esti-
mates that could be employed (e.g., Cohen, 1977, 1988) is less important
than that some effect size estimate be employed along with the more tradi-
tional test of significance.

[2.18]

It should be noted that equations 2.15 to 2.18 all yield product moment
correlation coefficients. It makes no difference whether the data are in di-
chotomous or continuous form, or whether they are ranked. Thus correla-
tions known as Pearson’s r, Spearman’s rho, phi, or point biserial r, are all
defined in exactly the same way-—though there are computational simplifi-
cations available so that some appear to be different from others—and are
interpreted in exactly the same way.

If we should want to have r as our effect size estimate when only Cohen’s

d is available we can readily go to r from d (Cohen, 1977):
1.B. Computing Effect Sizes

The emphasis in this book will be on r as the primary effect size estimate. d
Since most investigators do not yet routinely provide effect size estimates r= o 1
along with their tests of significance we must usually compute our own from d* + Pq [2.19]

the tests of significance they have provided. The following formulas can be
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where p is the proportion of the total population that is in the first of the two
groups being compared and q is the proportion in the second of the two
groups, or 1 — p. When p and q are equal, or when they can be viewed as
equal in principle, equation 2.19 is simplified to equation 2.20.

TABLE 2.4
Population Effect Sizes and Results of Significance Testing
as Determinants of Inferential Errors

e
Results of Significance Testing

Population

d Effect Size Not Significant Significant

Va4 4 [2.20]

I =

Zero No Error Type I Error

. . . . Small Type I Errora No Errorb
In most experimental applications we use equation 2.20 because we think of

. L o . . .. Large Type 1l Error¢ No Error
equal population sizes in principle. We might prefer equation 2.19 in situa-
tions where we have intrinsic inequality of population sizes as when we
compare the personal adjustment scores of a random sample of normals and
arandom sample of hospitalized psychiatric patients.

In those cases where we want to work with Cohen’s d but have only r

available we can go from rto d:

2 Low power may lead to failure to detect the true effect, but if the true effect is quite small the costs
ot this error may not be too great.

b. Although not an inferential error, if the effect size is very small and N is very large we may mistake a
result that is merely very significant for one that is of practical importance.

¢. Low power may lead to failure to detect the true effect and with a substantial true effect the costs of
this error may be very great.

III. ADJUSTING EFFECT SIZE ESTIMATES

HI.A. The Fisher and the Hedges Adjustments

In this book our primary effect size estimator will be the correlation
coefficient r. However, as the population value of r gets further and further
from zero the distribution of r's sampled from that population becomes
more and more skewed. This fact complicates the comparison and combina-
tion of r’s, a complication addressed by Fisher (1928). He devised a transfor-
mation (z,) that is distributed nearly normally. In virtually all the meta-
analytic procedures we shall be discussing, whenever we are interested inr
we shall actually carry out most of our computations not on r but on its
transformation z,. The relationship between r and z, is given by:

Vi 2 [2.21]

II. INFERENTIAL ERRORS

If the reported results of a study always include both an estimate of effect
size and a test of significance (or a related procedure such as a confidence
interval) we can better protect ourselves against the inferential invalidity of
type I and type I errors. There is little doubt that in the social and behavioral
sciences type Il errors (concluding that X and Y are unrelated when they
really are related) are far more likely than type I errors (Cohen, 1962, 1977,
1988). The frequency of type II errors can be reduced drastically by our
attention to the magnitude of the estimated effect size. If that estimate is large
and we find a nonsignificant result, we would do well to avoid deciding that
variables X and Y are not related. Only if the pooled results of a good many
replications point to both a very small effect size on the average and to a
combined test of significance that does not reach our favorite alpha level are
we justified in concluding that no nontrivial relationship exists between X
and Y. Table 2.4 summarizes inferential errors and some possible conse-
quences as a joint function of the results of significance testing and the
population effect size.

= log [ L] [2.22]

Fisher (1928, p. 172) noted that there was a small and often negligible
bias in z,, each being too large by r-population/[2(N — 1)]. Only when N is
very small while at the same time the r-population (the actual population
value of r) is very substantial is the bias of any consequence. For practical
purposes, therefore, it can safely be ignored (Snedecor & Cochran, 1989).
Before leaving this introduction to z,, it should be noted that it would make a
very serviceable effect size estimate but one not as easily interpreted as r
(see the final chapter). ’

There are analogous biases in other effect size estimates, such as Glass’s
A, Hedges’s g, and Cohen’s d; Hedges (1981, 1982a) has provided both
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exact and approximate correction factors. Hedges’s unbiased estimator g¥j
given by 640

2(12—_15 = .029

estimated bias, =

N 12.23)
gh = c(m)g .23 This corrected bias differs little from our first approximation and leads to a

where g is the effect size estimate computed as (M; — M,)/S (with S com corrected z,of

puted from both the experimental and the control groups) and c{m) is given

approximately by .789 — .029 = .760

which is associated with a corrected r of .641. Note that the corrected r
[(2.24) differs little from the uncorrected r (.658 versus .641) even though N was
quite small (12) and r-population was estimated to be quite substantial.

To illustrate Hedges’s method of correction for small sample bias we
need g as our estimate of effect size. Since g is defined as (M; — M,)/S we
can obtain g from equations 2.4 or 2.5 from Table 2.1 as

- 1.1 _ g /11 [2.25]
g—t-\/nl+n2-(2.76) 7+g =169

c¢(m) =1 —
4m — |

where m is the df computed from both the experimental and control groups
or n, + n, — 2 (see also Hedges & Olkin, 1985). ‘

ULA.l. Illustrating Fisher's and Hedges’s adjustments. To illustrate Fish-
er's and Hedges’s methods of adjustment we assume an experiment in which
n; = 4and n, = 8 with t (10) = 2.76. To illustrate Fisher’s method we need r
as our estimate of effect size. Equation 2.3 of Table 2.1 can be used to obtain

r by way of equation 2.16. For this example: g =t YLt _ (59 V4 + 8 69 [2.26]

To employ Hedges’s approximate correction we obtain g* as a function of
¢(m) and g. For thisexample m = 4 + 8 — 2 = 10, so:

/(2.76)* .
1= m = .658;z, = .789

The bias to be corrected in z, is r-population divided by 2(N — 1). Of course,
we don’t know the r-population, but we can begin by employing the ob-
tained r as a first approximation. We therefore estimate the bias inz, as

3 3
cm)=1] — ————=1 — -
(m} pre— 59 = 9231

658

m = ,030

estimated bias, = gl = c(m)g = (.9231)1.69 = 1.56

Table 2.5 summarizes Fisher’s and Hedges’s adjustments for the present
example. The reduction in effect size is greater for Hedges’s method than for
Fisher’s method -but since the metric r and the metric g are not directly
comparable we must first find a common metric before we can interpret the
relative magnitude of the corrections made. A suitable common metric is
the t distribution on 10 df since both r and g can be expressed in terms of this
distribution. The lower half of Table 2.5 shows that, for the present exarn-
ple, Hedges’s correction is more extreme than is Fisher’s correction, but

This bias is to be removed from the obtained z, of . 789 so our corrected z,
is

789 — .030 = .759

which is associated with a corrected r of .640. Since we now have a more
accurate estimate of the population value of r (i.e., .640) we could repeat the
calculations to obtain a still more accurate correction for bias:
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as the proper goal of a meta-analysis. That goal is to teach us better what is,
not what might some day be in the best of all possible worlds when all our
independent and dependent variables are perfectly measured, perfectly valid,
perfectly continuous, and perfectly unrestricted in range.

both corrections are less than 8% in units of the t(10) distribution.
If one should want to convert r to g it can be done as follows:

¢ = ,_’__2 y di(n; + ny) Even when these adjustments are made with the goal of setting some upper
V1 -1 nn, limits of what better instrumentation and better design procedures might
yield in future research in an area, these adjustments must be applied with

TABLE 2.5 great caution. It has been known for nearly a century, for example, that

correction for unreliability alone can yield “corrected” effect size correla-

Fisher’s and Hedges’s Adjustments for Bias .
tions greater than 1.00 (Guilford, 1954; Johnson, 1944; Spearman, 1910).

Effect Sizes
’ g HLC. The Glass, McGaw, and Smith Adjustments

Effect Size Studies entering into a meta-analysis differ in the precision of the statisti-
Original 658 1.69 cal procedures employed in their analysis. Thus repeated measures designs
Cgrrected .641 1.56 (of which gain score analyses are a special case), analysis of covariance
Eégeernetr;;: - dction 2:217 7:;3 dFsigns, and desig.ns c_:r‘nploying blocl'(i’rfg will tend to produce larger effect

. o sizes and more significant test statistics than would the analogous un-
Log:tiloirr: :}n t(10) Distribution 276 576 blocked posttest only designs. Glass, McGaw, and Smith (1981) have shown
Corgrected 2.64 255 how we might convert the results of various designs onto acommon scale of
Difference 12 21 effect size (e.g., A or g) based on the unblocked posttest only. These adjust-
Percentage reduction 4.3 7.6 ments cannot always be made-for the results of other people’s studies, but

can often be quite usefully employed. However, when they are employed, I
recommend that both the adjusted and unadjusted statistics be reported.
Just as repeated measures, covariance, and blocking designs tend to in-
crease power, the use of nonparametric tests of significance may tend to
decrease power, and Glass et al. (1981) provide adjustment procedures. As
in the case of adjustments noted earlier, I recommend reporting the unad-
justed statistics along with those that have been adjusted. When nonpara-
metric tests have been employed, a useful estimate of effect size (r) can be
obtained from looking up the standard normal deviate (Z) associated with
the accurately determined p level and finding r from

If one should want to convert g to r it can be done as follows:
r= / ginn,
g2nn, + (ny+ny)df

I11.B. The Hunter and Schmidt Adjustments

The most elaborate set of adjustments has been proposed by Hunter and
Schmidt (1990; see also Hunter, Schmidt, & Jackson, 1982). They recom-
mend adjustment for unreliability of the independent and dependent vari-
ables, dichotomization of continuous independent and dependent variables,
restriction of range of the independent and dependent variables, imperfection
of construct validity of the independent and dependent variables, and even
the employment of unequal sample sizes for the experimental and control
groups. The Hunter and Schmidt work is valuable for reminding us that there
are many sources of noise that may serve to lower obtained effect sizes. Their
work is also valuable for providing us with procedures for adjusting for these
sources of noise. The application of these procedures gives us some estimate
of what effect size we might expect to find in the best of all possible worlds.
That is a useful thing to know — perhaps as a goal to strive for by developing
better measures and better design procedures. However, it does not strike me

,:\/%3?\/%_ [2.18]

An alternative procedure is to find the t(df) that is equivalent to the obtained
p and employ

[2.16]



26 META-ANALYTIC PROCEDURES ; DEFIN[NG RESEARCH RESULTS

In the past, the accuracy of these procedures has been limited by the 5 TABLE 2.6
structure of tables of t and of Z, which rarely gave p’s much below .0001. Matrix of Hypothetical Dependent Variables Obtained in a
However, inexpensive hand-held calculators are now available that permit Set of Studies of Alcoholism Treatment Programs
working with p’s as low as 1/105%, Z’s as large as 47.8, and t’s (e.g., fordf= . .
1 0) of 1050, Source of Information
Type of Self- Family Institutional
Variable Report Report Report
IV. SOME SOLUTIONS TO THE PROBLEM f Days of sobriety
OF MULTIPLE (CORRELATED) RESULTS . Dasofemployment

Many of the studies entering into our meta-analyses will have more than Number of arrests
Medical health

one test of significance relevant to our hypothesis and, since forevery testof personal adjustment
significance there is an effect size estimate, these studies will have more Social adjustment
than one effect size estimate as well. The various dependent variablesem-: Mean
ployed in a study should all be examined for clues as to the types of depen--
dent variable that seem most affected and least affected by the independent
variable of interest. If there are many studies using several of the same
dependent variables one could perform a separate meta-analysis for each
different type of dependent variable involved. For example, if one were
studying the effects of alcoholism treatment programs, separate analyses
could be performed for the dependent variables of sobriety, number of days
of employment, number of arrests, general medical health, personal and
social adjustment, and so on. Each of these types of dependent variable
could be operationalized in several ways. For example, for each of them we
could obtain self-reports, family reports, and institutional reports (e.g.,
from hospitals, clinics, courts, police departments, etc.).
Table 2.6 shows a matrix of 6 types of dependent variables crossed by 3
sources of information. If there were a set of studies that had employed all of
the 6 X 3 = 18 specific dependent variables, we could perform a separate
meta-analysis on each of the 6 types of variables averaged across all 3
sources of information to learn which variable, on the average, was most
affected by the treatment. We could also perform a separate meta-analysis
on each of the three sources of information averaged across all 6 types of
variables to learn which of the sources was most affected by the treatment.
We could examine these matters simultaneously for a set of K studies by
entering effect sizes (or Z’s associated with significance levels) into each of
the 6 X 3 = 18 cells of the matrix and then conducting aK X 6 X 3 analysis

of variance on the effect sizes (or the Zs). In such an analysis there would be .
K independent sampling units (studies) and repeated measures on the 6 In the following sections some procedures are proposed that can be used

level factor of variable type and on the 3 level factor of information source. to obtain a single research result from a set of correlated research results.
Such an analysis would be of great value for the simultaneous light it might We begin by describing procedures applicable in the usual meta-analytic
shed on the effects of variable type, information source, and the interaction situation in which we are given relatively few details in the report available

of these variables on the magnitude of the experimental effects obtained. o us. Subsequently we describe procedures applicable when more of the
original data are available to us.

Unfortunately, we do not often encounter such nicely filled-in matrices
ofeffect sizes. Indeed, we count ourselves fortunate when even a substantial
subset of studies have employed the same types of variables. Assuming the
typical situation, then, how are we to analyze multiple results from a single
study? Shall we count each result from a different dependent variable as
though it were a separate study, i.e., as though it were an independent
result? Smith et al. (1980) and Glass et al. (1981) have treated multiple
results as though they were independent, a practice for which they have been
unjustifiably criticized. Where have their critics gone wrong? They have
confused the effect of nonindependence on significance testing with its effect
on effect size estimation. Treating nonindependent results as independent
does tend to create errors in significance testing, but Smith et al. and Glass
et al. did not do significance testing. Treating nonindependent results as
independent for purposes of effect size estimation simply weights each study
in proportion to the number of different effect sizes it generates. Although
not all meta-analysts may wish to employ such weighting, there is certainly
nothing wrong with doing so.

My own recommendation is to have each study contribute only a single
effect size estimate and a single significance level to the overall analysis.
That recommendation does not preclude computing additional overall effect
size estimates in which each study is weighted by the number of research
results it yields, by its sample size, by its quality, or by any other reasonable
weighting factor.
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In most of these applications we will find that significance levels ang
effect sizes are highly correlated. That follows from the fact that most cor.
related results will be based on approximately the same sample size. Whep
that is the case there tends to be a perfect monotonic relationship betweep
significance level and effect size.

effect sizes, each based on an associated p, is a different statistic than is the
effect size associated with the mean p level. For example, imagine two p
levels from the same study (N = 100) associated with standard normal devi-
ates of 0.00 and 9.00. Their mean is a Z of 4.5. The effect size r associated
with this mean Z is

IV.A. Original Data or Intercorrelations
Among Dependent Variables Not Available

IV.A.1. Method of mean result. Perhaps the most obvious method of ob-
taining a single result for a set of results from a single study is to calculate
the mean level of significance and the mean effect size. Suppose we have 3
set of three one-tailed p levels: .25, .10, and .001. To average these p’s we
first find the standard normal deviate (Z) corresponding to each, and aver
age these Z’s. (If results are simply reported as nonsignificant, and we have
no further information available, we have no choice but to assume a p level
of .50, ora Z 0£0.00.) In this example, our three Z’s are .67, 1.28, and 3.09,
All three Z’s have positive signs because all results were in the same direc-
tion. The mean of our three Z’s is [.67 + 1.28 + 3.09]/3 = 5.04/3 = 1.68,
a Z corresponding to a p of .046. It should be emphasized that when we
average p levels it is their associated Z’s we average and not the p levels
themselves. This is discussed in detail in Chapters 4 and 5.

To average several effect size estimates we simply take their mean if they
are already in standard deviation units as in Cohen’s d, Glass’s A, and
Hedges’s g. In the case of r, we first transform each r value to z, before
finding the mean. If effect sizes have not been given we can compute out
own, one for each p level, as long as we know N, the number of sampling
units, since

However, the two effect sizes associated with Z’s of 0.00 and 9.00 are r’s of
.00 and .90 but z.’s of 0.00 and 1.47, respectively. The mean of these z,s is
about .74 corresponding to an r of .63. Clearly the two methods can yield
quite different results (.63 versus .45), neither of which is intrinsically more
correct than the other. A reasonable practice is to decide beforehand on one
of these procedures and use it-throughout any given meta-analysis. In no
case, however, should both procédures be employed unless both are re-
ported. In other words, it will not do to compute both estimates and then
report or use in the meta-analysis only the personally preferred estimate.
Sometimes only one or two.p levels are reported when a whole array of
effect sizes is available. That might happen, for example, if the report pro-
vides a correlation matrix in which the dummy-coded (0,1) independent
variable is correlated with a whole series of dependent variables. In this
case, of course, we would base our effect size estimate on the mean of all the
effect sizes, not just those for which p levels are reported. In addition, we
base our p level estimate on the mean of all the p levels associated with all
the effect sizes reported. By rearrangement from equation 2.18 we can get
the Z associated with each r from the following;:

VN (2.18] Z=1VN

For the preceding three p levels we would find corresponding r’s of .067,
.128, and .309 if N = 100. The z’s associated with these r’s are found to be
.07, .13, and .32, yielding a mean z, of .17 corresponding to an r of .17.
When r’s are all quite low, averaging directly yields results essentially like
those obtained when we first transform the r's to zs. For the present exam-
ple, direct averaging of r’s also yields a mean rof .17.

An alternative procedure is to compute the mean p level and then simply
compute the effect size corresponding to it. Although the two estimates
will often yield similar values, it should be noted that the mean of a set of

An alternative to computing the mean of all the Z’s obtained from this
procedure is to compute only the Z associated with the mean effect size.
The cautions given above about the process of choosing one of these proce-
dures to present as ‘‘the result” should be kept in mind.

IV.A.2. Method of median result: When the p levels and/or the effect
sizes produced by a single study are very skewed, some meta-analysts may
prefer to compute the median p level and the median effect size. Although
there are a great many statistical applications where medians are to be pre-
ferred to means (Tukey, 1977), the use of medians in meta-analytic work
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tends to give results consistently favoring type Il errors, i.e., results leading
to estimates favoring the null hypothesis. An intuitively clear example
might be the following five p levels, all one-tailed: .25, .18, .16, .001, and
.00003. The median p of .16 is notably larger than the mean p of .027 asso.
ciated with the mean Z of 1.93. Intuition may suggest that the mean is 3
better estimate of the gist of the five p levels than is the median, given twg
such very significant results in the set of five correlated results. That intuj-
tion will be supported by the logic of the Bonferroni-based methods to be
discussed next.

weight of ppye

5+2+2+1 t
= .02 = .04 |
< 5 > [2.30]

Therefore, the adjusted, weighted p is significant at p < .05, whereas the
unweighted adjusted p value would not have been, since

ight:
p adjusted, weighted = <_2v51_g_i__> Pms

IV.A.3. Method of ensemble-adjustment of p. Suppose we had four p lev-
els for a given study: .50, .50, .50. and .001. The median p is .50 and the
mean p is .22. But somehow we think that, of four results, we should not
find a p as low as .001 if the null hypothesis were true. The Bonferroni-
based procedures address such issues. One can examine a set of R correlated
results for a single study, compute the most significant p, and calculate the
conservative corrected p that this most significant found p could have been
obtained, after examining R results, if the null hypothesis were true (Rosen-
thal & Rubin, 1983). All that needs to be done is to multiply the most signifi-
cant p (P by R, the number of p levels that were examined to find the most
significant p. Thus, for our example of R = 4 p levels where the most signifi-
cant p was .001, the ensemble-adjusted p value is

padjusted = (R) pp,s = (4).02 = .08.

In addition, the mean p would have been .17, and the median p would have
been .21. Further details on assigning weights in Bonferroni-based proce-
dures are given in Rosenthal and Rubin.(1984). Once we have computed our
ensemble-adjusted p we compute the associated effect size from equation
2.18. :

IV.B. Original Data or Intercorrelations
Among Dependent Variables Available

IV.B.1. Creating a single composite variable. 'When we have access to
the original data, an examination of the intercorrelations of our dependent
variables may suggest that all our dependent variables are substantially
p adjusted = (R) pme = (4).001 = .004 [2.29] intercorrelated. If that is the case we may want to create a composite variable
made up of all our dependent variables. One easy way to do so is to
standard-score (z score) each of our dependent variables and form the
composite variable as the mean of the z scores earned on the contributing
variables. This procedure weights the variables equally. If we have a priori
theoretical reasons for weighting some variables more heavily than others
we can do so. Any variable in its z score transformation can be multiplied by
any weight w; we like. Any subject’s score on the composite variable z,, is
then defined by the sum of that subject’s z scores, each multiplied by its
weight, and this sum divided by the sum of all the weights employed, or

This procedure for correlated results, which is related to Tippett’s (1931)
procedure applied to independent samples, is employed when we have no
theoretical reasons to expect certain results to be more significant than oth-
ers. When we have theoretical reasons to expect some results to be more
significant than others, we can increase our power by assigning weights to
each of the results to correspond to our view of their importance. (The ac-
tual assignment of weights must be done by an investigator blind to the
results obtained.) For example, suppose we knew a study to yield four p
levels. Before examining the results we decided that the first result was of
greatest importance with weight 5, the second and third results were of less
importance with weights of 2 each, and the fourth result was of least impor-
tance with weight 1. Suppose we obtained one-tailed p’sof .02, .19, .24, and
.40, respectively. Then the weighted adjusted p level for the most signifi-
cant result would be given by

- > (w;z)

Z 2004 i
M v

[2.31]

where z,, is the mean weighted z score or composite variable score for any
one subject, and w; is the weight given to the i z score (z;).

As an example, imagine a subject whose z scores on four dependent vari-
ables are 1.10, .66, 1.28, and .92. The weights (w;) assigned to each of these
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variables were decided on a priori theoretical grounds to be 4, 2, 1, and 1,
respectively. Therefore, employing equation 2.31, our subject’s composite
variable score (z,,) would be:

MG/ [(n - 1) /2]
= TP + (1-p)ZAI]”

[2.32]

where t; is the t test of the significance of the effect of the treatment on the
i# dependent variable, ), is the weight we assign (before seeing the data) to
the importance of the i* dependent variable, p is the typical intercorrelation
among the dependent variables, and n is the number of sampling units (e.g.,
subjects) in each group, or if these n’s are unequal, the harmonic mean (n,)
of the two unequal sample sizes, or n, = 2nn,/ (n,+n,) .

_ Swiz) (9110 + (2).66 + (1)1.28 + (1).92

Zy =
Sw; 442+ 1+ 1

7.92
.99
8

If we want an estimate of the internal consistency reliability of the com-
posite variable, we can obtain it by one of three ways: (1) applying the

Spearman-Brown formula to the mean of the intercorrelations among the
constituent variables, (2) computing an intraclass correlation following an
analysis of variance in which constituent variables become a repeated mea-
sures factor, or (3) computing Armor’s theta from the unrotated first principal
component. All three of these procedures are described in some detail in the
following chapter and are summarized elsewhere (Rosenthal, 1982a, 1987a).

An alternative to combining variables by z scoring is to combine the raw
scores. This is a reasonable alternative only when the standard deviations of
each of the constituent variables are similar. If they are not, the variables
with larger variances dominate the others in the composite variable, usually
for no good theoretical reason. For example, one variable, ability test score,
may have o = 20 while another variable, acceptance into a particular college
(scored as 1 or 0) may have o = 0.50. Adding raw scores from these variables
would yield a new variable that was very little affected by the second variable
(acceptance).

Situations in which direct adding of variables often is useful include those
in which the variables are ratings by others on a specific rating scale, scores
on subtests of personality tests or of tests of cognitive functioning. In no case,
however, should variables in raw score form be combined without an exam-
ination of the standard deviations of the variables. If the ratio of the largest
to the smallest g is 1.5 or less, combining is safe. A larger ratio than 1.5 may
be tolerated when the number of variables to be combined grows larger.

IV.B.2. Creating a single estimate. A procedure has recently been
described that allows us to combine effect sizes for multiple dependent
variables knowing only the df and the typical intercorrelation among the
dependent variables. The illustration of this procedure employs the effect size
Cohen’s d (the difference between the means of the experimental and control
groups divided by the pooled o). For the general case, and for technical
details, the paper by Rosenthal and Rubin (1986) should be consulted. We
obtain d., the composite effect size, from

For our illustration assume an experiment with equal n (so n; = n, = 6)
and with three dependent variables yielding three t(10)’s of .70, 1.37, and
414, with the average intercorrelation (p) among the dependent variables of
50, and with the variables given equal weight so that A; = A, = A3 = 1. Then

. =

Should we want to express d. in terms of its equivalent effect size estimate
r, we can do so from

For our example, then

We can test the significance of our composite effect size estimate by means
of the following:

For our example, then

3.9275

B [(1).70+(1)1.37+(1)4.14} / [(6 - 1) / 2]
[50(1+1+1)24+(1-.50)(12+12+12)]"2 24495

= 1.60

[2.33]

T, = — 160 = .62

V(1.60)? + 4

© T [pENM)E + (1 - p)EAE + (1 - p?)ZAEE? / 2df]%

t [2.34]

(1)(.70) + (1)(1.37) + (1)(4.14)
[S0(1+1+1)2 + (1 - .50)(12+ 12+ 1?)

+(1-.509)[12 x (.70)2 + 12 x (1.37)% + 12 x (4.14)2] / 2(10) }

} 6.21 621
[(.50)(9) + (.50) (3) + (.75) (19.5065) / 20]*  2.5945

2.39
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with df = 10 and p < .02, one-tailed. (For procedures for comparing and
combining multiple significance levels rather than effect sizes, see Strube,
1985).

If there should be a theoretical interest in computing contrasts among the k~
effect sizes associated with the correlated dependent variables, procedures
are given in Rosenthal and Rubin (1986) for estimating the effect size and
significance level of any such contrast. V and Functions of r

V. ASUMMARY OF SOME EFFECT SIZE INDICATORS

In this section we want to bring together the various effect size indicators
that have been referred to as well as a few others that may prove useful,
Table 2.7 serves as a summary. The first four indicators include the very
general Pearson product moment correlation (r) and three related indices.

The indicator r/k is not typically employed as an effect size estimate though
it certainly could be. It is included here because of its role in equations 2.3 Differences
and 2.11; that is, it is an effect size estimate that needs only to be multiplied
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TABLE 2.7
Three Types of Effect Size Indicators
Effect Size Indicator Definition
Product Moment Pearson r Uzyz,) /N
Correlation (r) r/k /Vi-r?
Z Yiog [ 1+r
r Be [—l - ]
Cohen’sq 2 = 2,0
'sd _
standardized Cohen’s (M — My)/ o pooled
Differences Glass’s A (M, - M;)/8 control group
Between Means Hedges's g (M, — M,)/S pooled
Cohen’s g P - .50
Between d’ P, —P,
Proportions Cohen’sh Pll’ - p12>

by Vdr to yield the associated test of significance, t. The index r/k turns out
also to be related to Cohen’s d in an interesting way — it equals d/2 for situ-
ations in which we can think of the two populations being compared as
equally numerous (Cohen, 1977; Friedman, 1968). The indicator z, is also
not typically employed as an effect size estimate though it, too, could be.
However, it is frequently used as a transformation of r in a variety of meta
analytic procedures. Cohen’s q indexes the difference between two correla
tion coefficients in units of z,.

The next three indicators of Table 2.7 are all standardized mean differ-
ences. They differ from each other only in the standardizing denominator.
Cohen’s d employs the o computed from both groups employing N rather
than N—1 as the within group divisor for the sums of squares. Glass’s A and
Hedges’s g both employ N—1 divisors for sums of squares. Glass, however,
computes S only for the control group, while Hedges computes S from both |
experimental and control groups. ‘

The last three indicators of Table 2.7 include two from Cohen (1977).
Cohen’s g is the difference between an obtained proportion and a proportion
of .50. The index d' is the difference between two obtained proportions.
Cohen’s h is also the difference between two obtained proportions but only
after the proportions have been transformed to angles (measured in units
called radians, equal to about 57.3 degrees).

Many other effect size indicators could have been listed. For example,
Kraemer and Andrews (1982) and Krauth (1983) have described effect size
estimates when medians rather than means are to be compared. These are

a. This is an effect size indexing the magnitude of the difference between two effect sizes.
b. P's are first transformed to angles measured in radians: 2 arcsin VP.

not described here since the product moment correlations (based on contin-
uous scores, ranks, or dichotomized data) can be employed in those situa-
tions. We have specifically not included any indices of proportion of vari-
ance accounted for such as 12, eta?, omega?, epsilon?, and so on. As we shall
see in the final chapter, all these indices tend to be misleading at the lower
levels. In addition, those that are based on F tests with df > 1 in the numera-
tor are generally of little use in the meta-analytic enterprise.
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truly expert in the methods of information retrieval. That is the domain of
the information specialist. To give the details required for the serious re-
trieval of the results of a research area there is a useful paper on information
retrieval especially prepared for meta-analysts by an experienced reference
librarian (M. Rosenthal, 1985).

When the resources described in that paper have been properly em-
ployed, including an examination of the references of the retrieved docu-
ments and correspondence with the contributors to a research area to obtain
their unpublished manuscripts and their suggestions as to the location of
other unpublished works, we will find four major classes of documents: (1)
Books, including authored books, edited books, and chapters in edited
books; (2) Journals, including professional journals, published newsletters,
magazines, and newspapers; (3) Theses, including doctoral, master’s, and
bachelor’s theses; (4) Unpublished work, including technical reports, grant
proposals, grant reports, convention papers not published in proceedings,
ERIC reports, films, cassette recordings, and other unpublished materials.

Retrieving and Assessing
Research Results

Procedures for locating and abstracting research results are described and illustrated,
and the reliability of these procedures is discussed. Various types of errors, their preven-
tion and correction are described. Finally, the evaluation of the quality of research results
is discussed.

IA.1. Reliability of information sources. The purpose of this section is
to present the results of an analysis showing that, for a sample of meta-
analyses, there is a high degree of reliability among the four types of docu-
ments in the average effect size obtained. The raw data for these analyses
come from Glass et al. (1981, pp. 66-67). The results of 12 meta-analyses on
various topics are presented. For each meta-analysis, an effect size (Glass’s
Aor Cohen’s d) was estimated from at least two different information sources.
Table 3.1 shows the six possible pairs of sources of information, the
number of meta-analyses providing effect size estimates for each pair of
sources, the reliability obtained between the two sources of each pair, (com-
puted over all available areas meta-analyzed) and the p level of the reliabil-

There is in principle no difference between the conscientious review of a
research area conducted traditionally or meta-analytically. In both cases one
wants to find all the research results. There may be logistic and financial
reasons for restricting a review simply to published works, but there are no
scholarly reasons for doing so if our goal is to summarize the research evi-
dence bearing on a given relationship. After we have retrieved all the re-
trievable research results, we will want to evaluate whether the sources of
our results are significantly and substantially related to the quality of the
research conducted and the magnitude of the effects obtained. If they are,
we can present our meta-analytic results separately for the various sources
of information and the various levels of quality of the research conducted.

TABLE 3.1
Reliability of Information Sources
for a Sample of Meta-Analyses

Number (n) of Reliabili Level
I. RETRIEVING RESEARCH RESULTS Pairs of Sources Meta-Analyses of. Sourtcye{vr) Igelia‘:il?tg
. Journal; thesis 10 .89 0005
LA. LOCﬁ‘ltlng Research Results o ) Journal; unpublished 7 .65 06
Locating research results has become a more sophisticated enterprise Thesis; unpublished 7 .85 .008
than spending a few hours with the Psychological Abstracts, Sociological g°°t?lt‘}’l“f{'al 6 .82 .025
. X ook;
Abstracts, Child Development Abstracts, Language and Language Behavior Book. unes'il. : 96 02
4 St ' ; unpublished 3 1.00 .005
Abstracts, or the International Bibliography of Social and Cultural Anthro- Median 6.5 ‘ .87 014
pology. Computer-based retrieval systems are not only available but are be- Weighted Median 7 .85 .008
Weighted (n — 2) Mean .83

ing enlarged and improved at a rate so rapid that few social scientists can be

36
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TABLE 3.2
Median Effect Sizes Obtained from Journal Information
for Meta-Analyses in Which Other Sources
Were or Were Not Available

ity obtained. The median (unweighted and weighted) reliabilities of .87 and
.85 and the weighted mean r of .83 show that there is a high degree of
reliability, on the average, between the various pairs of information sources.
There is little support here for the position that holds that some sources of
information may be misleading relative to the others. On the basis of the 12
meta-analyses available, we can conclude that meta-analyses finding larger
effect sizes from one source of information are also likely to find larger

Source Source Mean

Information
; Available Unavailable Difference Mean

Source

44102 649 -.20 54

effect sizes from other sources of information. Book
Thesis 5140 .40 11 .46
LA.2. Differences among information sources. High reliability of sources Unpublished 500 493 .01 50
of information does not necessarily mean that sources will agree in their Mean 48 51 - 03 500

estimates of effect sizes for a given meta-analytic review. Two sources could
have perfect reliability (r = 1.00) yet differ greatly in the effect sizes esti-
mated, so long as the difference was constant for every meta-analysis. The
purpose of this section is to present the results of an analysis investigating
systematic differences among information sources in the average effect size
found. Our raw data again come from Glass et al. (1981, pp. 66-67).

For each of the 12 meta-analyses, the mean effect sizes are reported for

a The number of meta-analyses on which the median is based is shown in parentheses.
b The median of all 12 meta-analyses based on journal information alone was also .50.

TABLE 3.3
Pairwise Comparisons of Effect Sizes Obtained
from Four Information Sources

all those sources that provided relevant information. If there had been four Number (n)
sources of information available for each of the 12 meta-analyses, we would _ of Meta- First Second Mean Median
. . . Puirs of Sources Analyses Mean A2 Mean A*  Difference  Difference

have been able to provide a simpler answer to our question by merely exam- ihes 0 e - =

ining the means or medians obtained from all four sources. Unfortunately, ;Zﬂ::l Ln;sl:;“she d 7 s6 'gg B ‘32 gf’,

only 3 of the 12 meta-analyses provided data from all four sources; 13 of the Thesis: 'unpublished g 31 64 -1 P

possible 48 (12 X 4) estimates were not available. Under these conditions, Book; journal 6 .34 42 —.08 .00

comparing the grand means or medians of each of the sources of informa- Book; thesis 4 .40 27 13 14
Book; unpublished 3 31 .68 -.37 —.09

tion confounds the source of information with the area being summarized.

As a rough guide to the likelihood that such confounding might be a
problem, Table 3.2 was prepared. It shows the 'median effect size obtained
from journal information for those meta-analyses in which the other sources
of information were or were not available. Thus the median effect size of
meta-analyses in which books were not available was .64 but the median
effect size was only .44 when books were available. It appears, then, that we
might erroneously conclude that books underestimate effect sizes relative
to journals when actually it just happened that books were available as an
-information source for those areas of research showing smaller effect sizes
anyway (as defined by journal information).

Table 3.2 shows that the availability of unpublished material was unre-
lated to effect sizes estimated from journal sources. This suggests no prob-
lem of biased availability of studies as there had been for books as sources of
information. The result for thesis-based information showed a small ten-
dency for meta-analyses for which theses were available to be associated
with somewhat larger effect sizes (as defined by journal information). The
data base is not large enough to warrant firm conclusions, but the data are

a. Note that our purpose is not to estimate the average effect size obtained from specific sources of
information since that depends most heavily on the areas meta-analyzed. Our purpose is to estimate
as well as we can the difference between average sizes obtained from various sources of informa-
tion.

b. This is the only significant mean difference t(9) = 4.78, p = .001, two-tailed {p = .001 by sign test
as well).

suggestive enough that we should try to assess differences among informa-
tion sources correcting for sampling bias. This type of correction can be
achieved by considering each type of source pairwise with every other
source as shown in Table 3.3.

The first and second columns of Table 3.3 show the two paired sources of
information and the number of meta-analyses upon which each pairwise
comparison is based. The third and fourth columns give the mean effect size
(A) found for the first and second named source, respectively. The fifth
column gives the difference between the means with the second subtracted
from the first. The final column, and perhaps the most important, gives the
median of the n difference scores for each set of matched pairs. The only
significant mean difference shows larger effect sizes obtained from journals
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than from theses (excess of A = .26 and .22 for mean and median differ.

ences, respectively). These results support the conclusion drawn by Glass et
al. (1981) though the present pairwise analysis, controlling for the con-
founding of topic and source, shows a difference larger by between 37% and

TABLE 3.5
Mean Effect Sizes (d) for Dissertation and Nondissertation Studies
Employing or Not Employing Special Control Procedures

63% than that reported by Glass et al. Unweighted ~ Weighted
There is certainly no clear difference between mean effect sizes obtained Dissertations _ Nondissertations _Mean Mean

from journals compared to unpublished materials. The mean difference fa. Special controls 7 8::2*‘ ;;1((::;) .gg ._6/;1
vors one by .08 A units; the median difference favors the other by .05 A No special controls -0 ' ' .
units. The results of this analysis very strongly suggest that the burden of U"‘f"el:tgr;‘::lt::a" ,igs '3;5 495 2

. . . o € . . .
proof now rests on those who claim that uripublished (not unretrieved but Weig . . . . -

. . . . . . . 4 The number of studies on which the mean is based is shown in parentheses.

retrievable unpublished) studies are biased in their results relative to pub-

lished studies.

On the average, theses obtain smaller effect sizes than do unpublished
studies but the difference shrinks dramatically when the median difference
is employed rather than the mean difference.

Books and journals tend to obtain very similar effect sizes but books do
tend to obtain somewhat higher effect sizes than do theses. Finally, books
tend to obtain smaller effect sizes than do unpublished papers but the me-
dian difference is not large and, given the small n (3), even the large mean
difference of .37 could be a sampling fluctuation (p = .45).

There is no simple way to summarize the data of Table 3.3. One provi-
sional method that preserves the pairwise nature of the comparisons is to
consider in turn all pairwise comparisons of each of the four sources with all
others and report the median of all these comparisons. Table 3.4 shows that
journal articles, unpublished manuscripts, and books are essentially indis-
tinguishable from each other. However, theses tend to yield noticeably
smaller effect sizes than do the other three sources of information—
smaller, that is, by about 1/5 of a standard deviation.

How might we explain this bias for theses to yield smaller effect sizes? One
analysis that may be instructive was carried out as part of a meta-analysis by
Rosenthal and Rubin (1978). In their study of 345 studies of interpersonal ex-

pectancy effects, they computed separate analyses for dissertation and non-
dissertation studies and found that dissertations did indeed yield substantially
smaller effects on the average. Each of the 345 studies in their sample was also
classified by whether the investigator(s) had taken special pains to control for
errors of recording or cheating by the experimenters or teachers being
studied.

Table 3.5 shows the mean effect sizes obtained in dissertations and non-
dissertations that either had or had not instituted special controls for inten-
tional or unintentional errors. Mot of the variation (93%) among the four
estimated mean effect sizes was due to the difference between dissertations
employing no special controls and the remaining three groups of studies
which differed relatively little among themselves. These results suggest the
possibility that the tendency for theses to yield smaller effect sizes than
other sources of information may be due primarily to the less carefully exe-
cuted of the theses. )

Before leaving the comparison of theses with other information sources,
we should note that theses were conspicuously over-represented among the
studies instituting special controls for intentional or unintentional errors.
The correlation between being a thesis and employing special controls was
42 (32(1) = 62.0, N = 345, p < .0001). Of the nondissertations, only 8%

are we to record for each study? The answer, of course, depends on the

TABLE 3.4 employed special controls; of the dissertations, however, 56% did so. The
Pairwise Comparisons of Effect Sizes Obtained typical dissertation, then, may be more carefully done than the typical non-
From Each Source Against All Others dissertation. Perhaps this is due to the healthy monitoring that is often car-
ried out by a conscientious dissertation committee.
Number of |
Fairwise Median LB. Abstracting Research Results

Source Comparisons Difference Once we have located the studies to include in our meta-analysis, we ‘
Journall 23 -(1)3 must decide what information is to be abstracted from each document. We
g:gll:blmhed 1; '0; know from the last chapter that we will always want to record both the
Thesis 2 _:20 significance level and the size of the effect and that, if one of these is not
) provided, we can estimate it if we know the size of the study. But what else

Absolute median 19 .10
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(15) Moderating variables, variables associated with differences in ob-
tained results, the direction of their effect, effect size, and signifi-
cance level.

(16) Mediation data, any results bearing on the processes by which ex-
perimenters, teachers, or clinicians may have communicated their
expectations to their subjects, pupils, or patients.

(17) Expectancy effect, effect size (including direction) and significance
level associated with the effects of the experimenters’, teachers’,
or clinicians’ expectancies.

specific goals of our meta-analysis. It is easiest to begin with examples of
useful formats for abstracting information from studies.

LB.1. Interpersonal expectancy effects. Since the early 1960s the
present writer has been conducting meta-analyses of studies of the effects of
experimenters’ (or teachers’ or clinicians’) expectations on the response ob-
tained from their subjects (or pupils, or patients). For each of the studies
retrieved, the following information was typically recorded:

(1) Complete reference, as for a bibliography.

(2) Authors’ full names and addresses, so that they could be contacted

for further information about the study in question, about their

work in progress, and about the work of others in the same general

area.

(3) Sex of data collector, since the sex of data collector may be related

to the results obtained.

(4) Status of data collector, e.g., faculty member, doctoral candidate,

graduate student, undergraduate, and so on, since it has been found

that the status of the data collector may affect the results obtained.

(5) Relationship of data collector to meta-analyst, so that correlations

could be computed between the results obtained and the degree o

acquaintanceship with the meta-analyst (Rosenthal, 1969).

(6) Sex of subjects, number of each sex who served as subjects, pupils,
or patients.

(7) Nature of subject sample, i.e., where and how obtained.

(8) Sex of experimenters, number of each sex who served as experi

menters, teachers, or clinicians.

(9) Nature of experimenter sample, i.¢., where and how obtained.

(10) Relative status of experimenters, since smaller expectancy effects

are obtained when there is little status differential favoring the ex

LB.2. Psychotherapy outcome. A more detailed type of abstracting was
employed by Glass and his colleagues (e.g., et al., 1981, pp. 80-91, 233—
237) in their seminal meta-analysis of psychotherapy outcome experiments.
They divided their coding into the methodological and substantive features
that are briefly summarized here:

LB.2.a. Methodological features. These included (1) date of publication,
(2) type of publication, (3) degree to which experimenter was blind, (4) how
clients were obtained, (5) how clients were assigned to conditions, (6) client
loss for each condition, (7) internal validity, (8) experimenter’s probable
preference for outcomes, and (9) reactivity of outcome measure.

1.B.2.b. Substantive features. These included: (10) professional field of
experimenter, (11) similarity of client to therapist, (12) diagnosis of client,
(13) duration of previous hospitalization, (14) intelligence of typical client,
(15) mode of therapy (e.g., individual, group), (16) site of therapy, (17) du-
ration of therapy; (18) therapist experience or status level, (19) outcome
measures, (20) type of psychotherapy, (21) degree of confidence in deciding
type of therapy, and (22) effect size.

LB.3. Ethnic group and social class differences in need for achievement.
A very focused type of abstracting was employed by Harris Cooper (1984)

perimenter. V
(11) Task, test, or other behavior of subjects constituting the dependent in his comparison of ethnic groups and social class levels on need for
variable. ‘ achievement. A summary of his coding sheet follows: (1) complete citation;

(2) source of reference; (3) sex of subjects, with n of each, for the two groups
being compared; (4) average age of subjects in each group; (5) geographic
location of each group; (6) other restrictions pertaining to each group; (7)
ethnicity of each group; (8) mean and S of each ethnic group on need for
achievement; (9) type of significance test and df error employed; (10) value
of test statistic obtained, and df effect; (11) p level and effect size obtained;
(12) direction of results; (13) social class of each group; (14) standardized vs.
informal measure of social class for each group; (15) basis of classification
for each group including occupation, salary, social status, or other; (16)
mean and S of each social class group on need for achievement; (17-20)

(12) Unusual design features, e.g., not an experiment but causal infer-
ence strengthened by use of such procedures as cross-lagged panel
analysis, analysis of covariance, partial correlations, path analysis
and so forth.

(13) Additional control groups, as when high and low induced-expect
ancy conditions can be compared to a randomly assigned group of
no-induced-expectancy subjects. ‘

(14) Procedural controls for cheating and/or observer error, as when all
interactions are filmed, videotaped, or otherwise monitored, and/
or when experimenters’ recordings can be otherwise checked.
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items 9-12 (above) repeated for social class comparison; (21) dependent
measures including TAT (n-Ach), French’s Test of Insight, California Psy-
chological Inventory, or other; and (22) variables interacting with ethnicity

EVING AND ASSESSING RESULTS

TABLE 3.6

Examples of Items Obtaining Various
Proportions of Agreement

45

i S
. . . Proportion of
LB.4. Constructing a format for abstracting research results. Examina- Agreemeni

tion of the preceding three examples of abstracting formats will be useful in 1.00
the construction of a new format. Using these examples and a process of 96-.99
free association, the beginning meta-analyst can construct a preliminary 92-95
form. This form should then be discussed with colleagues and advisors who 88-91

, , . . . .84-.87
can suggest other variables to be included. Finally, a revised form might be %0-.83
sent to workers in the area of the meta-analysis, with an invitation to have '

. -.79
them suggest other variables that should be coded. :-6’8_.69

or social class.

1.C. The Reliability of Retrieval

LC.1. Reliability of locating research results. It would be useful to know 50-59

the reliability of locating research results, If two meta-analysts set out to
retrieve the relevant research results for the same research question, how
closely would their acquisitions agree? No empirical answer to that question
is available. We do know that if each meta-analyst employed only one (or
two) research indices, each would miss an appreciable proportion of retriev-

.40-.49

Range

Median

Number of items

95th to 75th percentile

Study | Study 2
Median age Name of periodical
Mean age Research index used?
Age range Own studies cited?

Total N
Was median age reported?
Type of bivariate relationship

Type of sampling procedure

Total number of subsamples

25
.57-1.00
.86:,965

.92

Secondary analyses done?
Specific recommendations?
Relationship exists?

Critique of prior reviews?
Percentage of studies cited
that are not directly
relevant
Percentage of studies examining
interaction effect
Are surveys among the major
approaches employed?

65
.44-1.00
.71-.87
.79

able studies (Glass et al., 1981, pp. 63-65). A thorough retrieval effort, how-
ever, would involve going well beyond one or two research indices (M. Ro-
senthal, 1985).

It is not even obvious how one would determine the correlation defining
reliability in the situation of our two meta-analysts. Would we setupa2 X 2
table with columns representing the first meta-analyst’s choices (i.e., in-
cluded vs. not included in the analysis), and with rows representing the
second meta-analyst’s choices (i.e., included vs. not included in the analy-
sis)? What would be the entry for the cell included in neither analysis?
Would it be the hundreds of thousands of studies not relevant to the analy-
sis? Whatever the problem of computing (or even defining) the reliability of
locating research results, the problems are identical whether the research
summarizing process is to be traditional or meta-analytic.

Median proportions of agreement are very substantial but we could have
had more confidence in the interpretation of these data had the correlations
been provided rather than the proportion of agreements. It is possible to
have near perfect agreement and still have reliability coefficients of only
about .50. More detailed discussion of this problem is available in Lewin
and Wakefield (1979), Rosenthal (1982a, 1987a), Wakefield (1980), and in
our subsequent discussion of effective reliability, especially the final para-
graph on product moment correlations (section II.C.1.a of this chapter).

L.C.3. Reliability of significance level and effect size estimates. Perhaps
the two things we want to code most reliably are the results themselves:
results defined as significance levels and effect size estimates. Unfortu-
nately there appear to be no reliability data on the estimation of significance
Ievels as such. We come close in the raw data of the study by Cooper and
Rosenthal (1980) described earlier. As part of that study, 19 meta-analysts
were asked to decide whether a given set of seven studies supported the
rejection of the null hypothesis. From the analysis of variance of the 19 X 7
data matrix, we were able to compute the intraclass correlation which is
analogous to the average interjudge reliability. For the 19 meta-analysts, this
correlation was .969, a very high degree of reliability. In a situation where

I.C.2. Reliability of coding study features. When we try to estimate the
reliability of the coding of studies after they have been retrieved, we can do
quite a bit better. Several studies have reported proportions of agreement on
specific items as coded by two judges.

Table 3.6 presents a summary of two of these studies. Study 1 is by
Stock, Okun, Haring, Miller, Kinney, and Ceurvorst (1982), and Study 2 is
by Jackson (1978). For each study sample items are given to illustrate items
associated with varying proportions of agreement from below .50 to 1.00.
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accurate p levels were being estimated (rather than accept-reject decisions)
and meta-analysts might not even have retrieved the same studies, and dif.
ferent procedures for combining p levels might have been used, the reliabjj.
ity would surely be lower. ,

When we turn to the estimation of effect sizes, relevant data are provideq
by Glass et al. (1981). They had six studies for each of which two judges
computed Glass’s A as the effect size estimate. The mean absolute differ.
ence between the pairs of judges was only .07 standard deviation units (A%).
The mean algebraic difference was even smaller—.01 standard deviation
units! Reliability, however, is indexed by a correlation coefficient ratheri
than a mean difference and it is possible in principle to have a very small
mean difference (i.e., excellent agreement in mean judgments) yet have 5
low reliability. That did not occur in this case. For the set of six studies and
two judgments per study, the intraclass correlation was .993.

Should future studies yield lower reliabilities, Glass et al. would not be
surprised nor would I. As the former authors point out, although the defini-
tion of A (and of other effect size estimates) is simple, in actual practice.
judgments must be made, assumptions must be made, and series of calcula:
tions must be made and all of these may be made somewhat differently by
equally well-trained and experienced meta-analysts. '

tion, learning (human and animal), task ability, psychophysical judgments,
questionnaire responses, classroom behavior, and mental telepathy. In addi-
tion to behavioral research, legal research and health research were repre-
sented. Although there were not enough studies in these various categories to
permit sensitive comparisons, there appeared to be no clear relationship be-
tween area of research and either the rate of recording errors or the likelihood
of errors being biased when they did occur.

In most of the studies, errors were defined only in terms of misrecording
aresponse that was either seen or heard by the data recorder. In a few cases,
however, simple arithmetic was also required by the recorder so that ob-
server errors could not be distinguished from arithmetic errors. In these
cases, however, the results were so close to the results of studies of simple
recording errors that they could safely be grouped together, at least for our
present purpose.

It is also important that for almost all the 27 studies located, the observers
had finished their task to their satisfaction and did not know that their obser-
vations would be checked for errors. Thus whatever checking could be done
or was going to be done by the observers had been done at the time of the
analysis of errors. It is unlikely, therefore, that the estimates of error were
inflated due to the observers’ not having finished their checking operations.
Not all of the studies provided the data in directly usable form and it was
necessary to make some estimates from data provided. For example, an
investigator might mention in passing that 10 responses were misrecorded
by the observers but not how many observations were recorded altogether.
A reasonable estimate of this total was often available, however, as when the
investigator reported that 5 observers each collected data from 10 partici-
pants each of whom made 20 responses (e.g., 5 X 10 X 20 = 1000).

Table 3.7 shows, for each of the 27 studies, the number of observers
involved, the number of recordings made, the number of errors committed,
the percentage of all recordings that were wrong, and the percentage of the
errors committed that favored the hypothesis of the observer. Tables 3.8
and 3.9 present stem-and-leaf plots and robust summary statistics of the
percentage of observations that were in error and the percentage of errors
that favored the observers’ hypotheses (Rosenthal & Rosnow, 1975; Tukey,
1977). Tukey (1977) developed the stem-and-leaf plot as a special form of
frequency distribution to facilitate the inspection of a batch of data. Each
number in the data batch is made up of one stem and one leaf, but each stem
may serve several leaves. Thus, the seventh stem under recording error, a
L, is followed by two leaves of 59 and 69, representing the numbers 1.59
and 1.69. The first digit is the stem, the next digit(s) the leaf. The eye takes
in a stem-and-leaf plot as it does any other frequency distribution, but the
original data are preserved with greater precision in a stem-and-leaf plot
than would be the case with ordinary frequency distributions.

II. ASSESSING RESEARCH RESULTS

ILA. Correcting Research Results

The purpose of this section is to emphasize that error-making is normal,
The meta-analyst will make mistakes and the authors of the studies summa-
rized will have made mistakes. Careful reading of the original papers by the
meta-analyst will often reveal errors. Fortunately, these errors can often be.
corrected before the meta-analytic procedures are applied (Rosenthal &
Rubin, 1978). ‘

One type of error that is difficult for the meta-analyst to correct or even to
diagnose is an error of recording the data as the data were being obtained by
the original investigator. How often do recording errors occur? When they do
occur, are they likely to favor the investigator's research hypothesis? Building
on some earlier work on this topic (Rosenthal, 1978b), I was able to collect 27
studies for this book that yielded some up-to-date information on these two
questions. Since most of these studies were designed at least in part to permit
the quantitative assessment of error rates, they can not be regarded as repre-
sentative of behavioral research in general. We have no way of knowing, how-
ever, whether these studies are likely to yield overestimates or underestimates
of rates of error-making. The 27 studies ranged widely in terms of research
area and locus of data collection, e.g., studies of reaction time, person perce
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TABLE 3.7 TABLE 3.8
Recording Errors in 27 Studies Stem-and-Leaf Plots of Recording Error and Bias Rates
(in percentages)
Observers Recordings Errors Error Bias
Study (N =711)(N =219,296) (N = 23,605) Percentage Percentage Recording Error Bias
(1) Kennedy & Uphoff, Lea
1939 28 11,125 126 113 68 Swen f Stem _ Leaf
(2) Rosenthal et al., 1964 30 3,000 20 0.67 75 45. | 482 9] 1
(3) Weiss, 1967 34 1,770 30 1.69 85 8 5
(4) Persingeret al., 1968 11 828 6 0.72 67 e
(5) Jacob, 1969 36 1,260 40 3.17 60 , . 172 7 4 5
(6) Todd, 1971 6 864 2 0.23 50 3. 6 0 2 8
(7) Glass, 1971 4 96 4 4.17 33 36 | 17 s| o s
(8) Hawthorne, 1972 18 1,009 16 1.59 19 2. 50 4
(9) McConnell, 1955 393 18,000 0 0.00 - on | 41 3136
(10) Rosenthal & Hall, 1 59 2
1968 5 5,012 41 0.82 — 'b
(11) Doctor, 1968 15 9,600 39 0.41 - L. 13 119
(12) Compton, 1970 9 3,794 36 0.95 — 0. 62 72 82 94 95
(13) Howland, 1970 9 360 9 2.50 — 05 1 00
(14) Mayo, 1972 15 688 0 0.00 - 4. Stems between 4 and 48 are omitted to save space.
(15) Eisneretal., 1974 2 9,600 66 0.69 — b. Stems were divided into upper and lower halves'to spread out the distribution.
(16) Ruschetal., 1978 2 46,079 22,339 48.48 —
(17) Marvell, 1979 2 2,156 52 2.41 —
(18) Fleming & Anttonen, g 0.62 TABLE 3.9
1971 - 89,980 55 ‘ - Summary Statistics for R i i
(19) Goldberg, 1978 - 5,600 40 0.71 — y r Recording Error and Bias
(20) Tobias, 1979 — 4,221 141 3.34 —_ - -
(21) Tobias, 1979 - 4,254 40 0.94 - Statisi Recording Error  Bias
(22) Johnson & Adair, 1970 12 - — - 62 tatistic (in percentages) (in percentages)
(23) Johnson & Adair, 1972 12 — — — 58 Maximum 48.482 91
(24) Ennis, 1974 42 - — — 74 Quartile 3 (Q3) 2.46 74
(25) Ruschet al., 1974 2 — — — 36 Median (Q,) 0.94 64
) oo & Ry 1976 8 - - I e Quarde 1 Q) 0.4 46
(27) Johnson yan, — — - Minimum 0.00 19
Median 12 3,794 39 942 64 Q:-Q, 1.8 28
a. Median weighted by number of recordings = .62. 6{.75(Q3 ~ QI 1.36 21
b. Median weighted by number of recordings = .68. S 10.35 20
; Mean 3.58 60
From Tables 3.7, 3.8, and 3.9 we note that the typical rate of making N 21 14

recording errors is about 1% but, that in an occasional study, the error rate
can climb to an extraordinary level of over 48%. Normally we might expect
an error rate that high when data are recorded from an analogue rather than
a digital mechanism. Thus reading an analogue thermometer as 98.6 could
be interpreted as wrong when a digital read-out tells us that the “true” tem-
perature is 98.63. Extraordinary error rates may have more to say about an
overly precise criterion than about any practical problem of measurement.
These same three tables also suggest that, of the observational errors
that are made, about two-thirds support the observer’s hypothesis when
only half should do so if the observers were unbiased. (When each study
was weighted by the number of errors made, the overall test that bias was
nonzero yielded Z = 4.88, p < .000001.) '

1.41.

a, This value is a marked outlier; i.e,, it deviates from the rest of the distribution of recording error
rates at pmuch less than .001. The mean of the distribution dropping the highest and lowest scores is

No one should be surprised to learn that data are sometimes wrongly
recorded. Now, however, we have some idea of how often these errors oc-
cur. The typical rate of 1% errors is low enough that, even if the errors were
undetected, the conclusions of our studies would not be greatly affected. In
several studies, analyzing the data with and without the errors corrected
made no difference although biased errors would occasionally push a result
over the magic .05 cliff (Nelson, Rosenthal, & Rosnow, 1986; Rosenthal &
Gaito, 1963, 1964). Investigators emphasizing confidence intervals, effect
sizes, and obtained levels of p will be less misled by the presence of some
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typical degree of error in their data than will investigators following a strict
null hypothesis decision procedure (Snedecor & Cochran, 1967, page 28),

Several implications flow from the results of Tables 3.7, 3.8, and 3.9,
We should continue to keep track of error rates and the size of observer biag
and do what we can to reduce our errors. Getting all the errors out is proba-
bly not possible or even desirable from a cost/benefit perspective. It costs
something to reduce errors, and it probably costs more and more to get rid
of each error as there are fewer of them left. We may not feel it to be wise to
give up half our research to be able to pay for bringing our accuracy rate
from 99.0% to 99.9%;, if that should be the price.

Finally, there is something we can do to keep our errors random with
respect to our hypotheses, so that they will not increase Type I errors. We
can keep the processes of data collection and analysis as blind as possible for
as long as possible.

Of course it is no basis for rejoicing to learn that errors may be nearly
universal even if they are not typically very damaging in their magnitude.
Yet one desirable consequence of widespread awareness of error might be
to generate a more task-oriented attitude toward error than is currently
widely shared. Too often the current attitude is that poor scientists (they)
make errors; good scientists (we) don’t make errors. Given this attitude,
when we reanalyze others’ data, we may wax indignant or even triumphant
when we find errors. Our goal, it should be remembered, is not to show
someone’s answer wrong; our goal is to get the answer right. Perhaps if we
held this more task-oriented attitude, investigators would be more willing to
let others examine their data. Then, perhaps, there would be a drop in the
frequency of raw-data-consuming fires, a frequency that exceeds the limits
of credibility (Wolins, 1962).

jmply assigning a weight of zero. If there is a dimension of quality of study
(€8 internal validity, external validity, and so on) then there can be a corres-
onding system of weighting. If we think a study is twice as good as another,
we can weight it twice as heavily or four times more heavily, and so forth.
There is a danger, however, in assigning quality weights to studies, i.e.,
that we will assign high weights to studies whose results we favor and low
weights to those we do not favor (Glass, 1976). The ideal solution is to have
each study coded by several excellent methodologists who have no special
investment in the area being investigated. Their quality assessments would
be made twice; once based only on their reading of the methods section and
once based on their reading of the methods plus results section. The reason
for the first rating is to ensure that at least one judgment of quality is made
pefore the judge has learned the results of the study. One should be able to
assess at least the design features relevant to both internal and external
validity before reading the results.
The specific judgments to ask of our methodologists can range from the
most general question of overall quality rated on a 9-point rating scale, to
intermediate level questions of quality of design, quality of statistical analy-
sis, quality of ecological validity, and the like, all rated on a 9-point scale, to
a series of very specific questions such as: Was random assignment of sub-
jects employed? Was the assumption of independence of errors in the analy-
sis of variance met? Whether highly specific variables are judged or not, in
the end one overall variable (or a smallish number of fairly general varia-
bles) relevant to quality will be constructed and will be correlated with size
of the effect obtained (Glass, et al., 1981; Rosenthal & Rubin, 1978).
Glass et al. (1981) have presented convincing evidence that, in the typi-
cal meta-analysis, there is no strong relation between the quality of the study
and the average size of the effect obtained. Nevertheless, whether such a
relation exists should be assessed specifically for each question being ad-
dressed meta-analytically. Once our methodologists have assessed each
study for quality, we must assess the assessors. The assessment is made
empirically by determining their reliability. We do not expect reliability co-
efficients to be extremely high for complex judgments of research quality
(Fiske, 1983). Nevertheless we need to know the reliability for several rea-
sons. Perhaps the main reason is that knowing the reliability suggests
whether we will need to increase our sample of judges of research quality.

ILB. Evaluating the Quality of Research Results

In our earlier discussion of the reliability of retrieval we examined evi-
dence relevant to the accuracy of coding of various features of the studies
retrieved. High rates of coder agreement were found for such variables as
subjects’ average age and the periodical in which the study appeared. Lower
agreement was found for features requiring a greater degree of personal
judgment. In this section we continue the discussion of reliability but with
an emphasis now not on what the study did, but how well the study investi-
gated its topic.

One of the major criticisms of meta-analyses is that poor studies are sum-
marized as well as good studies. Wise meta-analysts make it their business to
locate all the studies, poor as well as good. Wise traditional reviewers do the
same. Once all the retrievable studies have been found, decisions can be made
about the use of any study. Precisely the same decision must be made about
every study retrieved: How shall this study be weighted? Dropping a study is

II.C. The Reliability of Judgments of Quality

H.C.1. Effective reliability. Suppose we had available two judges of the
quality of the studies in our meta-analysis. The correlation coefficient re-
flecting the reliability of the two judges’ ratings would be computed to give
us our best (and only) estimate of the correlation likely to be obtained be-
tween any two judges drawn from the same population of judges. This cor-
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relation coefficient, then, is clearly useful; it is not, however, a very good
estimate of the reliability of our variable, which is not the rating of quality
made by a single judge but rather the mean of two judges’ ratings. Suppose,
for example, that the correlation between our two judges’ ratings of quality
were .50; the reliability of the mean of the two judges’ ratings, the “effec.
tive” reliability, would then be .67 not .50. Intuition suggests that we should
gain in reliability in adding the ratings of a second judge because the second
judge’s random errors should tend to cancel the first judge’s random errors,
Intuition suggests further that adding more judges, all of whom agree with
one another to about the same degree, defined by a mean inter-judge corre-
lation coefficient of .50 for this example, should further increase our “effec-
tive” reliability. Our intuition would be supported by an old and well-known
result reported independently by Charles Spearman and William Brown in
1910 (Walker & Lev, 1953). With notation altered to suit our current pur-
pose, the well-known Spearman-Brown result is:

nr

R= T ¥a-1r (3.1]
where R =‘‘effective’’ reliability S
n = number of judges 0
r = mean reliability among all n judges (i.e., mean of n (n — 1)/2 E
correlations). 2
[

Use of this formula assumes that a comparable group of judges would
show comparable mean reliability among themselves and with the actual
group of judges available to us. This assumption is virtually the same as that
all pairs of judges show essentially the same degree of reliability.

As an aid to investigators employing these and related methods, Table
3.10 has been prepared employing the Spearman-Brown formula.

The table gives the effective reliability, R, for each of several values of n,
the number of judges making the observations, and r, the mean reliability
among the judges. It is intended to facilitate getting approximate answers to
each of the following questions:

(1) Given an obtained or estimated mean reliability, r, and a sample of n
judges, what is the approximate effective reliability, R, of the mean of the
judges’ ratings? The value of R is read from the table at the intersection of
the appropriate row (n) and column (r).

(2) Given the value of the obtained or desired effective reliability, R, and
the number, n, of judges available, what will be the approximate value of the
required mean reliability, r? The table is entered in the row correspondingto
the n of judges available and is read across until the value of R closest to the
one desired is reached. The value of r is then read as the corresponding
column heading.

Effective Reliability of the Mean of Judges’ Ratings

95
95
97

.90
90
95

.85
85
92
94

.80
80
89

75

75
86

.70
70
82
88
90

.65
65
79
85

.60
60
75

.55
55
!

.50
50
67

45

45
62

.40
40

Mean reliability (r)
57

35
35
52
62
68

.30
30
46
56
63

25
25
40

20

20
33

15
15
26
35
41

.10
10
18
25
31

.05
05
10
14
17

03
06
08
11

.01
01
02

of judges

Number
(n)

[>.2]
= N IR N I

96
97
98
98
98
*
*
*

96
97
97
98
98
98

92
94
95
96
97
97
97
98

90
92
94
95
95
96
96
97
97
98
98
98
98

92
93
94
95
95
96
97
97
97
98
98

88
90
92
93
94
94
95
96
96
97
97

82
86
88
90
91
92
93
94

79
83
86
88
90
92
92

91

75
80
83
86
88
89
90
91

71
77
80
83
85
87
88
89

67
73
77
80
82
84
86
87
89
90
91

73
76
79
81
83
84
87
88
90
91

68
72
75
77
79
81

50
57
62
67
70
73
75
77

43
50
56
60
64
67
69
71

47
51
55
59
61
64
68
71

36
40
44
47
50
53

21
24
27
30
32
34

13
16
18
20
22
24

03
04
05
06
07
07
08
09

**
ak
%
*k
>k
>k
* %
*
**
%
*%

*%
%
3%
*%
*%
*
*%
%
%

*k
*%
x%k
%
%
*k

98
98
4
%
'
P

*%
* %

98
98
* %k

97
98
98
98

95
95
- 96
96
97
97
98
98
98
98

.94
94
95
96
96
97
97
98
98
98
98

92
93
94
95
95
96
97
97
97
98
98
98

91
92
93
94
94
95
96
96
97
97
98
98
98

92
93
94
95
96
96
96
97
98
98

92
93
94
95
95
96
96
97
98
98

84
86
87
89
90
91
92
93
94
94
96
96
97
98

80
82
84
86
87
89
90.
91
92
93
94
95
96
97

75
78
80
82
83
86
88
89
90
91
93
94
95
96

74
76
78
81
83
85
86
88
90
91
93
95

57
61
64
67
69
73
76
78
80
82
85
87
90
92

39
42
46
49
51
56
60
63
65
68
72
76
81
84
**Approximately 1.00.

27
30
33
36
38
43
46
50
53
55
61
65
71
76

11
12
14
15
17
20
22
24
27
29
34
38
45
50

12
14
16
18
28
32
36
40
60
80
100

NOTE: Decimal points omitted.

*Approximately .99.
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(3) Given an obtained or estimated mean reliability, r, and the obtained g *:
desired effective reliability, R, what is the approximate number (n) of judges
required? The table is entered in the column corresponding to the mean relia.
bility, r, and is read down until the value of R closest to the one desired is
reached. The value of n is then read as the corresponding row title. '

Examples of each of the preceding questions may be useful:

(1) Meta-analysts want to work with a quality variable believed to shows
mean reliability of .5 and they can afford only 4 judges at the moment. They
believe they should go ahead with their study only if the effective reliability
will reach or exceed .75. Shall they go ahead? Answer: Yes, because Table
3.10 shows R to be .80 for an n of 4 and anr of .5.

(2) Meta-analysts who will settle for an effective reliability no less than |
.9 have a sample of 20 judges available. In their selection of quality varia-
bles to be judged by these observers, what should be their minimally ac-
ceptable mean reliability? Answer: .30. ‘

(3) Meta-analysts who know their choice of variables to have a mean ii
reliability of .4 want to achieve an effective reliability of .85 or higher. How
many judges must be allowed for in their preparation of a research budget?
Answer: 9. ‘

11.C.1.a. Product moment correlations. It should be noted that the mean
reliability (r) of Table 3.10 is to be a product moment correlation coefficient
such as Pearson’s r or its special cases, the Spearman rank correlation (tho),
the point biserial r, or the phi coefficient. It is not appropriate to employ ‘5
such indices of reliability as percentage or proportion agreement; €.g., num-
ber of agreements (A) divided by the sum of agreements (A) and disagree-
ments (D), A/(A + D) or net agreements, (A — D)/(A + D). These indices_
should not only be avoided in any use of Table 3.10, but they should be

RETRIEVING AND ASSESSING RESULTS

MS studies — MS residual

R (est.) =

MS studies

MS studies — MS residual

r(est.) =

MS studies + (n — 1)MS residual

TABLE 3.11

Judges’ Ratings of Research Quality
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their effective reliability (R). Table 3.10 could get us R from knowing r but
to get r we would have to compute (40 X 39)/2 = 780 correlation coeffi-
cients. That is not hard work for computers, but averaging the 780 coeffi-
cients to get r is very hard work for investigators or their programmers.
There is an easier way and it involves the analysis of variance.

Table 3.11 shows a simple example of three judges rating the quality of
five studies on a scale of 1 to 7, and Table 3.12 shows the analysis of vari-
ance of these data. Our computations require only the use of the last
column, the column of mean squares (Guilford, 1954). Examination of com-
putational formulas 3.2 and 3.3 given below shows that they tell how well
the judges can discriminate among the sampling units (e.g., studies) minus
the judges’ disagreements controlling for judges’ rating bias or main effects
(e.g., MS encoders — MS residuals), divided by a standardizing quantity.
Our estimate of R, the effective reliability of the ratings of all the judges
is given by

[3.2]

Our estimate of 1, the mean reliability or the reliability of a single average
judge is given by

[3.3]

avoided in general because of the greatly misleading results that they can
yield. For example, suppose two judges are to evaluate 100 field studies for

the presence or absence of external validity. If both the judges see external
validity in 98 of the field studies and disagree only twice, they would show 1
98% agreement; yet the x? testing the significance of the product moment
correlation phi would be essentially zero! Thus two judges who shared the
same bias (e.g., almost all field studies are externally valid) could consis

ently earn nearly perfect agreement scores while actually correlating esse
tially zero with one another (phi = --.01).

I1.C.2. Reliability and analysis of variance. When there are only tw
judges whose reliability is to be evaluated it is hard to beat the convenien

Analysis of Variance of Judges’ Ratings

Judges

Studies A B c p2
5 6 7 18

3 6 4 13

3 4 6 13

2 2 3 7

1 4 4 9

14 22 24 60

TABLE 3.12

of a product moment correlation coefficient as an appropriate index of reli Source s of ™S
bility. As the number of judges grows larger, however, working with corr Studics 240 p 600
lation coefficients can become inconvenient. For example, suppose we € Judges 1.2 ’ 560
ployed 40 judges and wanted to compute both their mean reliability (r) a Residual 6.8 8 0.85
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where n is the number of judges as before (equation 3.3 is known as the
intraclass correlation). For our example of Tables 3.11 and 3.12 we have

The question we want to put to these data is: What is the degree of agree-
ment, in the sense of reliability coefficients, among the three levels of qual-
ity? We address the question via analysis of variance and find:

6.00 — 0.85
R (est) = 600~ 58 MS studies — MS residual 1821 — .0571
R (est) = MS studies = 1821 = 686
and
Therefore, the effective reliability of the differentiation of the 11 meta-
6.00 — 0.85 analyses is seen to be about .69. Our estimate of the mean reliability (r), or
riest) = 600+ (3 1oss %9 the reliability of a single level of quality is:

MS studies — MS residual 1821 — .0571

In the present example it will be easy to compare the results of the analy-
r(est) = "MS studies + (a — DMSresidual — 1821 + (3 — 10571 ~ 422

sis of variance approach with the more cumbersome correlational ap-
proach. Thus the correlations (r) between pairs of judges (fap, fac and rpc)
are .645, .582, and .800 respectively, and the mean intercorrelation is .676
which differs by only .007 from the estimate (.669) obtained by means of
the analysis of variance approach.

If we were employing only the correlational approach we would apply
the Spearman-Brown formula (equation 3.1) to our mean reliability of .676
to find R, the effective reliability. The result is

In this example, the correlation of the high quality with the medium
quality studies was .558, while the’ correlations of high with low and me-
dium with low quality studies were .381, and .376 respectively. The mean of
these three reliabilities was .438, a value quite close to that obtained from
the analysis of variance (.422). All in all, the low quality studies do not
agree as well with the others (the high and the medium) in differentiating

(3)(.676) the meta-analyses.

R = 977736 2 1).676)

= .862
I1.C.3. Reliability and principal components. In situations where the rat

ings made by all judges have been intercorrelated, and a principal compo-
nents analysis is readily available, another very efficient alternative to esti-
mate the reliability of the total set of judges is available. Armor (1974) has
developed an index, theta (6), that is based on the unrotated first principal
component (where a principal component is a factor extracted from a corre-
lation matrix employing unity [1.00] in the diagonal of the correlation ma-
trix). The formula for theta is

which differs by only .004 from the estimate (.858) obtained by means of
the analysis of variance approach. In general, the differences obtained be-
tween the correlational approach and the analysis of variance approach are
quite small (Guilford, 1954).

It should be noted that in our present simple example, the correlational
approach was not an onerous one to employ, with only three correlations to
compute. As the number of judges increased, however, we would find our-
selves more and more grateful for the analysis of variance approach.

n L-1
) . theta (6) = 1 [————L ] [3.4]
IL.C.2.a. Quality of research and effect size. As an additional example of n

the computation of reliability from analysis of variance, we examine some
data summarized by Glass et al. (1981). For 11 different meta-analyses, sep-
arate estimates of mean effect size were given for studies judged to be of
high, medium, or low internal validity. On the basis of an analysis weighting
the 11 studies equally, the mean effect sizes (A) were found to be .42, .34,
and .57 respectively, for the high, medium, and low quality studies. The
analogous medians were .48, .31, and .59. These results suggest no very
great linear effect of quality on mean effect size obtained. (Note that though
“poor” studies tend to show larger effects, “good” studies tend to show
larger effects than intermediate studies.)

where n is the number of judges and L is the latent root or eigenvalue of the
first unrotated principal component. The latent root is the sum of the
squared factor loadings for any given factor and can be thought of as the
amount of variance in the judges’ ratings accounted for by that factor. Fac-
tor analytic computer programs generally give latent roots or eigenvalues
for each factor extracted so that 8 is very easy to obtain in practice.

I1.C4. Reporting reliabilities. Assuming we have done our reliability
analyses well, how shall we report our results? Ideally, reports of reliability
analyses should include both the mean reliability (the reliability of a single
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judge) and the effective reliability (reliability of the total set of judges or of
the mean judgments). The reader needs to know the latter reliability (Ry
because that is, in fact, the reliability of the variable employed in mog
cases. However, if this reliability is reported without explanation, the reade;
may not be aware that the reliability of any one judge’s ratings is likely tq
be lower, often substantially so. A reader may note a reported reliability of
.80 based on 12 judges and decide that the variable is sufficiently reliable
for his or her purposes. This reader may then employ a single judge only tq
find later that this single judge was operating at a reliability of .25, not .80,
Reporting both reliabilities avoids such misunderstandings.

Comparing and Combining
Research Results

I1.C4.a. Split-sample reliabilities. A related source of misunderstanding js
the reporting of correlations between a mean judge of one type with a mean
judge of another type. For example, suppose we had 10 male and 10 femals
judges, or 10 student and 10 faculty judges. One sometimes sees in the litera.
ture the reliability of the mean male and mean female judge or of the mean
student and mean faculty judge. Such a correlation of the mean ratings made
by all judges of one type with the mean ratings made by judges of another type
can be very useful, but they should not be reported as reliabilities without the
explanation that these correlations might be substantially higher than the av:
erage correlation between any one male and any one female judge or between
any one student and any one faculty judge. The reasons for this are those
discussed in the earlier section on effective reliability.

A framework for meta-analytic procedures is described in which the comparing function
and the combining function of meta-analytic procedures are distinguished. Procedures
are provided for comparing and for combining the tests of significance and the effect size
estimates from two or more studies.

I. AFRAMEWORK FOR META-ANALYTIC PROCEDURES

In this chapter we consider in detail the application of various meta-
analytic procedures. Before we wax computational, however, it will be use-
ful to consider a general framework for putting into perspective a variety of
meta-analytic procedures. Table 4.1 provides a summary of four types of
meta-analytic procedures that are applicable to the special case where just
two studies are to be evaluated. It is useful to list the two-study case sepa-
rately because there are some especially convenient computational proce-
dures for this situation. The two columns of Table 4.1 show that there are
two major ways to evaluate the results of research studies — in terms of their
statistical significance (e.g., p levels) and in terms of their effect sizes (e.g.,
the difference between means divided by the common standard deviation o
or S, indices employed by Cohen [1969, 1977, 1988] and by Glass [1980]
and Hedges [1981], or the Pearson r). The two rows of Table 4.1 show that
there are two major analytic processes applied to the set of studies to be
evaluated: comparing and combining. The cell labeled A in Table 4.1 repre-
sents the procedure that evaluates whether the significance level of one study
differs significantly from the significance level of the other study. The cell
labeled B represents the procedure that evaluates whether the effect size (e.g.,
dorr) of one study differs significantly from the effect size of the other study.

IL.C4.b. Trimming judges. It sometimes happens that when we examine
the intercorrelations among our judges we find one that is very much out of
line with all the others. Perhaps this judge tends to obtain negative correla-
tions with other judges or at least to show clearly lower reliabilities with other
judges than is typical for the correlation matrix. If this unreliable judge were
dropped from the data, the resulting estimates of reliability would be biased,
i.e., made to appear too reliable. If a judge must be dropped, the resulting bias
can be reduced by equitable trimming, Thus if the lowest agreeing judge is
dropped, the highest agreeing judge is also dropped. If the two lowest agree-
ing judges are dropped, the two highest agreeing judges are also dropped and
so on. Experience suggests that when large samples of judges are employed
the effects of trimming judges are small as is the need for trimming. When the
sample of judges is small, we may feel a stronger need to drop a judge, but
doing so is more likely to leave a residual biased estimate of reliability. A safe
procedure is to do all analyses with and without the trimming of judges and to
report the differences in results from data with and without the trimming.
Although the method of trimming judges seems not yet to have been system-
atically applied, the theoretical foundations for the method can be seen in the
writings of Mosteller and Rourke (1973), Tukey (1977), and Hoaglin, Mostel-

ler, and Tukey (1983).
59
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Cells C and D represent the procedures that are used to estimate the overa]j
level of significance and the average size of the effect, respectively. Illustra.
tions of these procedures will be given below.

tests, or contrasts, we learn whether the studies differ significantly among
themselves in a theoretically predictable or meaningful way. Thus impor-
tant tests of hypotheses can be made by the use of focused tests. Cells E and
Fof Table 4.2 are simply analogues of Cells C and D of Table 4.1 represent-
ing procedures used to estimate overall level of significance and average
size of the effect, respectively.

TABLE 4.1
Four Types of Meta-Analytic Procedures
Applicable to a Set of Two Studies

Results Defined m Terms o K 1. META-ANALYTIC PROCEDURES:

Significance Effect size

Analytic Process : festing csimation Even when we have been quite rigorous and sophisticated in the interpre-
Comparing studies A B tation of the results of a single study, we are often prone to err in the inter-
pretation of two or more studies. For example, Smith may report a signifi-
Combining studies C D cant effect of some social intervention only to have Jones publish a rebuttal
demonstrating that Smith was wrong in her claim. A closer look at both
their results may show the following:
TABLE 4.2 Smith’s Study: (78)=2.21,p<.05,d = .50,r = .24,

Six Types of Meta-Analytic Procedures Jones’s Study: «(18) = 1.06, p> .30,d = .50,r = .24.

Applicable to a Set of Three or More Studies Smith’s results were more significant than Jones’s, to be sure, but the stud-

ies were in perfect agreement as to their estimated sizes of effect defined by

Results Defined in Terms of:

Significance Effect size either d or r. A further comparison of their respective significance levels re-
Analytic Process testing estimation veals that these p’s are not significantly different (p = .42). Clearly Jones was
Comparing studies: A B quite wrong in claiming that he had failed to replicate Smith’s results. We
Diffuse tests shall begin this section by considering some procedures for comparing quan-
Comparing studies: - b tiFatively the results of two independent studies, i.e., studies conducted with
Focused tests - different research participants. The examples in this chapter are in most cases
N ' hypothetical, constructed specifically to illustrate a wide range of situations
Combining studies E F that occur when working on meta-analytic problems.

II.A. Comparing Studies

ILA.1. Significance testing. Ordinarily when we compare the results of
two studies we are more interested in comparing their effect sizes than their
p values. However, sometimes we cannot do any better than comparing their
p values and here is how we do it (Rosenthal & Rubin, 1979a): For each of
the two test statistics we obtain a reasonably exact one-tailed p level. All of
the procedures described in this chapter require that p levels be recorded as
one-tailed. Thus t(100) = 1.98 isrecorded as p = .025, not p = .05. Then as
an illustration of being reasonably exact, if we obtain t(30) = 3.03 we give p
as .0025, not as ‘< .05.” Extended tables of the t distribution are helpful
here (e.g., Federighi, 1959; Rosenthal & Rosnow, 1984a; 1991); as are
inexpensive calculators with built-in distributions of Z, t, F, and %2. For each
P, we find Z, the standard normal deviate corresponding to the p value. Since

Table 4.2 provides a more general summary of six types of meta-analytic ‘
procedures that are applicable to the case where three or more studies are to
be evaluated. The columns are as in Table 4.1 but the row labeled “Compar-
ing Studies” in Table 4.1 has now been divided into two rows —one for the
case of diffuse tests and one for the case of focused tests.

When studies are compared as to their significance levels (Cell A) ot
their effect sizes (Cell B) by diffuse tests, we learn whether they differ sig-
nificantly among themselves with respect to significance levels or effect
sizes, respectively, but we do not learn how they differ or whether they
differ according to any systematic basis. When studies are compared as to
their significance levels (Cell C) or their effect sizes (Cell D) by focused
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worst case scenario for inferential errors where investigators might con-
clude that the two results are inconsistent because one is significant and the
other is not. Regrettably, this example is not merely theoretical. Just such
errors have been made and documented (Rosenthal & Gaito, 1963, 1964).
The Z’s corresponding to these p’s are 1.64 and 1.55. From equation 4.1 we

both p’s must be one-tailed, the corresponding Z’s will have the same sign if
both studies show effects in the same direction but different signs if the results
are in the opposite direction. The difference between the two Z’s when
divided by V2 yields a new Z that corresponds to the p value that the
difference between the Z’s could be so large, or larger, if the two Z’s did ot ~
really differ. Recapping, have

Z, -7, (1.64) — (1.55)
= = .06
%) 1.41

Zy~ 7% jsdistributed as Z [4.1]
V2

as our obtained Z of the difference between a p value of .05 and .06. The p
value associated with this difference is .476 one-tailed or .952 two-tailed.
This example shows clearly just how nonsignificant the difference between
significant and nonsignificant results can be.

Example 1. Studies A and B yield results in opposite directions and nei-
ther is *‘significant.” One pis .06, one-tailed, the other is .12, one-tailed but
in the opposite tail. The Z’s corresponding to these p’s are found in a table
of the normal curve to be +1.56 and —1.18. (Note the opposite signs to
indicate results in opposite directions.) Then, from the preceding equation
(4.1) we have

ILA.2. Effect size estimation. When we ask whether two studies are tell-
ing the same story, what we usually mean is whether the results (in terms of
the estimated effect size) are reasonably consistent with each other or
whether they are significantly heterogeneous. The present chapter will em-
phasize r as the effect size indicator but analogous procedures are available
for comparing such other effect size indicators as Hedge’s (1981) g or differ-
ences between proportions, d’ (Hedges, 1928b; Hsu, 1980; Rosenthal &
Rubin, 1982a). These will be described and illustrated shortly.

For each of the two studies to be compared we compute the effect size r
and find for each of these 1’s the associated Fisher z, defined as 2 log, [(1 +
/(1 — 1)]. Tests of the significance of differences between r’s are more |
accurate when this transformation is employed (Alexander, Scozzaro, & \
Borodkin, 1989). In addition, equal differences between any pair of Fisher ‘
z.’s are equally detectable, a situation that does not hold for untransformed H
t’s. Tables to convert our obtained r’s to Fisher z,’s are available in most !
introductory textbooks of statistics. Then, when N; and N, represent the 1
= 1.64 number of sampling units (e.g., subjects) in each of our two studies, the
V2 1.41 quantity |

Z, -7, (1.56) — (—=1.18)
— e =194
V2 .41

as the Z of the difference between the two p values or their corresponding
2Z’s. The p value associated with a Z of 1.94 is .026 one-tailed or .052 two-
tailed. The two p values may be seen to differ significantly, suggesting that
we may want to draw different inferences from the results of the two studies.

Example 2. Studies A and B yield results in the same direction and both
are significant. One p is .04, the other is .000025. The Z’s corresponding to
these p’s are 1.75 and 4.06. (Since both Z’s are in the same tail they have the
same sign.) From equation 4.1 we have

7~ 2y (4.06) — (1.75)

as our obtained Z of the difference. The p associated with that Z is .05
one-tailed or .10 two-tailed, so we may want to conclude that the two p values
differ significantly or nearly so. It should be emphasized, however, that
finding one Z greater than another does not tell us whether that Z was
greater because the size of the effect was greater, the size of the study (e.g.,
N) was greater, or both.

{4.2] ‘

N,-3 N,-3 i

is distributed as Z (Snedecor & Cochran, 1967, 1980, 1989). ik

Example 4. Studies A and B yield results in opposite directions with .
effect sizesof r = .60 (N = 15) and r = —.20 (N = 100), respectively. The }
Fisher z,’s corresponding to these r’s are .69 and — .20, respectively. (Note

Example 3. Studies A and B yield results in the same direction, but one is
““significant” (p = .05) and the other is not (p = .06). This illustrates the
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the opposite signs of the z,’s to correspond to the opposite signs of the r’g

1IA.2.a. Other effect size estimates. Although r is our preferred effect
Then from the preceding equation (4.2) we have

size estimate in this chapter, analogous procedures are available for such
other effect size estimates as (M; — M,)/S (Hedges’s g) or the difference

Ly — Iy, . (69 - (=200 291 petween proportions, d’. We begin with the case of Hedges’s g.
1 41 141 _ Por each of the two studies to be compared, we compute the effect size
N,-3 N,-3 29 M — M,)/S (Hedges’s g) and the quantity 1/w which is the estimated

variance of g. We obtain w as follows (Rosenthal & Rubin, 1982a).

as the Z of the difference between the two effect sizes. The p value associ. -
ated with a Z of 2.91 is .002 one-tailed or .004 two-tailed. These two effect
sizes, then, differ significantly.

w = 2(nmy)(n; + ny ~ 2) [43]
(ny + n[t2 + 2(ny + ny, — 2)]

Example 5. Studies A and B yield results in the same direction with effect
sizesof r = .70 (N = 20) and r = .25 (N = 95), respectively. The Fisher 7/
corresponding to these 1's are .87 and .26, respectively. From equation 4,2
we have

When we have w we can test the significance of the difference between
any two independent g’s by means of a Z test since

A " BB [4.4]
__ (8D = (26) ~231 /S L+ L
WA  Wp
1+ L
17 92

is distributed as Z, as shown in somewhat different form in Rosenthal and
Rubin (1982a). Note the similarity in structure between equations 4.4 and
4.2, In both cases the differences in effect size are divided by the square
root of the sums of the variances of the individual effect sizes.

as our obtained Z of the difference. The p associated with that Z is .01 one-
tailed or .02 two-tailed. Here is an example of two studies that agree on a
significant positive relationship between variables X and Y but disagree
significantly in their estimates of the size of the relationship. Example 7. Studies A and B yield results in the same direction with effect
sizesof g = 1.86 (t = 4.16; N = 20) and g = .51 (t = 2.49; N = 953),
respectively. Assuming that the two conditions being compared within each
study are comprised of sample sizes of 10 and 10 in.Study A and 47 and 48 in
Study B, we first find w for each study.

Example 6. Studies A and B yield effect size estimates of r = .00 (N =
17) and r = .30 (N = 45), respectively. The Fisher z,’s corresponding to
these r’s are .00 and .31, respectively. From equation 4.2 we have

(:00) — (31) = —1.00

W, = 2(nyny)(n) + ny — 2) - 2(10)(10)(10 + 10 — 2) = 3.38
11 (M + 0)[2 + 20, + 1y — 2] (10 + 10)[(4.16)2 + 2(10 + 10 — 2)]
14 42

wg = 2(ny)(n; + ny — 2) _ 2(47)(48)(47 + 48 — 2) = 72.98

as our obtained Z of the difference between our two effect size estimates.
The p associated with that Z is .16 one-tailed or .32 two-tailed. Here we
have an example of two effect sizes, one zero (r = .00), the other ( r = .30)
significantly different from zero (t(43) = 2.06, p < .025 one-tailed), but
which do not differ significantly from one another. This illustrates how
careful we must be in concluding that results of two studies are heteroge-
neous just because one is significant and the other is not or because one hasa
zero estimated effect size and the other does not (Rosenthal & Rosnow,
1984a, 1991).

(n; + ny[t2 + 2(n; + ny — 2)1 (47 + 48){(2.49)2 + 2(47 + 48 — 2)]

Therefore, from equation 4.4:
BA — 8 _ 1.86 — .51 =232
\/-1_ + 1 /1 4 1
Wy wp 3.38  22.98

as our obtained Z of the difference. The p associated with that Z is .01 one-
tailed or .02 two-tailed. Here is an example of two studies that agree there is
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a significant effect of the indepenc?ent variable, but disagree significantiy jp o= ___%__ [4.5]
their estimates of the size of the effect. . n, +n,
Suppose that in the present example we had found Studies A and B by mAm-2

that no effect sizes had been computed —only t tests. If our preferer.lce were
to work with r as our effect size estimate we could get r from equation 2.1,
Recall that t’s and N’s for these studies were 4.16 (N = 20) and 2.49 (N =

95), respectively; then we can get the two r's:
ra = t2 = (4.16)2 = 70
t2 4 df V. (4.16)2 + 18
rg = 2 - / Q.492 = 25
2 + df (2.49)2 + 93

We could compare these 1’s easily; in fact we did so inexample 5. The Z
we obtained there was 2.31, very close to the Z we obtained when compar-
ing g’s (Z = 2.32). ‘

gl\%ow suppose we had remembered how to get r from t but had forgotten
how to compare two 1's. If we recalled how to compare two g's we could
convert our I’s to g’s by means of equation 2.27:

If our effect size estimate were the difference between proportions (d’),
our procedure would be analogous to that when our effect size estimate was
Hedges’s g. Again we need.the estimated variance of the effect size esti-
mate, 1/w. In this application we estimate w by equation 4.6 which works
well unless n or n, is very small and p, or p, is very close to zero or one. If
ny or ny is very small, a conservative procedure is to replace p (1 — p) by
its maximal possible value of .25 (i.e., when p = (1 — p) = .50 we find p
(1 — p) to be at a maximum and equal to .25).

w = iy [4.6]
np(1 — py) + nypy(t — py)

In meta-analytic work, however, we are sometimes unable to obtain the
values of n; and n,. Accordingly we employ an approximation to w that

depends only on the total study size N and the effect size estimate d’ (Rosen-
thal & Rubin, 1982a): .

- df(n, + ny) 2.2 :
g= r X W) T o) _ N
V1-r2 nn, w — [4.7]

resent example: . ‘ ‘
Forthe p P This approximation to equation 4.6 holds exactly when p; and p, are the

70 % 18(10 + 10) ~ .86 same amount above and below .5 and when n; = n,.

Ea ™ —TEFIO—)Z (10)(10) When we have w we can test the significance of the difference between
any two independent d'’s by means of a Z test since
g 25 x (BT 48) -~ 51
B

R V1 = (.25)? (47)(48)

Of course, we could also have computed g directly from t by means
equations 2.25 (or 2.26, or 2.5). From equation 2.25 we have:

1

ga=t /laleaise /el =1se
n, ny 10 10

gp=t /L+l=24 [+ 1= 5
n, 47 48

Finally, if we should have Cohen’s d available [(M, — M,)/o] 2
wanted to get g we could do so as follows:

da—dp
JARENR
Wa W

as shown in somewhat different form in Rosenthal and Rubin (1982a). Just
as was the case when effect size estimates were r and g (equations 4.2 and
4.4), the differences in effect size are divided by the square root of the sums
of the variances of the individual effect sizes.

is distributed as Z [4.8]

_ Example 8. Studies A and B yield results in the same direction with effect
sizesof d’ = 70 (N = 20) and d' = .25 (N = 95), respectively. Assuming
‘that the two conditions being compared within each study are comprised of
sample sizes of 10 and 10 in Study A and 47 and 48 in Study B, we find w
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first from equation 4.6. Then, as a further illustration, we also employ the

. ; : method, like the method of comparing p values, asks us first to obtain accu-
approximation equation 4.7

qatep levels for each of our two studies and then to find the Z corresponding
_ (oeach of these p levels. Both p’s must be given in one-tailed form and the
_ corresponding Z’s will have the same sign if both studies show effects in the
_ qame direction. They will have different signs if the results are in the oppo-
_ite direction. The sum of the two Z’s when divided by V2, yields a new Z.
. This new Z corresponds to the p value that the results of the two studies
_combined (or results even further out in the same tail) could have occurred
__ifthe null hypothesis of no relationship between X and Y were true. Recap-

10)(10
W, = i (1019 = B,

nypi(1 — py) + nypa(l = p2) (10).85(.15) + (10).15(.85)

i

wg, = mn; - (47)(48) = 101.32

nopy(1 = pp) + nypa(l = p) (48).375(.625) + (47).625(.375)

N 20 i
Way = = = 39.22, agreeing perfectly with the result g
1 —d? 1~ (.70)? above (Wa,).
Zi+ 7 isdistributed as Z [4.9]
N 95 . . . V2
wp, = — = = 101.33, disagreeing only in the second
l-d I =(25 decimal place with the result above

~ We could weight each Z by its df, its estimated quality, or any other desired
weights (Mosteller & Bush, 1954; Rosenthal, 1978, 1980).

The general procedure for weighting Z’s is to multiply each Z by any

desired weight (assigned before inspection of the data), add the weighted

7’s and divide the sum of the weighted Z’s by the square root of the sum of

the squared weights as follows:

(wg,) because this approximation (wp,)
assumed n; = n, = 47.5 rather than
n; = 47 and n, = 48 as in the result
above (wp,).

Now, we can test the difference between our two effect sizes from equa-
tion 4.8:

w2y + w7,

© Weighted Z =
VWi T wy {4.10]

dy—-dg 70 — .25 - 239
/I v L \/_.L. L
Wa,  Wg, 3922 101.32

as our obtained Z of the difference. The p associated with that Z is .0084
one-tailed or .017 two-tailed. This example, example 8, was selected to re-
flect the same underlying effect size as example 7 and example 5. The three
Z’s found by our three methods agreed very well with one another with Z’s
0f2.39, 2.32, and 2.31, respectively.

Example 11 will illustrate the application of this procedure.

Example 9. Studies A and B yield results in opposite directions and both
are significant. One p is .05, one-tailed, the other is .0000001, one-tailed
but in the opposite tail. The Z’s corresponding to these p’s are found in a
table of normal deviates to be —1.64 and 5.20, respectively. (Note the oppo-
site signs to indicate results in opposite directions.) Then from equation 4.9
we have

I1.B. Combining Studies
Zy +Zy (—1.64) + (5.20)
= =252

V2 1.41

ILB.I. Significance testing. After comparing the results of any two inde-
pendent studies, it is an easy matter to combine the p levels of the two
studies. Thus we get an overall estimate of the probability that the two p
levels might have been obtained if the null hypothesis of no relation be-
tween X and Y were true. Many methods for combining the results of two ot
more studies are available; they will be described later and have been sum-
marized elsewhere (Rosenthal, 1978, 1980). Here it is necessary to give
only the simplest and most versatile of the procedures, the method of add-
ing Z’s called the Stouffer method by Mosteller and Bush (1954). This

as the Z of the combined results of Studies A and B. The p value associated
with a Z of 2.52 is .006 one-tailed or .012 two-tailed. Thus the combined p
supports the result of the more significant of the two results. If these were
actual results we would want to be very cautious in interpreting our com-
bined p both because the two p’s were significant in opposite directions and
because the two p’s were so significantly different from each other. We
would try to discover what differences between Studies A and B might have
led to results so different.
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Example 10. Studies A and B yield results in the same direction but ;.
ther is significant. One p is .11, the other is .09 and their associated Z’s gy,
1.23 and 1.34, respectively. From equation 4.9 we have

ffect size estimate in the combining of effect sizes. However, many other
stimates are possible (e.g., Cohen’s d, Hedges’s g, or Glass’s A, or differ-
_ ences between proportions, d’).

For each of the two studies to be combined, we compute r and the associ-
(:23) + (.34 ated Fisher z, and have

1.41

Zy+ 227,
2 {4.11]

as our combined Z. The p associated with that Z is .034 one-tailed or .06
two-tailed.
as the Fisher z, corresponding to our mean r. We use anr to z, or z, to r table
_ to look up the r associated with our mean Z,. Tables are handier than compu-
ting t from z, from the following: r = (e??r ~ 1)/ (e**r + 1) where e =
771828, the base of the system of natural logarithms. Should we want to do
so we could weight each z, by its df, i.e., N — 3 (Snedecor & Cochran, 1967;
1980), by its estimated research quality, er by any other weights assigned
before inspection of the data.

The weighted mean z, is obtained as follows:

Example 11. Studies A and B are those of example 9 but now we haye
found from a panel of experts that Study A earns a weight (w;) of 3.4 ¢y
assessed internal validity while Study B earns only a weight (w;) 0of 0.9, The
Z’s for Studies A and B had been —1.64 and 5.20 respectively. Therefore
employing equation 4.10 we find

G169 + 095200 -08%6
VB4R + (0.97 3.517 '

Wizy + Waz,

T [4.12]

as the Z of the combined results of Studies A and B. The p value associated weighted mean z, =

with this Z is .40 one-tailed or .80 two-tailed. Note that weighting has led to
a nonsignificant result in this example. In example 9 where there was no
weighting (or, more accurately, equal weighting with w; = w, = 1), the p
value was significant at p = .012 two-tailed.

If the weighting had been by df rather than research quality, and if df fo
Studies A and B had been 36 and 144 respectively, the weighted Z would
have been

. Example 14 will illustrate the application of this procedure.

Example 12. Studies A and B yield results in opposite directions, one r =
80, the other r = —.30. The Fisher z,’s corresponding to these r’s are 1.10
and —0.31, respectively. From equation (4.11) we have

Zy + 2, _ (L10) + (<031) _ .355
2 2

(GO(-L64) + (144)5.20) _ 689.76
GE7 T (1447 148.43

as the mean Fisher z,. From our z, to r table we find a z, of .395 associated
This result shows the combined Z (p < .000002 one-tailed) to have bee withanrof .38.
moved strongly in the direction of the Z with the larger df because of th
substantial difference in df between the two studies. Note that when weight
ing Z’s by df we have decided to have the size of the study play a very larg
role in determining the combined p. The role is very large because the siz
of the study has already entered into the determination of each Z and i

therefore entering a second time into the weighting process.

Example 13. Studies A and B yield results in the same direction, one r =
.95, the other r = .25. The Fisher z’s corresponding to these r’s are 1.83
and .26, respectively. From equation (4.11) we have

183+ .26 _ | g4

ILB.2. Effect size estimation. When we want to combine the results o
two studies, we are at least as interested in the combined estimate of th
effect size as we are in the combined probability. Just as was the case whe
we compared two effect size estimates, we shall consider r as our primar;

as the mean Fisher z,. From our z; to r table we find a z, of 1.045 to be
associated with an r of .78. Note that if we had averaged the two r’s without
first transforming them to Fisher z,’s we would have found the mean r to be
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Again, the examples are hypothetical, constructed to illustrate a wide range
of situations occurring in meta-analytic work in any domain. Often, of
course, the number of studies entering into our analyses will be larger than
the number required to illustrate the various meta-analytic procedures.

(.95 + .25)/2 = .60, substantially smaller than .78. This illustrates that the
use of Fisher’s z; gives heavier weight to r’s that are further from zero in
either direction.

Example 14. Studies A and B are those of example 6 but now we hay,
decided to weight the studies by their df (i.e., N — 3 in this application)
Therefore, equation 4.12 can be rewritten to indicate that we are using df a5
weights as follows:

11.A. Comparing Studies: Diffuse Tests

11LA.1. Significance testing. Given three or more p levels to compare we
first find the standard normal deviate, Z, corresponding to each p level. All
levels must be one-tailed and the corresponding Z’s will have the same
sign if all studies show effects in the same direction, but different signs if the
results are not all in the same direction. The statistical significance of the
heterogeneity of the Z’s can be obtained from a x? computed as follows
(Rosenthal & Rubin, 1979a):

_ o dfyz + dfyz,,
weightedz, = ——————
af, + df, [4.13)

In example 6 we had r’s of .00 and .30 based on N’s of 17 and 45, respec-
tively. The Fisher z,’s corresponding to our two r’s are .00 and .31. There

fore, we find our weighted z, to be 3(Z; — Z)%isdistributed as x> with K — 1 df [4.14]

(17 = 3).00 + (45 — 3)31 _ 13.02
(7 - 3) + @45~ 3) 56

In this equation Z; is the Z for any one study, Z is the mean of all the Z’s
obtained, and K is the number of studies being combined.

Example 15. Studies A, B, C, and D yield one-tailed p values of .15, .05,
.01, and .001, respectively. Study C, however, shows results opposite in
direction from those of studies A, B, and D. From a normal table we find the
Z’s corresponding to the four p levels to be 1.04, 1.64, —2.33, and 3.09.
(Note the negative sign for the Z associated with the result in the opposite
direction.) Then, from the preceding equation 4.14 we have

232

which corresponds to an r of .23.

Finally, it should be noted that before combining tests of significance
and/or effect size estimates, it is very useful first to test the significance o
the difference between the two p values or, what is preferable if they are
available, the two effect sizes. If the results of the studies do differ we
should be most cautious about combining their p values or effect sizes—
especially when their results are in opposite directions. 2(Z; — Z)? = ((1.04) ~ (0.86)]12 + [(1.64) — (0.86)]2 + [(—2.33) — (0.86)]2

+ {(3.09) — (0.86)]2 = 15.79 -

ILB.2.a. Other effect size estimates. All that has been said about the com-

bining of r’s applies in principle also to the combining of other effect size
estimates. Thus we can average Hedges’s g, or Cohen’s d, or Glass’s A, or th
difference between proportions, d’, or any other effect size estimate, with o
without weighting. The difference in practice is that when we combine r’s we
typically transform them to Fisher’s z,’s before combining, while with mos
other effect size estimates we do not transform them before combining them

asour 2 value which forK — 1 = 4 — 1 = 3 df is significant at p = .0013.
The four p values we compared, then, are clearly significantly heterogeneous.

HLA2. Effect size estimation. Here we want to assess the statistical he-
terogeneity of three or more effect size estimates. We again emphasize r as
the effect size estimator, but analogous procedures are available for com-
paring such other effect size estimators as Hedges’s (1981) g or differences
between proportions (Hedges, 1982b; Hsu, 1980; Rosenthal & Rubin,
1982a). These will be described and illustrated shortly.

For each of the three or more studies to be compared we compute the
effect size r, its associated Fisher z,, and N — 3, where N is the number of
sampling units on which each r is based. Then the statistical significance of
the heterogeneity of the r’s can be obtained from a x? (Snedecor & Cochran,
1967, 1980, 1989) because

III. META-ANALYTIC PROCEDURES:
ANY NUMBER OF INDEPENDENT STUDIES

Although we can do quite a lot in the way of comparing and combinin
the results of sets of studies with the procedures given so far, it often hap
pens that we have three or more studies of the same relationship that w
want to compare and/or combine. The purpose of this section is to presen
generalizations of the procedures given in the last section so that we can
compare and combine the results of any number of independent studies
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2Wigi
> w; [4.18]

S(Nj ~ 3)zg — Z)?is distributed as x2 withK — 1 df [4_15] _

In this equation Zs; is the Fisher z, corresponding to any r, and Z, is the
weighted mean z, i.e., ote the similarity in structure between equations 4.17 and 4.15 and be-
ween 4.18 and 4.16. Equation 4.17 will be an adequate approximation in
ost circumstances but it will lose some accuracy when sample sizes are

ery small and t statistics are large.

= 2Ny — 3)zy
oI -3 [4.16)

Example 17. Studies A, B, C, and D yield effect sizes of g = 1.89 (N =
0),8=-99 (N =45),g=.19(N =20)and g = ~.29 (N = 25), respec-
vely. To employ equations 4.17 and 4.18 we will need to compute w for
_each effect size. Equation 4.3 showing how to compute w requires knowing
 the sample sizes of the two groups being compared in each study (n; and n,)
well as the results of the t test. If the t tests were not available we could
_compute our own from equations 2.4, 2.5,.2.25, or 2.26, for example:

Example 16. Studies A, B, C, and D yield effect sizes of r = .70 (N = 3(),
r=.45(N=45),r=.10(N =20)andr = —.15 (N = 25), respectively. The
Fisher z,’s corresponding to these r’s are found from tables of Fisher z  to be
.87, .48, .10, and — .15, respectively. The weighted mean z, is found from
the equation just above (4.16) to be

[27C8T) + 42048) + 17010) + 22(=19] _ 4205
27 + 42 + 17 + 22] C o108

Then from the equation for 2 above (equation 4.15) we have

n [4.19]

S(Nj — 3)(zg — Z)? = 27(.87 = .39) + 42(.48 — .39)% + 17(.10 — .39)?
— — 2 =

2205 - 397 = 144l Ifthe n; and n values are not reported but N (i.e., nj + n,) isknown and if it

is reasonable to assume approximately equal sample sizes, we can replace

2 i —_ = 1 1 if1 ==
as our x2 value which for K — 1 = 3 df is significant at p = .0024. The four n, and n, by N/2. In that case equation 4.19 simplifies to

effect sizes we compared, then, are clearly significantly heterogeneous.

HILA.2.a. Other effect size estimates. Although r is our preferred effect
. . . . . VN
size estimate in this chapter, analogous procedures are available for such t=gx [4.20]
other effect size estimates as (M; — M,)/S (Hedges’s g) or the difference
between proportions (d'). We begin with the case of Hedges’s g. : and equation 4.3 simplifies to
For each of the studies in the set we compute Hedges’s g [(M; — Mp)/§]
and the reciprocal (w) of the estimated variance of g (1/w). We saw in __NN-2
212 + 2N - 4) [4.21]

equation 4.3 how to compute w (Rosenthal & Rubin, 1982a):

- 2(nyny)(ny + 0y — 2) Since in the present example we were not given ny, n,, or t for studies A,

(n, + 2 + 2(n; + ng — 2)] [4.3] B, C, and D, we employ equation 4.20 to obtain t and equation 4.21 to obtain

__ w for each study. Table 4.3 shows the results of these computations which

are shown in detail only for Study A for which N = 30 and g = 1.89. From
equation 4.20 we find

Once we have w we can test the heterogeneity of the set of g’s because
Hedges (1982b) and Rosenthal and Rubin (1982a) have shown that

S wi(gj — £)2is distributed approximately as 2 withK — 1df [4.17] ’

N V3
t=gxX — = 1.89 X =5.18
2 2

The quantity g is the weighted mean g defined as
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emtog’s, still assuming approximately equal sample sizes within each con-
n. we can simplify the conversion equation 2.27 to the following:

TABLE 4.3

Work Table for Comparing Four Effect Sizes (g) tio

Study N g2 1o 2 we wg 2r N-2

A 30 1.89 518 2679 5.07 9.58 E= A= N [4.22]
B 45 .99 3.32 11.03 9.97 9.87

C 20 .19 .42 .18 4.98 .95 , , . .

D 25 —.29 -7 53 6.18  —1.79 pould we want to convert g’s to ’s we can analogously simplify the conver-
b3 120 2.78 8.20 38.53 26.20 18.61 on equation 2.28 to the following:

a. Obtainable from: g = _<t _ 2 from equation 4.20).
9 ( q ) gZN

b. Obtainable from: t = 9 YN (equation 4.20),
2

c. Obtainable from: w = ___N(N=2) _ (equation 4.21). If our effect size estimate were the difference between proportions (d'),
2E+2N-4) r procedure would be analogous to that when our effect size estimate was

Hedges’s g. For each of the studies in the set we compute d'and the recipro-

. . | (w) of the estimated variance of d' (1/w). The basic estimate of w is

From equation 4.21 we find: provided by equation 4.6 which works well unless n; or n; is very small and
NN = 2) 30028) p; Of pz is very close to zero or one. If n; or n, is very small, a conservative

w = = = 5.07
212 + 2N — 4)  2(5.182 + 2(30) — 4)

procedure is to replace p(1 — p) by its maximal possible value of .25. We
give equation 4.6 again:

Before we can employ equation 4.17, our x? test for heterogeneity, we mu L)
find g, the weighted mean g (see equation 4.18), which can be found fro
the appropriate entries in the row of sums of Table 4.3:

=
nypy(1 — pp) + mypy(l = py) [4.6]

The approximation to this expression that depends only on the total study
size (N) and the effect size estimate d’ was given earlier as equation 4.7:

N
w =
1 —~d? [4.7]

Now we can employ equation 4.17 to compute x2

This approximation to equation 4.6 holds exactly when p, and p, are the
same amount above and below .5 and when n; = n,.

Once we have w we can test the heterogeneity of the set of d"’s by means
of equation 4.17 (Rosenthal & Rubin, 1982a) but substituting d’ for g:

Swig; — 8% = 5.07(1.89 — .71)2 + 9.97(.99 — .71)2 + 4.98(.19 — 712 +
6.18(—.29 — 7132 = 15.37

a )2 value which, for K — 1 = 3 df, is significant at p = .0015. The fo
effect sizes we compared, then, are clearly significantly heterogeneous,

The four effect sizes of this example were chosen to be the equivalentsi
units of g to the effect sizes of example 16 which were in units of r. The x(
based on g was somewhat larger (by 7%) than the x%(3) based onr and the p
.0015 is slightly more significant than that for example 16 (.0024). The agre
ment is close enough for practical purposes but we should not expect perfec
agreement. Incidentally, if we have available a set of r’s and want to conve

Ywid — &')? s distributed approximately )
as x2withK — 1 df. [4.24]

The quantity d’ is the weighted mean d’ defined as:

3 - 2wid'y

>wj [4.25]

aquantity defined analogously to g (see equation 4.18).
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hen, employing equation 4.24 we find:

wi(d' — d')? = 58.82(.70 — .40)2 + 56.43(.45 — .40)
J

+ 20.20(.10 — .40)* + 25.58(—.15 — .40 = 14.99

¥2 value which, forK — 1 = 3 df is significant at p = .0018. The four effect
izes are significantly heterogeneous.

The four effect sizes of this example were chosen to be the equivalents in
nits of d’ to the effect sizes of example 16 (r) and example 17 (g). Table 4.5
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TABLE 4.4
Work Table for Comparing Four Effect Sizes (d')
Study N d’ d'? 1-d'* we wd’
A 30 70,4900 .5100 58.82  41.174
B 45 45 2025 7975 56.43  25.394
C 20 .10 0100 .9900 20.20 2.020
D 25 —.15  .0225 9775 2558  —3.837
b 120 1.10 7250 32750 161.03  64.751
a. Obtainable from:w = _N (equation 4.7).

Example 18. Studies A, B, C, and D yield effect sizes of d’ = .70, 45
.10, and — .15, respectively. Table 4.4 shows the results of the computatiop
of w for each of the studies. To illustrate these computations for Study A w

1-d?

employ equation 4.7 as follows:

Before we can employ equation 4.24, our x? test for heterogeneity, w
must find d’, the weighted mean d’ (equation 4.25), which can be foun

N 30

58.82

w = = =
1—4d? 1~ (7002

from the appropriate entries in the row of sums of Table 4.4:

Swid’;  64.751

TABLE 4.5

Tests for the Heterogeneity of Effect Sizes

ummarizes the data for the three effect size estimates of examples 16,17,
and 18. While the three x*(3) values are not identical, they are quite similar
to one another as are the three significance levels. Table 4.5 also suggests
_that the metric r is quite similar to the metric d'. Indeed, we shall see in the
final chapter of this book that when the proportions being compared are the
same amount above and below .5 and when n; = n,, r computed from such a
7 x 2 table does indeed equal d'. '

111.B. Comparing Studies: Focused Tests

[IL.B.1. Significance testing. Although we know how to answer the dif-
fuse question of the significance of the differences among a collection of
significance levels, we are often able to ask a more focused and more useful
question. For example, given a set of p levels for studies of teacher expect-
ancy effects, we might want to know whether results from younger children
show greater degrees of statistical significance than do results from older
children (Rosenthal & Rubin, 1978). Normally our greater interest would be
in the relation between our weights derived from theory and our obtained
effect sizes. Sometimes, however, the effect size estimates, along with their
sample sizes, are not available. More rarely, we may be intrinsically inter-
ested in the relation between our weights and the obtained levels of signifi-
cance.

Defined asr, g, and d' As was the case for diffuse tests, we begin by finding the standard normal
- deviate, Z, corresponding to each p level. All p levels must be one-tailed,
Effect Sizes . . L .
- and the corresponding Z’s will have the same sign if all studies show effects
! £ d in the same direction. The statistical significance of the contrast testing any
Study A .1(5) l'gg 'Zg specific hypothesis about the set of p levels can be obtained from a Z com-
2:3?&2 :10 :19 :10 puted as follows (Rosenthal & Rubin, 1979a):
Study D 15 29 15 $AZ o
Median 28 .59 28 T is distributed as Z
Unweighted mean 312 .70 .28 ZN : [4.26]
Weighted mean 37 71 .40
(3) 14.412 15.37 14.99 Inthis equation A; is the theoretically derived prediction or contrast weight
P .0024 0015 -0018 for any one study, chosen such that the sum of the \;’s will be zero, and Z; is

a. Based on Fishers z, transformation.

the Z for any one study.
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Example 19. Studies A, B, C, and D yield one-tailed p values of 1/1
.0001, .21, and .007, respectively, all with results in the same direction,f
From a normal table or from a calculator with a built-in Z distribution w,
find the Z’s corresponding to the four p levels to be 5.20, 3.72, .81, and 24
Suppose that Studies A, B, C, and D had involved differing amounts of pe,
tutor contact such that Studies A, B, C, and D had involved 8, 6, 4, and
hours of contact per month, respectively. We might, therefore, ask wheth
there was a linear relationship beetween number of hours of contact ap
statistical significance of the result favoring peer tutoring. The weights of
linear contrast involving four studies are 3, 1,~1, and 3. (These are obtain
from a table of orthogonal polynomials; see, for example, Rosenthal
Rosnow, 1984a, 1991). Therefore, from the preceding equation we have

cample 20. Studies A, B, C, and D yield effect sizes of r = .89, .76, .23,
4 .59, respectively, all with N = 12. The Fisher z;’s corresponding to
ese I's are found from tables of Fisher z, to be 1.42, 1.00, .23, and .68,
spectively. Suppose that Studies A, B, C, and D had involved differing
ounts of peer tutor contact such that Studies A, B, C, and D had involved
4, and 2 hours of contact per month, respectively. We might, therefore,
| whether there was a linear relationship between number of hours of
atact and size of effect favoring peer tutoring. As in example 19, the
‘ypropriate weights, or X’s, are 3, 1, —1, and —~3. Therefore, from the
eceding equation we have

zsz,j ~ (3)1.42 + (N1.00 + (—1).23 + (—3).68 B 2.99
N /(3)’ (0¥ (—1F (-3¢ V2322
- T + +

=2.01

+
9 9 9

2

EAij B (3)5.20 + (D3.72 + (—1).81 + (—3)2.45 11.16
VI V@E? + (1) + (~17 + (-37 V20

= 2.50 wj

our Z value which is significant at p = .022 one-tailed. The four effect
zes, therefore, tend to grow linearly larger as the number of hours of con-
ct time increases. Interpretation of this relation must be very cautious.
fter all, studies were not assigned at random to the four conditions of
ntact hours. Generally, variables moderating the magnitude of effects
und should not be interpreted as giving strong evidence for any causal
Jationships. Moderator relationships can, however, be very valuable in
ggesting the possibility of causal relationships, possibilities that can then
studied experimentally or as nearly experimentally as possible.

as our Z value, which is significant at p = .006, one-tailed. The four
values, then, tend to grow linearly more significant as the number of hou
of contact time increases.

HII.B.2. Effect size estimation. Here we want to ask a more focused ques
tion of a set of effect sizes. For example, given a set of effect sizes for studie
of peer tutoring, we might want to know whether these effects are increa
ing or decreasing linearly with the number of hours of contact per mont
We again emphasize r as the effect size estimator but analogous procedure
are available for comparing such other effect size estimators as Hedges
(1981) g or differences between proportions (d’) (Rosenthal & Rubi
1982a). These will be described and illustrated shortly.

As was the case for diffuse tests, we begin by computing the effect size
its associated Fisher z,, and N — 3, where N is the number of sampling uni
on which each r is based. The statistical significance of the contrast, testi
any specific hypothesis about the set of effect sizes, can be obtained from
Z computed as follows (Rosenthal & Rubin, 1982a):

ll1.B.2.a. Other effect size estimates. Although r is our preferred effect
e estimate in this chapter, analogous procedures are available for such
her effect size estimates as (M; — M,)/S (Hedges’s g) or the difference
tween proportions (d'). We begin with the case of Hedges’s g.
Once again we compute the reciprocal (w) of the estimated variance of g
Iw) for each study. We employ equation 4.3 when the individual sample
es (n; and n,) are known and unequal and equation 4.21 when they are
known or when they are equal. These equations are as follows:

EAqu

W w - 2(ming)(n; + nz — 2)
E“v‘vj“ [42 (1 + e + 2n; + 0z — 2)] [4.3]

is distributed as Z

N(N — 2)

In this equation, A; is the contrast weight determined from some theory "
2¢ +2N - 4) [4.21]

any one study, chosen such that the sum of the A;’s will be zero. The z, ist
Fisher z, for any one study and wj is the inverse of the variance of the effe
size for each study. For Fisher z, transformations of the effect size 1,
variance is 1/(Nj — 3) so w; = N; — 3.

o

We employ the computed w’s to test the significance of any contrast we
y wish to investigate. The quantity:




v
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2 \igj e . The four effect sizes of this example were chosen to be the equivalents in
AP is distributed approximately as Z its of g to the effect sizes of example 20 which were in units of r. The Z
2_\; sedon g is somewhat larger (by 14%) than the Z based on r (2.01) and the

£.011 is somewhat more significant than that for example 20 (p = .022).
¢ agreement, therefore, is hardly perfect but it is close enough for practi-

pUrposes. .

Ifa meta-analyst has a favorite effect size estimate, he or she need not
r that a different meta-analyst employing a different effect size estimate
uld reach a dramatically different conclusion. However, what should not
done is to employ a variety of effect size estimates, perform the various
ta-analytic procedures on all of them and report only those results most
asing to the meta-analyst. There is nothing wrong with employing multi-
effect size estimates, but all analyses conducted should also be reported.
neral and special equations showing the relationships between g and r are
given as equations 2.27, 2.28, 4.22, and 4.23.

_ Ifour effect size estimate were the difference between proportions (d'),
our procedure would be analogous to that when our effect size estimate was
dges’s g. Once again we compute the reciprocal (w) of the estimated
variance of d’ (1/w) for each study. We employ equation 4.6 when the indi-
idual sample sizes n; and n, are known and unequal and equation 4.7 when
hey are unknown or when they are equal. The equations are as follows:

an equation that is identical in structure to equation 4.27 (Rosenthal &
bin, 1982a). In this application w; is defined as in equations 4.3 or 4,21
A; is the contrast weight we assign to the jthstudy on the basis of our the
The only restriction is that the sum of the A;’s must be zero (Rosenthg
Rosnow, 1984a, 1985, 1991).

Example 21. Studies A, B, C, and D yield effect sizes of g = 3.56, 2_13
.43, and 1.33, respectively, all with N = 12. As in example 20, we assup,
8, 6, 4, and 2 hours of peer tutoring per month were employed in Studies A
B, C, and D, respectively. We ask whether there was a linear relationshi
between number of hours of contact and size of effect favoring peer tutor
ing. Asinexample 20, the appropriate weights, or X’s, are 3,1, —1, and 3

Table 4.6 lists the ingredients required to compute our test of signif
cance (Z) for the contrast and reminds us of the formulas that can be used y
obtain the various quantities. Now we can apply equation 4.28 to find

S Ajgj 8.39

N Vidaa
2_
Wwj

ning
W=
mpi(1 — p1) + mipA(l — p2) [4.6]
as our Z value which is significant at p = .011 one-tailed. N
W=
1 -d? g .
TABLE 4.6 (4.71
Work Table for Computing Contrasts Among Effect Sizes (g) Once we have w we can test any contrast by means of equation 4.28
. g =N Rosenthal & Rubin, 1982a) but substituting d’ for g:
Study N g t s AN \g w W
Ad's L .
B 12 213 3.69 13.61 11 213 1.79 .56 ‘ N
C 12 .43 .74 S50 -1 1 —.43 292 34 - [4.29]
D 12 133 2.30 531 -3 9  —399 237 ! )
3 48 745  12.90 57.49 0 20 8.39 811 In this application w; is defined as in equations 4.6 or 4.7 and \; is as defined

2t ahove.
a. Obtainable from: g = N (from equation 4.20).

Example 22. Studjes A, B, C, and D yield effect sizes of d’ = .89, .76,
23, and .59, respectively, all with N = 12. As in example 21, we assume 8,
6, 4, and 2 hours of peer tutoring per month were employed in Studies A, B,
C, and D, respectively. Again we want to test the linear contrast with N’s of 3,
1, —1, and —3. Table 4.7 lists the ingredients required to compute our test
of significance (Z) for the contrast. Now we can apply equation 4.29 to find:

b. Obtainable from: t= —92—N (equation 4.20).

c. Determined by theory but with ZA = 0.
N(N - 2

d. Obtainable from: w = 2(t + 2N — 4)

(equation 4.21).
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T 1.43 TABLE 4.8 ,
= =1. . . .
N 7592 64 Tests for Linear Contrasts in Effect Sizes Defined asr, g, and d
Wj Effect Sizes
as our Z value which is significant at p = .05 one-tailed. ! g d
.89 3.56 .89
.76 2.13 .76
TABLE 4.7 .23 .43 .23
Work Table for Computing Contrasts Among Effect Sizes (d') .59 1.33 .59
.68 1.73 .68
Study N d' d?  1d'?* N N A’ wjb 682 1.86 .62
2.01 2.29 1.64
A 12 .89 .79 21 3 9 2.67 57.14 o2 011 050
B 12 .76 .58 42 1 1 .76 28.57 -
i fi )
C 12 .23 .05 95 -1 1 ~.23 12.63 Based on Fisher's z, transformation
D 12 .59 .35 65 -3 9 -1.77 18.46
ining Studi
3 48 247 177 2.23 0 20 1.43 116.80 .C. Combining Studies

a. Determined by theory but with 3A = 0. HILC.1. Significance testing. After comparing the results of any set of

ee or more studies it is an easy matter also to combine the p levels of the
t of studies to get an overall estimate of the probability that the set of p
vels might have been obtained if the null hypothesis of no relationship
tween X and Y were true. Of the various methods available that will be
scribed in the next chapter, we present here only the generalized version
the method presented earlier in our discussion of combining the results of
0 groups.

This method requires only that we obtain Z for each of our p levels, all of
which should be given as one-tailed. Z’s disagreeing in direction from the
bulk of the findings are given negative signs. Then, the sum of the Z’s di-
ded by the square root of the number (K) of studies yields a new statistic
stributed as Z. Recapping,

b. Obtainable from: w = (equation 4.7).

1 —d"?

The four effect sizes of this example were chosen to be equivalent j
units of d’ to the effect sizes of example 20 (r) and example 21 (g). Ta
4.8 summarizes the data for the three effect size estimates of examples 20
21, and 22. The three Z tests of significance of the linear contrast ar
somewhat variable, with the Z for the effect size estimator g being abou
14% larger than that for r and the Z for the effect size estimator d’ bein
about 18% smaller than that for r. However, the range of significance lev
els is not dramatic with the most significant result at p = .011 and the leas
significant at p = .050. ,

Before leaving the topic of focused tests, it should be noted that their us
is more efficient than the more common procedure of counting each effe:
size or significance level as a single observation (e.g., Eagly & Carli, 198
Hall, 1980; Rosenthal & Rubin, 1978; Smith et al., 1980). In that procedur
we might, for example, compute a correlation between the Fisher z, value
and the \'s of example 20 to test the hypothesis of greater effect size bein
associated with greater contact time. Although that r is substantial (;77),
does not even approach significance because of the small number of df upo
which the r is based. The procedures employing focused tests or contras
employ much more of the information available and, therefore, are le
likely to lead to Type Il errors.

Z.
‘\2‘/‘% is distributed as Z [4.30]

Should we want to do so, we could weight each of the Z’s by its df, its
estimated quality, or any other desired weights (Mosteller & Bush, 1954;
Rosenthal, 1978, 1980).

The general procedure for weighting Z's is to muitiply each Z by any
desired weight (assigned before inspection of the data), add the weighted
Z's, and divide the sum of the weighted Z’s by the square root of the sum of
_ the squared weights as follows:
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S wiZi mple weighting by quality of research did not lead to a very different
Weighted Z = - a5 obtained when weighting was not employed (example 23); in

VIwi [4.3] ultthan w ghting ploy

pcases P = .04 one-tailed. Actually, it might be more accurate to say for

- . e — hat
Example 24 will illustrate the application of this procedure. ¢ 23 that weighting was equal with all w’s = 1 than to say that no

Example 23. Studies A, B, C, and D yield one-tailed p values of .15, g5
.01, and .001, respectively. Study C, however, shows results opposite ;
direction from the results of the remaining studies. The four Z’s associate
with these four p’s, then, are 1.04, 1.64, —2.33, and 3.09. From equatig
4.30 we have

[I1.C.2. Effect size estimation. When we combine the results of three or
re studies we are at least as interested in the combined estimate of the
ect size as we are in the combined probability. We follow here our earlier
ocedure of considering r as our primary effect size estimator while recog-
ing that many other estimates are possible. For each of the three or more
sudies to be combined we compute r and the associated Fisher z, and have

SZi  (1.04) + (1.64) + (—2.33) + (3.09)

VR = Vi =172
as our new Z value which has an associated p value of .043 one-tailed or.086 K . [4.32]
two-tailed. We would normally employ the one-tailed p value if we had
correctly predicted the bulk of the findings but would employ the two-taile
p value if we had not. The combined p that we obtained in this exampl
supports the results of the majority of the individual studies. However, eve
if these p values (.043 and .086) were more significant, we would want tob
very cautious about drawing any simple overall conclusion because of the
very great heterogeneity of the four p values we were combining. Exampl
15, which employed the same p values, showed that this heterogeneity was
significant at p = .0013. It should be emphasized again, however, that this
great heterogeneity of p values could be due to heterogeneity of effect sizes,
heterogeneity of sample sizes, or both. To find out about the sources of
heterogeneity, we would have to look carefully at the effect sizes and sample
sizes of each of the studies involved.

4 the Fisher Z, corresponding to our mean r (where K refers to the number
studies combined). We use a table of Fisher z, to find the r associated with

our mean 7. Should we want to give greater weight to larger studies we

could weight each z; by its df, i.e,, N — 3 (Snedecor & Cochran, 1967,

1980, 1989), by its estimated research quality, or by any other weights

assigned before inspection of the data.

The weighted mean z, is obtained as follows:

Wiz

Swj (4.33]

Weighted z, =

Example 26 will illustrate the application of this procedure.

Example 25. Studies A, B, C, and D yield effect sizes of r = .70, .45, .10,
and ~ .15, respectively. The Fisher z; values corresponding to these r’s are
87, .48, .10, and — .15, respectively. Then, from equation 4.32 we have

Example 24. Studies A, B, C, and D are those of example 23 just above,
but now we have decided to weight each study by the mean rating of internal
validity assigned it by a panel of methodologists. These weights (w) were
2.4,2.2, 3.1, and 3.8 for Studies A, B, C, and D, respectively. Employing
equation 4.31 we find:

Su_ (8D + (4 F 0+ (1)
K 4 '

iz 2.4)(1.04 2.2)(1.6 Iy(-2. .8)(3.
Weighted Z = 2wiZj - (2.4)(1.04) + (2.2)(1.64) + (3.1)(—2.33) + (3.8)(3.09)

_ asour mean Fisher z,. From our table of Fisher z, values we find a z,of .32to

VEwi V(2472 + (2.2 + B.1P + (3.8¢ '
J Fremr T a8 _ correspond to an r of .31. Just as in our earlier example of combined p levels,
10.623 _ however, we would want to be very cautious in our interpretation of this

s aies 1.80 _ combined effect size. If the r's we have just averaged were based on substan-

tial sample sizes, as was the case in example 16, they would be significantly
_ heterogeneous. Therefore averaging without special thought and comment
would be inappropriate.

as the Z of the weighted combined results of Studies A, B, C, and D. The p :
value associated with this Z is .036 one-tailed or .072 two-tailed. In thi
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Example 26. Studies A, B, C, and D are those of example 25 just above
but now we have decided to weight each study by a mean rating of ecologjcy
validity assigned to it by several experts. These weights were 1.7, 1.6, 3 1
and 2.5 for Studies A, B, C, and D, respectively. Employing equation 4, 33

we find:
Eszrj (L7)(.87) + (1.6)(.48) + (3.1)(.10) + (2.5)(—.15)
Weighted Z = =
Sw 1.7+ 1.6+3.1+25
e
8.90

as our mean Fisher z,, which corresponds to an r of .24. In this eXample
weighting by quality of research led to a somewhat smaller estimate of com,.
bined effect size than did equal weighting (.24 versus .31).

Combining Probabilities

HI.C.2.a. Other effect size estimates. Any other effect size, e.g., Cohen's
d, Hedges’s g, Glass’s A, the difference between proportions (d') and so of
can be combined with or without weighting just as we have shown forr. The
only difference is that when we combine r’s we typically transform them fy
Fisher’s z;s before combining, while for most other effect size estimates we
combine them directly without prior transformation.

arious methods for combining independent probabilities are described and compared. A
arning is offered against the direct combining of the raw data of different studies. Fi-
ally, the problem of the “file drawer” is discussed in which studies with null results may
¢ unpublished and unretrievable by the meta-analyst.

I. GENERAL PROCEDURES
EXERCISES

Six experiments were conducted to investigate the effects of a new treatment
procedure. The following table shows the effect size (r) obtained in each study and
the number of patients employed in each study (a positive r means the new treatment
was better): ‘

In the preceding chapter, some basic procedures that can be used to com-
are and to combine levels of significance and effect size estimates were
resented. In addition to the basic procedures presented, there are various
lternative methods available for combining probability levels that are es-

Study Effect Size (r) N ecially useful under particular circumstances.
1 .64 43 In this section on general procedures we summarize the major methods
2 33 64  for combining the probabilities obtained from two or more studies testing
3 .03 39 essentially the same directional hypothesis. Although it is possible to do so,
4 02 46 . no consideration is given here to questions of combining results from stud-
2 - ’83 ig ies in which the direction of the results cannot be made immediately appar-

ent, as would be the case for F tests (employed in analysis of variance) with
f > 1 for the numerator or for chi-square tests (of independence in contin-
_gency tables) with df > 1. Although this section is intended to be self-
_contained, it is not intended to serve as a summary of all the useful ideas on
_the topic at hand that are contained in the literature referenced. The seminal
 work of Mosteller and Bush (1954) is especially recommended. For areview
of the relevant literature see Rosenthal (1978a).

1. Compute the significance level for each of the above studies and give the Z
associated with each significance level.
2. Give the weighted and the unweighted mean effect size for these six studies.
3. Give the significance level associated with each of the two mean effect sizes
of question 2. '
4. Report and interpret the results of a test of the heterogeneity of these six effect
sizes.
5. Test the hypothesis that larger studies obtained larger effect sizes in this se
studies. Report the Z, p, and r derived from this contrast.
6. Convert the effect sizes given above to Cohen’s d or Hedges’s g. Then ans
questions 1 to 5 for this new effect size estimate.

LA. The Basic Methods
Table 5.1 presents the results of a set of five illustrative studies. The first
column of information about the studies lists the results of the t test. The

89
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TABLES.1 _ 2442 a0
Summary of Seven Methods for . V6600
ini iliti endent Experiments
Combining Probabilities of Indep p o = 0013 0ne-ai
One-tail  Effect ‘ fTesting M ]
Study t df P Sizer i _2l°geP 6 Method of Testing Mean p:
1 +1.19 40 12 18 +1.17 4.24 Z=(50—-P)(Vi2N ) {5.6]
2 +2.39 60 .0t .29 +2.33 9.21
3 ~0.60 10 72 -9 —0.58 0.66 = (50 = .22)V12(5) = 2.17,
4 +1.52 30 07 .27 +1.48 532 B )
5 +0.98 20 17 21 +0.95 3.54 p = 015 one-tail
3 +5.48 160 1.09 +.76 +5.35 22.97 7. Method of Testing Mean Z:
- +1. :
Mean +1.10 32 22 k.15 1.07 4.59 SZ/N 107
Median  +1.19 30 A2 +.21 +1.17 4.24 t= = = 2.26,df = 4, (57]

NOTES: The seven methods follow.
1. Method of Adding Logs:
K(df = 2N) = 3 — 2logp = 22.97

= .011 one-tail

2. Method of Adding Probabilities (Applicable when Zp near unity or less):

3. Method of Addingt's:
3t 5.48

5.48
=——_—— =233

V5.5197

p = .01 one-tail.

4. Method of Adding Z's:

p¥4 5.35

Z= =~ = 2.39,
VN V5

p = .009 one-tail

5. Method of Adding Weighted Z's:

T diyZy+diZy o df 2

L I U [

(40)(+ 1.17) + (60)(+2.33) + ... + (20)(+0.95)
V(40) + (60) + ... + (20)"

VE[df/(df — 2)] ) V40/38 + 60/58 + 10/8+ 30/28 + 20/18

\/S’(Z)/N V.22513
p <.05 oqe-tail
or

=z

F=—ya —=509d=14

. p <.05 one-tail

sign preceding t gives the direction of the results; a positive sign means the
difference is consistent with the bulk of the results, a negative sign means
the difference is inconsistent. The second column records the df upon which
each t was based.
The third column gives the one-tailed p associated with each t. It should
be noted that one-tail p’s are always less than .50 when the results are in the
consistent direction, but they are always greater than .50 when the results
are not consistent. For example, study 3 with a t of —.60 is tabulated with a
one-tail p of .72. If the t had been in the consistent direction, i.e., + .60, the
one-tail p would have been .28. It is important to note that it is the direction
of difference which is found to occur on the average that is assigned the +
sign, and hence the lower one-tail p. The basic computations and results are
identical whether we were very clever and predicted the net direction of
effect or not clever at all and got it quite wrong. At the very end of our
calculations, we can double the final overall level of significance if we want
to make an allowance for not having predicted the net direction of effect.
The fourth column of the table gives the size of the effect defined in
terms of the Pearsonr. ’
The fifth column gives the standard normal deviate, or Z associated with
each p value. The final column of our table lists the natural logarithms of the
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dding the obtained t values and dividing that sum by the square root of the
of the df’s associated with the t's after each df has been divided by df — 2.
. The result of the calculation is itself approximately a standard normal
eviate that is associated with a particular probability level when each of
he t's is based on df of at least 10 or so. When applied to the data of our table,
he Winer method yields p = .01, one-tail, a result very close to the earlier
vo results. The limitation of this method is that it cannot be employed when
pe size of the samples for which t is computed becomes less than three,
ocause that would involve dividing by zero or by a negative value. In
ddition, the method may not give such good approximations to the normal
ith df < 10 for each t.

one-tail p’s (of the third column of information) multiplied by —2. Eachisy
quantity distributed as x> with 2 df and is an ingredient of the first method of
combining p levels to be presented in this section (Fisher, 1932, 1938).

LA.1. Adding logs. The last column of our table is really a list of x2 va].
ues. The sum of independent x?’s is also distributed as x? with df equal to
the sum of the df’s of the x*'s added. Therefore, we need only add the five
x%’s of our table and look up this new x 2with 5 X 2 = 10 df. The results are
given just below the row of medians of our table; X% = 22.97, which is
associated with a p of .011, one-tail, when df = 10.

The method of adding logs, sometimes called the Fisher method, though
frequently cited, suffers from the disadvantage that it can yield results that
are inconsistent with such simple overall tests as the sign test of the null
hypothesis of a 50:50 split (Siegel, 1956). Thus for a large number of stud:
ies, if the vast majority showed results in one direction, we could easily
reject the null hypothesis by the sign test even if the consistent p values were
not very much below .50. However, under these situations the Fisher
method would not yield an overall significant p (Mosteller & Bush, 1954),
Another problem with the Fisher method is that if two studies with equally
and strongly significant results in opposite directions are obtained, the
Fisher method supports the significance of either outcome! Thus p’s of .001
forA > B and .001 for B > A combinetoap < .0l for A>BorB > A
(Adcock, 1960). Despite these limitations, the Fisher method remains the
best known and most discussed of all the methods of combining indepen-
dent probabilities (see Rosenthal, 1978 for a review of the literature). Be-
cause of its limitations, however, routine use does not appear indicated.

1A44. Adding Z's. Perhaps the simplest of all, the Stouffer method de-
cribed in the last chapter (Mosteller & Bush, 1954) asks us only to add the
tandard normal deviates (or Z’s) associated with the p’s obtained, and divide
y the square root of the number of studies being combined (Adcock, 1960;
‘ochran, 1954; Stouffer, Suchman, De Vinney, Star, & Williams, 1949, p. 45).
ach Z was a standard normal deviate under the null hypothesis. The variance
fthe sum of independent normal deviates is the sum of their variances. Here,
is sum is equal to the number of studies, since each study has unit variance.
ur table shows results for the Stouffer method that are very close to those
btained by the method of adding t's (Z = 2.39 vs. Z = 2.33).

LAS5. Adding weighted Z's. Mosteller and Bush (1954) have suggested a
nique that permits us to weight each standard normal deviate by the size
f the sample on which it is based (or by its df), or by any other desirable |
sitive weighting such as the elegance, internal validity, or real-life repre- t
ntativeness (ecological validity) of the individual study. The method, il-
strated in the last chapter, requires us to add the products of our weights
d Z's, and to divide this sum by the square root of the sum of the squared ;
eights. Our table shows the results of the application of the weighted
touffer method with df employed as weights. We note that the result is the
west overall p we have seen. This is because, for the example, the lowest p
yels are given the heaviest weighting because they are associated with the
rgest sample sizes and df. Lancaster (1961) has noted that when weighting
employed, the Z method is preferable to weighting applied to the Fisher
?tl}od for reasons of computational convenience and because the final sum H
tained is again a normal variable. Finally, for the very special case of just
0 studies, Zelen and Joel (1959) describe the choice of weights to mini-
type Il errors.

L.A.2. Adding probabilities. A powerful method has been described by
Edgington (1972a) in which the combined probability emerges when the
sum of the observed p levels is raised to the power equivalent to the numbe;
of studies being combined (N) and divided by N!. Essentially, this formula
gives the area of a right triangle when the results of two studies are bemg
combined, the volume of a pyramid when the results of three studies are
combined, and the n-dimensional generalization of this volume when more
studies are involved. Our table shows the results to be equivalent to thos
obtained by the Fisher method for this set of data. The basic Edglngton
method is useful and ingenious but is limited to small sets of studies, since i
requires that the sum of the p levels not exceed unity by very much. When
the sum of the p levels does exceed unity, the overall p obtained tends to be
too conservative unless special corrections are introduced.

LA.3. Adding t’s. A method that has none of the disadvantages of the
ceding two methods was described by Winer (1971). Based on the result
the variance of the t distribution for any given df is df/(df — 2), it requ

A.6. Testing the mean p. Edgington (1972b) has proposed a normal
e method to be used when there are four or more studies to be com-
d. The mean of the p’s to be combined is subtracted from .50, and this
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quantity is multiplied by the square root of 12N, where N is the numbey of TABLES5.2
studies to be combined. (The presence of a 12 derives from the fact that ¢, Counting Method for Assessing Overall
variance of the population of p values is 1/12, when the null hypothesis ofp, Significance of a Relationship (x* Method)
treatment effects is true.)
L Studies Reaching Studies Not

LA.7. Testing the mean Z. In this modification of the Stouffer methog, Counts p<.05 Reaching p < .05 3
Mosteller and Bush (1954) first convert p levels to Z values. They then com,. Obtained 12 108 120
pute a t-test on the mean Z value obtained with the df for t equal to the numbe; Expected
of Z values available minus one. Mosteller and Bush, however, advise againg; __(if null hypothesis true) & 114° 120
this pro'cedure when there are fewer than five studies to be combined. Thg; NOTE: () =3 0 _EE)I L ; or. (108 1: 4"4)2 =6.32,p = .012 15.8]
suggestion grows out of the low power of the t test when based on few obger.
vations. Our table illustrates this low power by showing that this methgq or, since Z = V(1) Z = V6.32 = 2,51, p = .006, one-tailed. (5.9

yields the largest combined p of any of the methods reviewed.
a Computed from .05(N) = .05(120) = 6.
) =

LB. Additional Methods b, Computed from .95(N) = .95(120) = 114.

LB.1. Counting. When the number of studies to be combined grows
large, a number of counting methods can be employed (Brozek & Tiede, f
1952; Jones & Fiske, 1953; Wilkinson, 1951). The number of p values below
.50 can be called +, the number of p values above .50 can be called —, ands
sign test can be performed. If 12 of 15 results are consistent in either direc.
tion, the sign test tells us that results so rare “occur by chance” only 3.6 %of
the time. This procedure, and the closely related one that follows, have been
employed by Hall (1979, 1984).

The x? statistic may also be useful in comparing the number of studies
expected to reach a given level of significance under the null hypothesis
with the number actually reaching that level (Rosenthal, 1969, 1976; Ro-
senthal & Rosnow, 1975; Rosenthal & Rubin, 1978a). In this application
there are two cells in our table of counts, one for the number reaching some
critical level of p, the other for the number not reaching that critical level of
p. When there are 100 or more studies available, we can set our critical p
level at .05. Our expected frequency for that cell is .05N while our expected
frequency for the other cell is .95N.For example, suppose that 12 of 120
studies show results at p < .05 in the same direction. Then our expected
frequencies for the two cells are .05(120) and .95(120) respectively, as
shown in Table 5.2. 1

It is not necessary to set our critical value of p at .05. We could as well use
.10 or .01. However, it is advisable to keep the expected frequency of our‘;:
smaller cell at 5 or above. Therefore, we would not use a critical value of .01
unless we had at least 500 studies altogether. To keep our smaller expected.
frequency at 5 or more we would use a critical level of .10 if we had 50 studies,
a critical level of .20 if we had 25 studies, and so on. More generally, when
there are fewer than 100 studies but more than 9, we enter in one cell
expected frequency of 5 and in the other an expected frequency of N—5. T
observed frequency for the first cell, then, is the number of studies reaching

< NS_ The observed frequency for the sqcond cell is the number of studies
with p > —I\Sj The resulting x2 can then be entered into a table of critical x?
values. Alternatively, the square root of x? can be computed to yield Z, the
standard normal deviate. Although clear-cut results on the issue are not avail-
able, it appears likely that the counting methods are not as powerful as other
methods described here.

LB.2. Blocking. The last method, adapted from the procedure given by
. Snedecor and Cochran (1967; see also Cochran & Cox, 1957) requires that
we reconstruct the means, sample sizes, and mean square within conditions
_ foreach of our studies. We then combine the data into an overall analysis of
. variance in which treatment condition is the main effect of primary interest
and in which studies are regarded as a blocking variable. If required because
_ of differences among the studies in their means and variances, the depen-
dent variables of the studies can be put onto a common scale (e.g., zero
__mean and unit variance).

. When studies are assumed to be a fixed factor, as they sometimes are
_ (Cochran & Cox, 1957), or when the MS for treatments X studies is small
relative to the MS within, the treatment effect is tested against the pooled
~ MS within (Cochran & Cox, 1957). When the studies are regarded as a
__random factor-and when the MS for treatments X studies is substantial rela-
_ tive to the MS within (say, F > 2), the treatments X studies effect is the
appropriate error term for the treatment effect. Regardless of whether stud-
ies are viewed as fixed or random factors, the main effect of studies and the
interaction of treatments X studies are tested against the MS within.
Substantial main effects of studies may or may not be of much interest,
. but substantial treatments X studies interaction effects will usually be of
considerable interest. It will be instructive to study the residuals defining
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Total SS = (M — M)? = (0.48—1.24) + (2.00—1.24% +. .. .+
(0.36—1.24)2 + (2.12—1.24)2 = 9.4432 [5.10]

TABLE 5.3
The Blocking Method of Combining Probabilities

Applied to the Studies of Table 5.1 _
Row (Studies) SS = Z[c(MR — M)?] = 2(1.24—1.24)* +. ., .+

2(1.24~1.242 =0 [5.11]

Control Experimental
Study Mean (n) Mean (n) Mean Column (Treatments) SS = E[r(MC - 1\71)2] = 5(.592—1.24)* +
1 0.48 Q@ 2.00 1) 1.24 5(1.888—1.24)% = 4.1990 [5.12]
2 0.00 a3n 2.48 (31) 1.24
3 2.00 ( 6) 0.48 ( 6) 1.24 Row x Column SS = Total SS — Row SS — Column SS
4 0.12 (16) 236 (16) 1.24 =9.4432 — 0 — 4.1990 = 5.2442 [5.13]
5 0.36 (1) 2.12 1) 1.24 .
M 592 1.888 {24 When divided by their appropriate df the Studies, Treatments, and Studies
cat - - - —— - by Treatments SS’s yield MS’s of 0, 4.1990, and 1.3110, respectively.
Analysis of Variance: Unweighted Means h t is obtained by dividi M ..
Source <5 df MS F The error erm is obtained by dividing tl.u? S error from the original
one-way analysis of variance of the 10 conditions (17.64) by the harmonic
g:egfments g. 1990 i g.i990 2.98% mean of the sample sizes, np,. In this case ny, = 12.5016 so our error term is
udies . N j—
Treatments X studies 5.2442 4 1.3110 —_ ’
17.64 -
Error 160 1.4110° ST = 1.4110
a. Inthe example constructed here and, more generally, in cases wherein the data from each study . 12.5016
are standardized with zero mean and unit variance, the mean square for studies is always zero, as shown in Table 5.3.
since the means of all studies have been set equal to each other (to zero) the between studies
and MS must equal zero. 1.C. Choosing a Method .

b. Computations are reviewed in the text.

*Z = 1.70,p = .045, one tail Table 5.4 shows the advantages, limitations, and indications for use of

each of the nine methods of combining probabilities. Various methods have
special advantages under special circumstances. Suppose we were con-
fronted by 200 studies, each provided with only the information that it did
or did not reach a given alpha level. A counting method (x?) gives a very
quick test, if not a very elegant or powerful estimate of overall probability.
With so many studies to process we would probably decide against the
blocking method on the grounds that the work required would not be justi-
fied by any special benefits. We would not be able to apply the basic method
of adding probabilities for reasons given earlier. Most other methods are
applicable, however.

If we were combining only a very few studies, we might favor the
method of adding probabilities. We would avoid both the method of testing
he mean Z and the counting methods, which do better on larger numbers of

the interaction closely for clues as to the nature of the possible moderating
variables affecting the operation of the treatment effect. Analysis of the
residuals might show, for example, that it is the better (or more poorl )
designed studies that show greater predicted effects. The blocking method
is sometimes not applicable because authors have not reported sufficient
data in their papers.

Table 5.3 illustrates this last method as applied to the set of five studies
we have been using as our example (see Table 5.1). An unweighted means
analysis of variance was computed and the results fell within the range of
results obtained by our earlier described methods. The only real disadv
tage of this approach is that it may involve considerably more work than
some of the other methods. This will be especially true when the numberof
studies grows from just a few to dozens, scores, or hundreds. The compu

tions for the unweighted means analysis of variance are shown next. There is no best method under all conditions (Birnbaum, 1954), but the

one that seems most serviceable under the largest range of conditions is that
of adding Z’s, with or without weighting. When the number of studies is
mall, it can be suggested that at least two other procedures also be em-
ployed and the overall p’s emerging from all three be reported. When the
number of studies is large, a useful combination would seem to be the

LB.2.a. Computations: unweighted means. The details of the unweight
means analysis of variance are given elsewhere (e.g., Rosenthal & Rosno
1984a, chapter 20; 1991, chapter 16). Basically, we perform our compu
tions on the means of the control and experimental conditions of the fi
studies.
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TABLE 5.4 method of adding Z’s combined with one or more of the counting methods
Advantages and Limitations of Nine Methods s a check. Practical experience with the various methods suggests that
of Combining Probabilities there is only rarely a serious discrepancy among appropriately chosen
i i \ hat h en
Vethod Advantages Jrm— Use When methods. It goes thhgut saying, of course, that any overall p that has be
. : - computed (or its associated test statistic with df) should be reported and not
1. Adding Well-established Cumulates poorly; N of studies small . . . . . .
- : uppressed for being higher or lower than the investigator might like.
Logs historically can support opposite (=<5 §! . . 5 : .
conclusions. To make possible the computations described in this chapter, authors
) ) should routinely report the exact t, F, Z, or other test statistic along with its
2. Addingp's  Good power h;afp (l;.c ab(le wt“;nN E‘;f(s);umes small (2p dfor N, rather than simply making such vague statements as “t was signifi-
of studies (or p’s <1. '
large unless complex cantatp < 05 L . .
corrections are intro- Reporting the test statistic along with an approximate p level also seems
duced. preferable to reporting the “exact” p level for three reasons: (1) the exact p
difficult to determine without a computer or a calculator that
3. Addingt’s Unaffected by N of Inapplicable when t’s Studies not based on evel may b;. ibuti 7.t F andy2 (2 bi p. b il
studies given mini- based on very few df. too few df tores such 1st‘r1 ut19ns asZ,t,F,and %2 (2) am iguity about one-tail versus
mum df per study two-tail usage is avoided, and (3) the test statistic allows us to compute exact
A p as well as the effect size. Speaking of effect size, we encourage editors to
4. Adding Routinely applica- Assumes unit vari- nytime . ire the 1 £, ize rd verv test
7' ble: simple ance when under rout-mfely require the report of an effect size (e.g., 1, g, A, or d) for every tes
some conditions Type tatistic repprted. ) .
Tor Type lierrors Finally, it should be noted that even if we have established a low com-
may be increased. hined p, we have said absolutely nothing about the typical size of the effect
. “exi o i \ ining. i der
5. Adding Routinely applica- Assumes unit vari- Whenever weighting he : existence” of Wh,ICh we ha_ ¢ been exal:mnmg Weoweitto ou.r readers
Weighted ble, permits ance when under desired togive for each combined P estlmau? an estimate <.)f the probable size .of the
Z's weightin some conditions T effect in terms of a correlation coefficient, a o unit, or some other estimate.
ghting ype
lor Type I errors . This estimated effect size should be accompanied, when possible, by a con-
may be increased. fidence interval.
6. Testing Simple N of studies should N of studies = 4 _LD. On Not Combining Raw Data 7
Mean p not be less than four. Sometimes it happens that the raw data of two or rore studies are availa-
7. Testing No assumption of Low power when N N of studies = 5 ble. We have seen how these data could be approprlate!y combmeq in the
Mean 7, unit variance of studies small. method of blocking. There may, however, be a temptation to combine the
) ) raw data without first blocking or subdividing the data on the basis of the
8. Counting Simple and robust i‘:;(gi:?;f S“t”:'f:w Nof studies large studies producing the data. The purpose of this section is to help avoid that
, Ma . . . . .
in power Y temptation by showing the very misleading or even paradoxical results that
can occur when raw data are pooled without blocking.
9. Blocking Displays all means ~ Laborious when N N of studies not too Table 5.5 shows the results of four studies in which the correlation be-

for inspection, thus
facilitating search
for moderators
(variables altering
the relationship be-
tween independent
and dependent
variables).

large; insufficient

data may be available

to employ this
procedure,

large tween variables X and Y is shown for two subjects. The number of subjects

per study makes no difference and the small number (n = 2) isemployed here
only to keep the example simple. For each of the four studies the correlation
(r) between X and Y is —1.00. However, no matter how we combine the raw
data of these four studies, the correlation is never negative again. Indeed, the
range of ’s is from zero (as when we pool the data between any two adjacent

studies) to .80 (as when we pool the data from studies 1 and 4). The remainder
of Table 5.5 shows the six different correlations that are possible (.00, .45,
60, .67, .72, .80) as a function of which studies are pooled.
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TABLE 5.5 TABLE 5.6
Effects of Pooling Raw Data: Four Studies Effects of Pooling Tables of Counts
Study 1 Study ZY Study 3Y Study 1 Study 2 Pooled
Subreat 1 5 o 2 5 p . Alive Dead Alive Dead Alive Dead
ubjec
Subject 2 0 2 2 4 4 6 ; ample |
Mean 1.0 1.0 3.0 3.0 5.0 5.0 . Treatment 100 1000 100 10 200 1010
. —1.00 ~1.00 —1.00 1.0 10 100 1000 100 1010 200
Correlations obtained Three or 110 1100 1100 110 1210 1210
when pooling: Two Studies Four Studies 0 0 r= 67
r= r= =,
ro= 00 .60 .80 45 .67 72
Pooled studies: 1+2° 1+3 1+4 1,2,3 1,2,34 124
i:i 244 2.3.4 34 1 eatment 50 100 50 0 100 100
— Control 0 50 100 50 100 100
. . ~ 3 50 150 150 50 200 200
How can these anomalous results be explained? Examination of the :
means of the X and Y variables for the four studies of Table 5.5 helps us =3 RS L=
understand. The means of the X and Y variables differ substantially from
study to study and are substantially positively correlated. Thus, in study | . . .
the X and Y scores (although perfectly negatively correlated) are all quite - o Exa}rln ple T of TabledS..'6 we /Zeehtwo StudleS\:I:OWiﬁg zer(:lc:) rrefl;?on
low relative to the X and Y scores of study 4 which are all quite high (al. ::be‘tweer(;_t etreatmelntdco;l ition andt f? (;utcgme. rhen clra.w a fa %7 cse
though also perfectly negatively correlated). Thus, across these studies in Wo .stu 1hes a;le pooled, oweve}:lr, wi ]1 nNa ra;lma‘tlc SC o:ire imorll 09('7 fs ug-
which the variation is substantial, we have an overall positive correlation :rgestmgt z}tt € tre.a tment was' armiul, Note that in Stu y oniy 770 of pa-
tients survived, while 91 %received the treatment, whereas in Study 2, 91 %of

between variables X and Y. Within these studies, where the correlations are
negative (—1.00) the variation in scores is relatively small, small enoughto
be swamped by the variation between studies.

Although there may be times when it is useful to array the data from
multiple studies in order to see an overall pattern of results, or to see what
might happen if we planned a single study with variation equivalent to that
shown by a set of pooled studies, Table 5.5 serves as serious warning of how
pooled raw data can lead to conclusions (though not necessarily ‘‘wrong'’}
opposite to those obtained from individual, less variable studies.

patients survived but only 9 % received the treatment. It is these inequalities
of row and column totals that lead to Yule’s (or Simpson’s) Paradoxes.
Example II of Table 5.6 shows two studies each obtaining a strong effect
favoring the treatment condition (r = .33). When these two studies were
pooled, however, these strong effects vanished. Note that in Study 1 only
25 % of patients survived while 75 % received the treatment, whereas in
Study 2, 75 %of patients survived but only 25 %received the treatment. Had L
row and column totals been equal, the paradoxes of pooling would not have
occurred.

The moral of the pooling paradoxes is clear. Except for the exploratory
purposes mentioned earlier, raw data should not be pooled without block-
ing. In most cases, effect sizes and significance levels should be computed
separately for each study and only then combined.

LD.1. Yule’s or Simpson’s Paradox. Nearly a century ago G. Udny Yule
(1903) described a related problem in dealing with 2 x 2 tables of counts. He
showed how two studies in which no relationship (r = .00) was found between
the variables defined by the two rows and the two columns, could yield a
positive correlation (r = .19) when the raw data were pooled. Similarly,
Simpson (1951) showed how two studies with modest positive correlations
(r’s = .03 and .04) could yield a zero correlation when the raw data were
pooled. Table 5.6 illustrates the problem described by Yule (1903), by
Simpson (1951) and by others (e.g., Birch, 1963; Blyth, 1972; Fienberg,

- 1977; Glass et al., 1981; and Upton, 1978).

II. SPECIALISSUES

Earlier in this chapter we saw that the method of adding Z’s was perhaps |
the most generally serviceable method for combining probabilities. In the i l
following section we provide procedures facilitating the use of this method.
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IL.A. Obtaining the Value of Z

The method of adding Z’s requires that we begin by converting the op,
tained one-tailed p level of each study to its equivalent Z. The value of 7 ;
zero when the one-tailed p is .50, positive as p decreases from p = .50t
close to zero, and negative as p increases from .50 to p close to unity. Thyg,
one-tailed p of .01 has an associated Z of 2.33, while a one-tailed p of g9
has an associated Z of —2.33. These values can be located in the table
probabilities associated with observed values of Z in the normal distriby.
tion found in most textbooks on statistics.

Unfortunately for the meta-analyst, few studies report the Z associateq
with their obtained p. Worse still, the obtained p’s are often given impre.
cisely as < .05 or << .01, so that p might be .001 or .0001 or .00001. If pisaj]
that is given in a study, all we can do is use a table of the normal distribution
to find the Z associated with a reported p. Thus, one-tailed p’s of .05, .01,
and .001 are found to have associated Z’s of 1.65, 2.33, and 3.09, respec.
tively. (If a result is simply called “nonsignificant,” and if no further infor.
mation is available, we have little choice but to treat the result as a pof .50,
Z =0.00.)

Since p’s reported in research papers tend to be imprecisely reported we
can do abetter job of combining p’s by going back to the original test statistics
employed, e.g., t, F, or x2. Fortunately, many journals require that these statis-
tics, along with their df, be reported routinely. The df fort and for the denomi-
nator of the F test in analysis of variance tell us about the size of the study. The
df for x2 is analogous to the df for the numerator of the F test in analysis o
variance and so tells us about the number of conditions, not the number o
sampling units. Fortunately, the 1983 edition of the Publication Manual of the
American Psychological Association has added a requirement that when re-
porting x? test statistics the total N be given along with the df.

A very useful and conservative approximation to this formula is also availa-
ple (Rosenthal & Rubin, 1979a):

@
Z=1l—

) {5.15}

This approximation works best when t2 < df; when £ = df, this approxima-
tion tends to be 10 % smaller than the Z obtained from equation 5.14.

If the test statistic employed was F (from analysis of variance) and df for
the numerator was unity, we take the VF as t and proceed as we did in the
case of t with df equal to the df of the denominator of the F ratio. We should
niote that F ratios of df > 1 in the numerator cannot be used in combining p
levels to address a directional hypothesis.

If the test statistic employed was x? (for independence in contingency
tables) withdf = 1, we take V'x2directly, since x%(1) = Z2. We should note
that x%’s of df > 1 cannot be used in combining p levels to address a direc-
_ tional hypothesis.

When VFor V/x2is employed we must be sure that Z is given the appro-
__priate sign to indicate the direction of the effect.

ILA.2. Effect size estimates. Sometimes we want to find Z for a study in
. whichno test statistic’is given (e.g., t, F, x?), but an effect size estimator such
_ asr(including point biserial r and phi), g, A, or d is given along with arough
_ plevel indicator such as p < .05. In those cases we can often get a service-
_ able direct approximation of Z by using the fact that (phi)? = x2(1)/N so that
~ N(phi2 = (1) and VN (phi) = V'x*(1) = Z.

_Inthe case of r or point biserial r, multiplying by VN will yield a gener-
__ ally conservative approximation to Z. A more accurate value can be ob-

ILA.I. Test statistics. If a t test was employed, we can use at table to fin tained by solving for t in the equation:

the Z associated with the obtained t. Suppose (20) = 2.09 so that p = .025
one-tailed. We enter the t table at the row for df = 20 and read across to the
value of 2.09. Then we read down the column to the entry for df = o, whic
is the Z identical to the value of t with oo df (1.96). Suppose, however, thal
our t was 12.00 with 144 df, Even extended tables of t cannot help us whe
values of t are that large for substantial df (Federighi, 1959; Rosenthal &
Rosnow, 1984a, 1991). A very accurate estimation of Z from t is availabl
for such circumstances (Wallace, 1959):

|

t=—"—— xXVdf o, t=—"TT xV

z

-2 [2.3]

and then employing t to estimate Z as shown in equations 5.14 or 5.15.

We will not review here how to gett from the other effect size estimators
but that information is found in equations 2.3 - 2.13 (Tables 2.1 and 2.2),
4.19, and 4.20.

S — 1 ILB. The File Drawer Problem '
- / dflog, (1 + p” ) /1~ By [5.14 Statisticians and behavioral researchers have long suspected that the

studies published in the behavioral and social sciences are a biased sample
of the studies that are actually carried out (Bakan, 1967; McNemar, 1960;
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¢ overall p to .50 (not to .05), s is the number of summarized studies
pificant at p < .05 and n is the number of summarized studies not signifi-

nt at 05’ then

Smart, 1964; Sterling, 1959). The extreme view of this problem, the file
drawer problem, is that the journals are filled with the 5% of the studies thq;
show type I errors, while the file drawers back at the lab are filled with the
95% of the studies that show nonsignificant (e.g., p > .05) results (Rosep.
thal, 1979a; Rosenthal & Rubin, 1988).

In the past, there was very little we could do to assess the net effect of
studies tucked away in file drawers that did not make the magic .05 Jeyej
(Rosenthal & Gaito, 1963, 1964; Nelson, Rosenthal, & Rosnow, 1986). Now,
however, although no definitive solution to the problem is available, we cay
establish reasonable boundaries on the problem and estimate the degree of
damage to any research conclusion that could be done by the file drawer
problem. The fundamental idea in coping with the file drawer problem js
simply to calculate the number of studies averaging null results (Z = 0.00)
that must be in the file drawers before the overall probability of a type L error
can be just brought to any desired level of significance, say p = .05. This
number of filed studies, or the tolerance for future null results, is then
evaluated for whether such a tolerance level is small enough to threaten the
overall conclusion drawn by the reviewer. If the overall level of significance
of the research review will be brought down to the level of just significani
by the addition of just a few more null results, the finding is not resistant to
the file drawer threat. (For a more technical discussion of the underpinnings
of the following computations see Rosenthal & Rubin, 1988).

X =19s ~n [5~19]

pere 19 is the ratio of the total number of nonsignificant (at p > .05)
sults to the number of significant (at p < .05) results expected when the
[ hypothesis is true.

Another conservative alternative when exact p levels are not available is
set Z = .00 for any nonsignificant result and to set Z = 1.645 for any
sult significant at p < .05.

The equations above all assume that each of the K studies is independent
all'other K — 1 studies, at least in the sense of employing different sam-
ng units. There are other senses of independence, however; for example,
o can think of two or more studies conducted in a given laboratory as less
dependent than two or more studies conducted in different laboratories.
ch nonindependence can be assessed by such procedures as intraclass
rrelations. Whether nonindependence of this type serves to increase type
r type Il errors appears to depend in part on the relative magnitude of the
75 obtained from the studies that-are “correlated” or “too similar.” If the
correlated Z’s are on the average as high as or higher than the grand mean Z
rrected for nonindependence, the combined Z we compute treating all
studies as independent will be too large, leading to an increase in type I
rors. If the correlated Z’s are on the average clearly low relative to the
grand mean Z corrected for nonindependence, the combined Z we compute
ireating all studies as independent will tend to be too small, leading to an
increase in type Il errors. .

I1.B.1. Computation. To find the number (X) of new, filed, or unretrieved
studies averaging null results required to bring the new overall p to any
desired level, say, just significant at p = .05 (Z = 1.645), one simply writes:

KZ

1645 = T [5.16]

_ [LB.2. Hlustration. In 1969, 94 experiments examining the effects of in-
where K is the number of studies combined and Z is the mean Z obtained for terpersonal self-fulfilling prophecies were summarized (Rosenthal, 1969).
the K studies. The mean Z of these studies was 1.014, K was 94, and Z for the studies

Rearrangement shows that combined was:

K[KZ? — 2.706)

2.706 {5.17] 3z KZ 94(1.014)

X =
VK T VK = ver ~%®

An alternative formula that may be more convenient when the sum of the
Z's (2Z) is given rather than the mean Z, is as follows: How many new, filed, or unretrieved studies (X) would be required to
bring this very large Z down to a barely significant level (Z = 1.645)? From

Gzy equation 5.17 of the preceding section:

B [5.18]

X K[KZ? - 2.706]  94[94(1.014)2 - 2.706] 2263
- 2.706 - 2.706 C
One finds that 3,263 studies averaging null results (Z = .00) must be

crammed into file drawers before one would conclude that the overall

One method based on counting rather than adding Z’s may be easier to
compute and can be employed when exact p levels are not available, but it is
probably less powerful. If X is the number of new studies required to bring
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results were due to sampling bias in the studies summarized by the ré
viewer. In a more recent summary of the same area of research (Rosengp;
& Rubin, 1978) the mean Z of 345 studies was 1.22, K was 345, and X wa
65,123. In a still more recent summary of the same area of research, the mea
Z was 1.30, K was 443, and X was 122,778. Thus over 120,000 unrepory
studies averaging a null result would have to exist somewhere before g
overall results could reasonably be ascribed to sampling bias.

JIf are not and in which about half are significant and half are not. (The six
(dies on which this analysis is based are Atkinson, Furlong, & Wampold,
982; Blackmore, 1980; Chan, Sacks, & Chalmers, 1982; Coursol & Wagner,
g86; Simes, 1987; Sommer, 1987.)

 [[BA4.a. Estimatingretrieval bias. Several studies have been conducted
: ry to estimate the number of studies that might be languishing in the
le drawers. Shadish, Doherty, and Montgomery (1989) took a simple ran-
m sample of 519 possible investigators from a population of 14,002
arital/family therapy professionals. Responses concerning their research
ere obtained from 375 (72%) of the sample, and this yielded only 3 studies
i= .34) that could have been included in a meta-analysis. Shadish, Doherty,
nd Montgomery concluded tentatively that the file drawers might contain
hout 112 (14,002 x 3/375) studies, which is not quite as many as they had
trieved for their ongoing meta-analysis (about 165).

Ina survey of all members of a population of researchers, Sommer (1987)
rote to all 140 members of the Society for Menstrual Cycle Research. Based
n a response rate of 65%, Sommer found little publication bias. Of the 73
ublished studies, 30% were significant in the predicted direction; of the 42
udies in the publication pipeline, 38% were significant in the predicted
rection; and of the the 28 studies securely filed away, 29% were significant.
/hen only those studies were considered for which significance testing data
ere available, the corresponding percentages were 61%, 76%, and 40%. An
teresting sidelight of Sommer’s study was that far and away the best
edictor of publication status of the article was the productivity of the author. |

Employing a different approach, Rosenthal and Rubin (1988) compared i
¢ meta-analytic results for a research domain for the case of complete 3 .
trieval with the results for that same research domain for the more typical
se of incomplete retrieval.

ILB.3. Guidelines for a tolerance level. At the present time, no fi
guidelines can be given as to what constitutes an unlikely number of ypge
trieved and/or unpublished studies. For some areas of research 100 or eye
500 unpublished and unretrieved studies may be a plausible state of affai
while for others even 10 or 20 seems unlikely. Probably any rough and reaq
guide should be based partly on K so that as more studies are known ;
becomes more plausible that other studies in that area may be in those fjj
drawers. Perhaps we could regard as robust to the file drawer problem ap
combined results for which the tolerance level (X) reaches 5 K + '10. Th;
seems a conservative but reasonable tolerance level; the 5 K portion sug
gests that it is unlikely that the file drawers have more than five times 3
many studies as the reviewer, and the +10 sets the minimum number g
studies that could be filed away at 15 (when K = 1). V’

It appears that more and more reviewers of research literatures will b
estimating average effect sizes and combined p’s of the studies they summa
rize. It would be very helpful to readers if for each combined p they pre
sented, reviewers also gave the tolerance for future null results associate
with their overall significance level.

II.B.4. Empirical estimates of the magnitude of the file drawer problen
In chapter 3 section I.A.2 we examined the differences in effect sizes obtairne
from such information sources as journal articles, books, theses, and unpul
lished materials. There we saw that there was no clear difference in typic
effect size obtained in studies that were published in journals versus studi
that were not yet published. In this section our emphasis will be on signit
cance testing rather than on effect size estimation, and we will try to get som
reasonable estimates of the magnitude of the file drawer problem.

To begin with, there seems to be little doubt that the statistical significan
of a result is positively associated with its being published. In a series of s
studies, for example, the range of these correlations was from .20 to .42 wi
amedianr of .33. This result is roughly equivalent to two thirds of significal
results being published while only one third of nonsignificant results a
published in a population of studies in which about half are published an

IL.B.4.b. Complete versus incomplete retrieval. For an earlier meta-
alysis of 103 studies of interpersonal expectancy effects, studies could be
vided into one group in which all could be retrieved because they were all
nducted in a single laboratory (Rosenthal, 1969) and a second group of
tricved studies conducted elsewhere. Table 5.7 shows the mean Z obtained
1 each of these two sets of studies subdivided by whether the study (a) had
enpublished at the time of the original (1969) meta-analysis, (b) had been
published at the time of the meta-analysis but was published by the time
the present analysis (1990), or (¢) had been unpublished at the time of the
eta-analysis and remained unpublished in 1990.
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Information relevant to the design of a meta-analytic study is provided by
the fact that the publication delays for the originally unpublished studies
ranged up to 13 years with a mode of 1 year and a median of about 3 years;

Publication Status after 5 years, 33 of the 35 originally unpublished studies (94%) had been
Published Never ‘publiShEd.

TABLE 5.7
Mean Z’s in Two Conditions of Retrievability

Retrieval Publish:d Later P ublis:lsed TABLE 5.8
Complete 1.08%° -0.16" 0.60 Mean Z’s: Immediate Meta-Analysis
Incomplete 2.6010 1.05% 1.39%0

Mean 1.58% 0677 1.02% . Retrieval Published Unpublished Difference
a. Number of studies on which Z is based. fComplete 1.082¢ 0.312° 0.77

Incomplete 2.6010 1.20% 1.40
. . 30 73
Analysis of variance of the 103 studies’ Z’s cast into the 2 x 3 table showe Mean 1.58 0.86 0.72

the interaction (F(2, 97) = 0.49, p = .614) to be sufficiently small that g
following contrasts tell the story. The comparison of retrievability yielde
t(97) = 2.92, p = .0022, r = .17; the comparison of studies ever publishe
with those never published yielded t(97) = 0.24, r = .05; the compatrison g
studies published at the time of the meta-analysis and those published lat
yielded t(97) = 2.52, p = .0077, r = .16; and the comparison of studie

TABLE 5.9
Mean Z’s: Delayed Meta-Analysis

Published Unpublished Difference
published versus not published at the time of the meta-analysis yielded t(97) 0.6431 0.601 0.04
=232,p=.011,r=15. 1.50% . 1.39%° 0.11
Thus, the completely retrieved data meta-analysis yielded less significan 1.09% 1.02% 0.07
results on average than did the incompletely retrieved data meta-analysis
That result fits our suspicions that completely retrieved data show Ies
significant results than do less completely retrieved data. However, in thi EXERCISES

1. Foreach of the six studies summarized in the exercises of Chapter 4 compute t,
df, the one-tail p, the Z associated with each of these p’s, and the quantity -2 log, p.
2. Combine the probabilities of the six studies using the methods of (a) adding
logs, (b) adding p’s, (¢) adding t’s, (d) adding Z’s, () adding weighted Zs, (f) testing
mean p, and (g) testing mean Z,
3. Assume, for the moment, that the seven combined p's computed for question 2
are independent. Perform a test of the heterogeneity of the seven obtained p levels
and interpret the resulting statistic and its associated p level.
4. For the 50 studies you were able to retrieve for a meta-analysis, the mean
standard normal deviate (Z) was .75 (associated with a one-tailed p of about .23).
How many unretrieved studies averaging null results (Z = 0.00) must there be in
the file drawers before the overall result would be brought to the brink of nonsig-
nificance at p = .05?
5. Imagine that we had the raw data available for all six studies of the table given
inthe exercises of Chapter 4. Explain in prose and demonstrate by numerical exam-
ple-how it might happen that if we pooled the raw data of all six studies we might

obtain results opposite in direction to those we found in the exercises of Chapters 4
and 5.

table, retrievability is fully confounded with production by a particula
laboratory, which might differ in various ways from the remaining labora
tories producing results bearing on the same research question.

The publication status effects are more surprising. As expected, publishe
results were more significant than initially unpublished results. However, o
the initially unpublished studies, those published eventually were less signif
icant than were those never published. The impact of publication status
therefore, depends on whether we group the later published with the unpub
lished (as would be done at the time of the original meta-analysis) or wit
the published studies (as would be done if we gave unpublished studies mor
years to become published).

II.B.4.c. Immediate versus delayed meta-analysis. Table 5.8 shows tha
immediate meta-analysis led to substantial publication status bias with t(%
=229, p = .012, r = .15. However, a meta-analysis delayed to allow fo
eventual publication yielded essentially no publication status bias with t(9;
= (.24, p = 405, r = .05 (see Table 5.9).
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TABLE 6.1
Stem-and-Leaf Plot and Statistical Summary of Correlations
Between Encoding and Decoding Skill

lllustrations of
Meta-Analytic Proceduyreg

/ £} . .
srrelations (1's) Summary Statistics

Based on the results of actual meta-analyses, illustrations are provided of a variety of mety tem Leaf (Basedon 1, not on z,) -

analytic procedures. Examples are drawn from research on nonverbal communicagj, 6 35 Maximum 65

skills, the validity of the PONS test, the detection of deception, the effects of interpersyp, 5 5 Quartile 3(Q3) 29

expectancies, the effects of psychotherapy, sex differences in cognitive performance, a5 4 Median (Q;) 16

hit rates in ganzfeld studies for which a one-sample effect size index, n, is especially 3 2 Ql'laftile 1(Qy) 00

appropriate. 3 00189 Minimum —.80
1 6 Q- Q 29
0 0004559 a.75(Q; — Q)] 22

In earlier chapters when various meta-analytic procedures were describe 0 N 33

they were often illustrated with hypothetical examples in order to keep th ! xean i;

computational examples small and manageable. In the present chapter, w § 5 Proportion positive sign? 88

will illustrate various meta-analytic procedures with real-life meta-analyt 4

examples. In principle it would be possible to illustrate almost every mets. 5

analytic procedure described in this book for every meta-analysis we willbe 6

examining. For purposes of exposition, however, we will employ eachmeta. !

analytic example to illustrate a small number of principles and procedures sf T h(;vin g signs

1. DISPLAYING AND COMBINING EFFECT SIZES . .. . ..
tribution is normal and, therefore, is similar to S when the distribution is

rmal. In the data of Table 6.1, S is substantially larger than .75 (Q3 — Qy)
ggesting that these effect sizes may not be normally distributed. If a more
rmal test of normality is required, the Kolmogorov-Smirnov test can be
ployed (Lilliefors, 1967; Rosenthal, 1968).

A stem-and-leaf plot and its statistical summary can, of course, be made
for any type of effect size estimator. For example, Rosenthal and Rosnow
975, p. 23) compared the rates of volunteering for behavioral research in
general of females and males. Their stem-and-leaf display was of 51 such
fferences in volunteering rates, i.e., the effect size estimator d'. In that
alysis the median d’ was .11 with females volunteering more than males
on the average. This direction of difference was found in 84% of the studies
of volunteering for behavioral research in general.

DePaulo and Rosenthal (1979) conducted a meta-analysis of studies o
the relationship between skill at decoding nonverbal cues and skill at encod
ing nonverbal cues. Table 6.1 is an updated summary of the results of |
studies. The stem-and-leaf display and its statistical summary were encoun-
tered earlier (Tables 3.8 and 3.9) as useful ways of displaying the results of
meta-analysis. It is more informative for the eye to follow the stem-and-lea
display than simply to be told that the median r was .16 or that the mean
was .13.

The first five entries of the summary statistics require no explanation
The quantity Q3 — Qq gives the range for the middle 50% of the effec
sizes. The quantity .75 (Q3 — Q1) estimates ¢ quite accurately when the

110 Il. COMBINING EFFECT SIZES

AND SIGNIFICANCE LEVELS

As part of the construct validation of the PONS test, an instrument de-
signed to measure sensitivity to nonverbal cues, Rosenthal, Hall, DiMatteo,
Rogers, and Archer (1979) conducted or located 22 studies in which the
PONS test total score was correlated with judges’ ratings of subjects’ inter-
personal or nonverbal sensitivity. Table 6.2 shows the results of the meta-
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TABLE 6.2
Stem-and-Leaf Plot and Statistical Summary of
Validity Coefficients (r) for the PONS Test

here P is the number of positive effect sizes obtained and N is the number
f positive plus negative effect sizes obtained. Note that unsigned effect
izes are excluded from this analysis.

For the data of Table 6.2, P = 19 and N = 22. Therefore:

Correlations (r’s) Summary Statistics
Stem Leg Based onr, not
: Cuetonnrot) z=BN _ 2922 ;4 5~ 0003 one-tailed
5 5 Maximum .55 T VN V2 P
4 569 Quartile 3 (Q3) .33
3 1234 Median 22 . . . . .
2 S Quarme(?%é ; 05 1 this case, if we had employed the more laborious binomial expansion the
1 015 Minimum -.35  value would have been .0004 instead. In using the Z test we assign Z a
0 0" 16 Q- Q 28 positive value if the direction of the effect is in the predicted direction and a
-.0 4 31.75Q3 = Qul 21 pegative value if the direction is not the predicted one.
:; ? LI\,/Ican ;2) _ Table 6.2 also gives the Z obtained employing Stouffer’s method. In this
_ 3 5 N '22 _meta-analysis, the sum of the 22 Z’s was 17.48. Therefore from equation 5.4
Proportion positive sign .86 we have
Z of proportion positive 3.41a
Combined Stouffer Z 3.73b 7 17.48 373 biained Z. ) 0001 ed
ted = = 3.73 as our obtained Z, withp = . , one-tailes
ttest of r.nean Z 3.86¢ NEa N P
Correlation betweenr and Z .864
a.p =.0003 . .. C g .
b. p = .0001 The third method of combining significance levels employed in Table
c.p=.0005 i 6.2 was the method of testing the mean Z. In this meta-analysis, the mean
. p = .0000002 from equation 2.3, , .
*This r has a positive sign. square for the 22 Z’s was .93. Therefore, from equation 5.7 we have

SZIN__ 17.48/22 _
V&N V.93

t(21) =
analysis. The display includes all the elements of Table 6.1 relevant to com-
bining effect sizes. In addition, however, three methods of combining
probabilities were also employed and are summarized in the lower portion
of the summary statistics.

The first method of combining probabilities listed is one of the counting
methods. Under the null hypothesis we expect 50% of the correlation coeffi
cients to have a positive sign. However, the present results show 86% of the
studies to have a positive sign. Given that 19 of the 22 r’s were positive when
only 11 were expected to be positive under the null hypothesis, we can employ
the binomial expansion to calculate how often we expect a result that extreme,
or more extreme, if the null hypothesis were true. Tables also are available
to help us find the desired p (e.g., Siegel, 1956; Siegel & Castellan, 1988).

For most practical applications, however, we can employ a normal ap-
proximation to the binomial distribution that will work quite well even for
modest sized samples:

which, with 21 df, is significant at p = .0005 one-tailed.

Finally, Table 6.2 reports the correlation between the 22 effect sizes (r's)
and their degree of statistical significance (Z’s). The r of .86 is very large and
can be explained on the grounds of this set of validity studies being carried out
on fairly similar sample sizes. From equation 2.2 we know that the relation-
ship between Z and r depends more on the square root of N than on N itself.
For the 22 studies of this meta-analysis, the \/Nmranges from2.4t09.3, witha
median VN of 4.4. Because there is a certain homogeneity of sample sizes
employed in various areas of research, we have often found very substantial
correlations between effect sizes and levels of statistical significance (Rosen-
thal & Rubin, 1978a). This is a useful result, since it sometimes happens that
we have access only to significance levels but would like to be able to make
some guesses about effect sizes for a given area of research. On the basis of
. thisresult it is likely that, typically, within a given research area, more signifi-

2P — N (6.1] cant results will also be larger in magnitude.

Z == VN
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ITII. COMBINING EFFECT SIZES AND BLOCKING TABLE 6.4
In their meta-analytic work on the accuracy of the detection of decers: "Accuracy of Detecting Deception (z,) for Eight Sources of Information
ce . . .
Zuckerman, DePaulo, & Rosenthal (1981) were able to retrieve 72 rf::lol Arranged asa2 X 2 X 2 Factorial Analysis of Variance

estimating the degree of accuracy. The magnitude of the accuracy wy

! Speech No Speech

defined by r and the median of the 72 1’s was .32. In these 72 results, Subjegy Face No Face Face No Face

were provided with various sources of information or cues to deceptig, 35 62 .07 10

including cues from the face, the body, ordinary recorded speech, conge i48 38 —.08 .002

filtered speech (tone of voice), and written transcription of what was sajg ' Proportion of
Table 6.3 shows the median r obtained (and the corresponding z,) f;, Ms® Total Variance

nine sources or channels of information or combinations. of channels: Th -0098 02

overall median r of .32 convinced us that deception was detectable, but (o] ole2 e

us little about which channels might provide the best sources of informatig ggg 'gg

to permit detection of deception. It was to learn about the relative contriby :0005 :00

tion to detection of deception of various channels that we blocked or subgj. Body x speech .0025 .00e

vided the 72 results into the nine subtypes of Table 6.3. Face X body X speech 0220 05

A clearer picture of the relative contribution to the detection of decep-
tion of the three major channels of face, body, and speech can be obtained by
rearranging the first seven sources of Table 6.3 into the 2 X 2 X 2 array of
z;'s shown in Table 6.4. One can get a quick picture of the relative contriby.
tion of these three channels and their combinations by performing an analy.
sis of variance on just the eight means shown. Note that the entry for no face,

no body, no speech is .00, a theoretical value assuming that there can be ng
accuracy when there is no information.

:T—r—neforetical value .

5 All df = 1; since no significance testing was employed, no estimation of any MS for error was
undertaken.

¢ More precisely, .0057.

TABLE 6.5
Accuracy of Detecting Deception (z,) for Four Sources of Information
Arranged as a 2 X 2 Factorial Analysis of Variance

The lower half of Table 6.4 shows the analysis of variance of the eight z ’s Coren oo
of the upper half. Note that no tests of significance have been computed. Out o 28 '063
purpose here is merely to get an overview of the relative magnitude of the Notope 2 :00
sources of variance shown. The analysis shows very clearly that speech is far . Sources of Variance Msb ﬁiﬁfﬁﬁfﬁ’n‘;’:
and away the most important source of cues for the detection of deception. Content .1369 .98
. TABLE 6'3 ' g():\ient X tone 88(2); gg
Median Accuracy of Detecting Deception (r) -

in Nine Samples of Studies S,I.'.‘ Z?r:t;‘_:al value.

Sample Source of Information NofStudies ~ Medianr Once we have seen that speech is the major source of information rele-
1 Face and body and speech 21 .33 vant to deception detection, we may want to get some idea of what aspect of
§ I;ace a“g body X 6 07 speech (e.g., tone versus content) may be most important in providing rele-
4 F:Z: Anc speec 9/ 3 'gg vant cues. Fortunately, we can address this question by employing samples
5 Body and speech 3 55 7, 8, and 9 of Table 6.3. Table 6.5 arrays these data analogously to Table
6 Body 4 10 6.4. Again the results are clear. Of the two components of speech that could
7 Speech 12 .36 be examined for their relative contribution to the detection of deception, it is
8 Tone of voice 4 -06 content rather than tone that provides the bulk of the useful information.

9 Transcript 6 .40

Median o ] .33
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To recap this section, we went from an overall estimate of accuracy bageq
on 72 results to a subdivision of results that could shed light on questiong of
theoretical interest to us. By arranging the subdivisions of our Mety.
analysis, we were able to show the relative dominance of speech over vigyy|
cues and further, to show that within speech, content dominates tone asy
source of cues to deception. Had we wanted more formal significance teg
ing, we could have employed the methods of focused comparisons of Chap. “
ter 4. Later in this chapter, we provide additional illustrations of the uge Ofk
such more formal comparisons.

cs, and workplaces. Computing confidence intervals for our overall
cta-analytic results and also our subdivided or blocked meta-analyses
s us a good indication of the likely value of effect sizes we might expect
nd in the relevant population and subpopulations. Computational detai}s
hen the meta-analysis involves stratified random sampling are given In
osenthal and Rubin (1978). The last column of Table 6.6 shows that, for all
ght research areas, there isa substantial correlation between effect size (d)

nd level of significance (2).

V. COMPARING EFFECT SIZES:
1IV. COMBINING EFFECT SIZES, BLOCKING, EARLY COMPARISONS, FOCUSED AND DIFFUSE

AND CONFIDENCE INTERVALS A much earlier meta-analysis of studies of interpersonal expectancy ef-

cts was conducted on 10 samples of experimenters who had stated before
cir research began the mean data they expected to obtain (Rosenthal,
961, 1963). For each sample, then, the cortelation was computed between
¢ data the experimenters expected to obtain and the data the experi-
enters actually did obtain. It should be noted that each of these samples
as homogenous with regard to expectations that had been experimentally
duced. Therefore, the obtained correlations do not assess the effects of
xperimentally-induced expectancies but only individual differences in ex-
ectancies after experimenters had been given an expectancy. The range of
xpectancies held by experimenters was very much restricted because of the
xpectations that had been induced by the investigator.

Table 6.7 shows the correlations between expected and obtained data for
hie 10 samples of experimenters. The purpose of this analysis was to com-
are two subsets of the 10 samples. The first five samples (1-5) of Table 6.7
ere obtained under ordinary conditions of data collection; the last five
amples (6-10) were obtained under conditions of high reactance (Brehm,
966). The latter samples of experimenters had been offered special incen-

In their meta-analysis of 345 studies of interpersonal expectancy effects
Rosenthal and Rubin (1978) subdivided the studies into eight areas in whic};
such studies had been conducted. They employed a stratified random sam.
pling procedure to estimate effect sizes (Cohen’s d) and confidence intervajs
for each of the eight areas of research. Table 6.6 shows that the entire 959
confidence interval for the area of animal learning lies above the confidence
intervals for the areas of reaction time and laboratory interviews. The effects
of experimenters’ expectancies on the performance of their animal subjects
appears dependably greater than the effects of experimenters’ expectancies on
the reaction time and interview responses of their human subjects.

Table 6.6 also shows that the widest confidence interval is around the
mean effect size of studies carried out in everyday contexts such as schools,

TABLE 6.6
Effects of Interpersonal Expectancy
Obtained in Eight Areas of Research

Correlation

95% Confidence Between d | tivesto obtain the data they had been led to expect or had been more explic-
- fntervals:< and Level of ly instructed to bias the results of their research. The question was whether
Research Area NofStudies _d From o Significance (Z) these “‘hyper-motivated” experimenters might show a higher or a lower

Reaction time 9 17 03 31 91 correlation of their expected with their obtained data than the more ordinar-
Inkblot tests 9 .84 -.06 1.74 .85 : . : 1

Animal learning 15 1.73 97 2.49 69 ily motivated (i.e., control) samples of experimenters.

Laboratory interviews 29a 14 - :36 :64 89 The last column of Table 6.7 shows the contrast weights ()\’s? required to
Psychophysical judgments 23a 1.05 .49 1.61 62 test the question of whether the first five r’s differ from the last five r's. From
Learning and ability 342 .54 -.13 1.21 .66 equation 4.27 we have that

Person perception 1192 .55 .10 1.00 .69

Everyday situations 112b .88 ~.34 2.10 .46 Shz .

Estimated mean 70 30 1.10 72 7 - N L (D@6S) + D68+ .+ (DCID 539

a. Analyses were based on a stratified random sample of 15 studies. \/ s AZ \/ ~(D—2 + —(Di +.. .+ Lﬁ V3l

b, Analyses were based on a stratified random sample of 20 studies. Wi 3 3 o 3

c. Confidence intervals were based on the number of studies available (not on the number of sub-

jects available).
= 3.06, p = .0022 two-tail.
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TABLE 6.7
Correlations between Data Expected and
Data Obtained in 10 Samples of Experimenters

A, Some Useful (Probably Low Power) Alternatives

The procedure we employed for comparing the first 5 to the last 5 effect
zes of Table 6.7 used all of the information in our data. That is, it was able
make use of the actual size of the sample employed in each of the studies

Sample N of Experimenters r ir wa . . ,

1 6 99 265 5 ing summarized. In this section, we note briefly some procedures that

2 6 59 68 3 cat each study as a single observation so that the same result would be

3 6 43 .46 3 btained whether each study employed a sample size of 10, or 100, or 1,000.

4 6 A4 -44 3 As a first example, suppose we simply computed a t test comparing the

: 1 pe 2 o ean z,'s of the first and last five studies of Table 6.7.That t would be 2.44,

7 6 ~ 10 ~10 3 hich, with 8 df, would be significant at p < .05 two-tailed.If each of the z,’s

8 6 —.21 - .21 3 ¢ Table 6.7 had been based on an N of 100, this t would be unaffected.

9 6 ~-.21 —-.21 3 owever, equation 4.27, which we applied to these data, would continue to

10 6 =3 —-32 3 eld more and more significant results as our sample sizes per study in-
b} 66 1.90 3.71 36 cased.

a.(N-3) As a second example we can apply the Mann-Whitney U test (Siegel,

956; Siegel & Castellan, 1988). This test asks whether the bulk of one
opulation is greater than the bulk of ‘a second population. (For a general
scussion of this test see Siegel, 1956, or Siegel & Castellan, 1988.) For the
ery special case we have for the data of Table 6.7, i.e., the case of completely
onoverlapping distributions, and equal n per sample (5 and 5 for these data),
¢ can estimate Z from

For these 10 samples, therefore, experimenters exposed to greater reactang
obtained significantly lower correlations between expected and obtained data

‘When a specific contrast is to be tested, it is not necessary first to test ﬁ;
the heterogeneity of effect sizes, just as it is not necessary to compute 3
overall F test in the analysis of variance when a contrast has been planne
(Rosenthal & Rosnow, 1984a, 1985, 1991). However, if we had wanted a eg
for the heterogeneity of these 10 effect sizes, here is how we would hay
done it. First, employing equation 4.16 we would have obtained the weighte
mean z,:

3n?
It [6.21
is estimate works well even for samples as small as the present ones. For
rdatan, =n,=n=>5, so we find Z as

/ 302 / 3(5¢
2=/ 5T = vV a5 T - 26he = 009

o-tailed. Employing Siegel’s more precise tables yields a two-tailed p of
008, aresult that agrees very well with that of our approximation.

The use of these two methods is not recommended as a substitute for
equation 4.27. However, they are useful for a quick preliminary view of the
difference between two samples of studies. In addition to the disadvantage
that these methods cannot profit from increasing n’s per study, they also do
not have the flexibility of equation 4.27 in permitting any kind of compari-
s0n one might wish to make. ’

S(N:-3)z
X J )75' 3(2.65) + 3(.68) + ...+ 3(-.32) 13.05

e 3(Ni3) = 34+34...+3 = 3 -

aquantity required for use in equation 4.15, the 2 test for the heterogeneit
of effect size estimates:

2(Nj~3)(zr,—ir)2 = 3(2.65-.36)2 + 3(.68-.36)2 +...+ 3(-.32-.36)2 = 20.46
J
= xAK-1) = x(9), p < .02.

Thus, the 10 effect sizes differ significantly among themselves. Note tha
a disproportionate share of this 9 df ? of 20.46 is associated with the contras
of the first five r’s versus the last five r’s. That contrast Z was 3.06 §
its corresponding %*(1) was Z? = (3.06)* = 9.36, which represents 46% 0
the total x*(9) of 20.46. The difference between the x2(9) and the x?(1) i
20.46~9.36 = 11.10, the value of the resulting 8 df %? which is not significan

(p = .196).
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VI. COMPARING EFFECT SIZES:
MORE RECENT COMPARISONS

For our most comprehensive meta-analytic illustration, we conside,
“tertiary” analysis. The analysis will be of a re-analysis by Prioleay, Mur.
dock, and Brody (1983) of the seminal meta-analysis by Smith et al. (1980)
In general terms, the re-analysis by Prioleau et al., as well as an earlje
re-analysis by Landman and Dawes (1982) support the conclusions dray,
by Smith et al. (1980).

Prioleau et al. (1983) examined a subset of studies comparing the effeq
of psychotherapy to the effects of placebo treatments. In what follgy,
we examine this subset of studies within the framework of meta-analytj
procedures described in this book and as presented elsewhere (Rosenthg]
1983b).

Table 6.8 summarizes the result of the present meta-analysis. The 3
studies were divided (or blocked) into five groups. The first three group
were entirely comprised of students divided on the basis of age leve] ing,
elementary, secondary, and college level. The last two groups were entire}
comprised of patients divided on the basis of the type of placebo em
ployed—psychological versus medical. The psychological placebo patient
(as well as all the student groups) were those who received some form ¢
placebo that could have been viewed by patients as psychological in som
sense. The medical placebo patients were those who received only a pil
placebo, i.e., they received only a “medical” placebo treatment.

The first two rows of Table 6.8 show the number of studies summarize
and the total number of persons whose data entered into a determination o
the average size of the effect (Hedges’s g). The third row gives the mean g fo
each group, the fourth and fifth rows give the standard normal deviate (Z) an
the p level associated with each mean g. The college students and the patient
who, like the college students, were given psychological placebos bot
showed substantial benefits of psychotherapy relative to placebo controls and
these differences were significant at p well less than .001. The grand mean
effect size of .24 (p < .000004, one-tailed) was smaller than that obtained b
Prioleau et al. and by Smith et al. because it was computed with weighting
inversely as the variance of g as shown in equations 4.18 and 4.3.

Rows 6, 7, and 8 of Table 6.8 give the results of tests of heterogeneity o
effect sizes, i.e., tests of whether the g’s in each set of studies differ signifi
cantly among themselves. Studies of elementary school children and of pa
tients receiving psychological placebo yielded g’s that were significantly
heterogeneous. (See equations 4.17 and 4.18.)

Lines 9, 10, and 11 address the question of the relationship between th
size of the study and the size of the g. The Z’s and p’s for linear contrast
show that among elementary school children larger g’s were found i

TABLE 6.8
Summary of Statistics Employed in Meta-Analysis of Psychotherapy Effects

Combined Results

FPatients

Psychological

Students

Reported in
Prioleauet al. (1983)

All Results
Combined

College Medical
School Level Placebo Placebo

Secondary

Elementary
School

32
Not reported

32

1440

10
319

(1) Number of studies

216

236

306

363

(2) Total number of persons
(3) Weighted mean g
(4) Zformean g

.42 (unweighted)

Not tested

242
4.50°
0014

80.66

.02
0.15

.53
4.56

.06

0.52

17
1.58

3.26

Not reported
Not tested

.001

.001
19.4

13.9

.30
1.94

.06

44.4

(5) p for Z abovec

02

(6) X2 for heterogeneity of g’s

(7) df for x2 above
(8) p for x2 above

Not reported
Not reported

27

001

-1.70

.80
—0.91

.002

.15
2.35

-0.13

.90
-0.57

.001

—4.54

Not tested by contrasts

Reported asn.s.

(9) Z for linear contrast

(10) p for Z abovec

.04
-.05¢

.18

.45 .009

-.01

.28
—.03

.001d

—.24

-.21

.16

a. The five g's upon which this weighted mean is based differ significantly among themselves; x2(4) = 13.87, p < .008.

(11) rbased on linear contrast

: x2(4) = 22.75, p < .00014.

The five r's upon which this weighted mean r is based differ significantly among themselves;

Computed as=Z/ V5.
More precisely, p < .000004.

One-tailed.

a
b
c.
d
e
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tioning investigated by Hyde (1981), effect sizes were significantly het- , '
enous. In addition, we showed that in all four areas, studies conducted |
c recently showed a substantial gain in cognitive performance by fe- '
s relative to males (unweighted mean r = .40). v

TABLE 6.9
Contrasts Among Five Groups of Studies
of Psychotherapy Effects

Contrast VA p {one-tailed)

Students versus patients 20 .42

Linear trend in age of students 2.27 .012
Quadratic trend in age of students 2.08 019
Psychological versus medical placebo 2.18 015

V1iI. AONE-SAMPLE EFFECT SIZE INDEX: [1

11 of the effect size indices we have employed so far in this chapter were ‘ \
sample or multi-sample indices, e.g., d, g, and r. Such effect size indices ‘
ot directly applicable, however, to areas of research employing one-
mple studies in which performance is compared to some theoretical value; I
en the level expected if performance is no better than that expected if the \
hypothesis were true. In so-called ganzfeld studies, for example, subjects |
asked to guess which of four or five or six stimuli had been “transmitted”
n agent or sender (Harris & Rosenthal, 1988; Honorton, 1985; Hyman,
85; Rosenthal, 1986). A measure of effect size, , has been developed for 3
is type of one-sample situation (Rosenthal & Rubin, 1989). This index is ‘ ‘
pressed as the proportion of correct guesses if there had been only two |
oices to choose from. When there are more than two choices, 1t converts i ‘
éproportion of hits to the proportion of hits made if there had been only ‘]‘j
0 equally likely choices: ’ L

P(k - 1)
TPk-2)+1

smaller studies (p = .000004; r = -.24), but among patients receiyj
psychological placebos, larger g’s were found in larger studies (p =.009; ¢
.16). Thus, although for all studies combined, larger g’s are associated wi
smaller studies, there are statistically significant reversals of this over
relationship.

Table 6.9 shows that the mean g’s of the five groups examined cap b
compared meaningfully within the framework of a set of four contrasts em
ploying equations 4.28 and either 4.3 or 4.21. The first contrast shows th
there is little difference between students and patients in the degree
which psychotherapy is more effective than placebo. The second contra
shows that with increasing age of students, greater g’s are obtained, Thy
third contrast shows that the average of the elementary and college student
groups yields a larger g than does the group of secondary students. (In inter.
preting these contrasts in age we should note that age is likely to be con
founded here with such variables as 1Q, type of treatment, type of placebo
control, and so forth.) The fourth contrast shows that psychotherapy is mo
effective relative to psychological than to medical placebo controls. Perhaps
pill placebos are so effective that it is difficult for psychotherapy to be sup
rior to them.

To address this last question, to help understand the significant linear and
quadratic contrasts in age, the meaning of the sometimes positive, some-
times negative correlation between g and N, and the significant heteroge-
neity of g’s found among studies of elementary school children and studies
of patients given psychological placebo, additional studies will be required.

This section was designed to illustrate how the systematic application of
various meta-analytic procedures can lead to firmer inferences about a do-
main of research. At the same time, however, it should be clear that met
analyses need not close off further research in an area. Indeed, they may b
employed to help us formulate more clearly just what that research should b fervals we employ:

A similar set of meta-analytic procedures was recently carried outinthe
research area of sex differences in cognitive functioning (Rosenthal & R
bin, 1982b). In that analysis, we showed that, in the four areas of cognitiv

£

[6.3]

T

here p = the raw proportion of hits and k is simply the number of alternative ‘ |
oices available, , ; .
The standard error of m is given by: : .

1 n(l—n))

= == 6.4
SEar - g e o4

that we can test the significance of a given n by means of the following Z

n - .50
= 6.5
o 631 .

|
5
m = 1.96 SE 16.6] il !
|
|
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Contrasts among independent 5’s can be tested by: TABLE 6.11

IN ; Statistical Summary of 28 “Direct Hit” Ganzfeld Studies
VI(A SEf,) (6.7 — vl tendency () Variability
nweighted mean .62 Maximum .96 :
Finally, we can test the heterogencity of a set of &’s from the follgy; gighted” mean 62 Q“Z'.me"’ (Q3) 'Z; i
lationship: ng edian 68 Median (Q) ' b
re p: : ; .82 Quartile 1 (Q,) .54 ;
= Minimum .00
A
KK - 1) = 2| Q;-Q 17
SE () ombined Stouffer Z 6.60 o: [.75(Q3 - Q1)] 13
est of mean 1t — .50 3.39 S /N .19
£ proportion > .50 3.40 SWN(S.E) — _ .04
where ot prop Robustness (L_§92 .63
S
— ZW, onfidence intervals” |
=T From To
! 95% 55 70 \
99% 52 .72 ‘
and 99.5% .51 73 ‘
By number of trials per study; total number of trials = 835. l
W = 1 Based on N of 28 studies. ‘
R —
(SE(n)j )? i
For examples of the application of all these equations see Rosenthal and |
Stem-and-Leaf ;At]} ﬁ:?fw i ubin (1989).
“Di-r:; Hi t(’)’ (0; felc; ?tze:is‘ (nz for 28 Table 6.10 shows the stem-and-leaf plot of effect sizes (t) for 28 ganzfeld
1 P
anzield Studies udies, and Table 6.11 shows the statistical summary of these data.
Stem __ Leaf As a slightly more complex index of the stability, replicability, or clarity
90 5 6 the average effect size found in the set of replicates, one could employ the
90 ean effect size divided either by its standard error (S/VN where N is the
gg ) tal number of replicates), or simply by S. The latter index of mean effect
70 7 size divided by its standard deviation (S) is the reciprocal of the coefficient
70 0 i 1 1 1 2 variation or a kind of coefficient of robustness (Rosenthal, 1990).
60 7 7 8 8 8 9
60 0 0 2
;g 3 Z . I.A. The Coefficient of Robustness of Replication
Average Value expected if Hy were true . . .
40 7 Although the standard error of the mean effect size along with confidence
40 3 4 tervals placed around the mean effect size are of great value (Rosenthal &
30 ; p g
30 Rubin, 1978), it will sometimes be useful to employ a robustness coefficient
20 5 that does not increase simply as a function of the increasing number of |
20 replications. Thus, if we want to compare two research areas for their ‘
10 Ttobustness, adjusting for the difference in number of replications in each |
(l]g research area, we may prefer the robustness coefficient defined as the l
00 " reciprocal of the coefficient of variation. |

a. Probability of a direct hit =.50 for the effect size index .
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The utility of this coefficient is based on two ideas — first, that replicatig
success, clarity, or robustness depends on thc homogeneity of the obtaing
effect size, and second, that it depends also on the unambiguity or clarity o
the directionality of the result. Thus, a set of replications grows in robustneg
as the variance of the effect size decreases and as the distance of the mey
effect size from zero increases. Incidentally, the mean may be weighteg
unweighted, or trimmed (Tukey, 1977). Indeed, it need not be the meap ,
all but any measure of location or central tendency (e.g., the median),

The Evaluation of Meta-Analytic
Procedures and Meta-Analytic Results

Criticisms of the meta-analytic enterprise are described and discussed under the general
peadings of sampling bias, information loss, problems of heterogeneity of method and of
quality, problems of independence, exaggeration of significance levels, and the practical
jmportance of any particular estimated effect size.

We have had an opportunity to examine a variety of meta-analytic proce-
dures so that we would now be able to carry out meta-analyses of research
areas. But should we want to? The purposes of this final chapter are to
examine some negative evaluations of meta-analysis and to evaluate the
merits of these evaluations. -

In the years 1980, 1981, and 1982 alone, well over 300 papers were
published on the topic of meta-analysis (Lamb & Whitla, 1983), and the rapid
growth continues (Hunter & Schmidt, 1990). Does this represent a giant
stride forward in the development of the behavioral and social sciences or
does it signal a lemming-like flight to disaster? Judging by the reactions to
past meta-analytic enterprises, there are some who take the more pessimistic
view. Some three dozen scholars were invited to respond to the meta-analysis
of studies of interpersonal expectancy effects (Rosenthal & Rubin, 1978).
Although much of the commentary dealt with the substantive topic of
interpersonal expectancy effects, a good deal of it dealt with methodological
aspects of meta-analytic procedures and products. Some of the criticisms
offered were accurately anticipated by Glass (1978) who had earlier received
commentary on his meta-analytic work (Glass, 1976) and that of his col-
leagues (Smith & Glass, 1977; Glass et al.,, 1981). In this chapter, the
criticisms of our commentators are grouped into a half-dozen conceptual
categories, described, and discussed.

127
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I. SAMPLING BIAS AND THE
FILE DRAWER PROBLEM

iribution of scores by the mean and o we have nearly described the
tribution perfectly. If the distribution is quadrimodal, the mean and o will
t do a good job of summarizing the data. It is the data analyst’s job in the
ividual study, and the meta-analyst’s job in meta-analysis, to “gloss well.”
oviding the reader with all the raw data of all the studies summarized avoids
s criticism but serves no useful review function. Providing the reader with
tem-and-leaf display of the effect sizes obtained, along with the results of
diffuse and focused comparisons of effect sizes, does some glossing but
oes a lot of informing besides.

There is, of course, nothing to prevent the meta-analyst from reading
ch study as carefully and assessing it as creatively as might be done by a
re traditional reviewer of a literature. Indeed, we have something of an
erational check on reading articles carefully in the case of meta-analysis.
we do not read the results carefully, we cannot obtain effect sizes and
nificance levels. In traditional reviews, results may have been read care-
ly or not read at all with the abstract or the discussion section providing
¢ results” to the more traditional reviewer.

This criticism holds that there is a retrievability bias such that studieg
retrieved do not reflect the population of studies conducted. One version of
this criticism is that the probability of publication is increased by the statjs.
tical significance of the results so that published studies may not be répre_
sentative of the studies conducted. This criticism is well taken although j¢
applies equally to traditional narrative reviews of the literature. One set of
procedures that can be employed to address this problem was described iy
Chapter 5 when the file drawer problem was discussed.

A bizarre version of this criticism simply holds that the unretrieved studieg
are essentially a mirror image of the retrieved studies (Rosenthal & Rubin,
1978). Thus if the combined Z for 100 studies is +6.50, there is postulated to
be, in the file drawers, another set of studies with combined Z = —6.50! Ny
mechanism whereby this phenomenon may operate has been proposed and ng
reply to this criticism seems possible. One can too easily postulate a universe
in which for every observed outcome there is an unobserved outcome equal

and opposite in magnitude and/or in significance level. [IL. PROBLEMS OF HETEROGENEITY

.A. Heterogeneity of Method .

The first of two criticisms relevant to problems of heterogeneity notes
at meta-analyses average over studies in which the independent variables,
e dependent variables, and the sampling units are not uniform. How can
we speak of interpersonal expectancy effects, meta-analytically, when some
the independent variables are operationalized by telling experimenters
fhat tasks are easy versus hard or by telling experimenters that subjects are
od versus poor task performers? How can we speak meta-analytically of
ese expectancy effects when sometimes the dependent variables are reac-
ntimes, sometimes IQ test scores, and sometimes responses to inkblots?
How can we speak of these effects when sometimes the sampling units are
rats, sometimes college sophomores, sometimes patients, sometimes pu-
s? Are these not all vastly different phenomena? How can they be pooled
fogether in a single meta-analysis?

Glass (1978) has eloquently addressed this issue—the apples and or-
anges issue. They are good things to mix, he wrote, when we are trying to
generalize to fruit. Indeed, if we are willing to generalize over subjects
within studies, why should we not be willing to generalize over studies? If
sub_]ects behave very differently within studies we block on subject charac-
istics to help us understand why. If studies yield very different results
from each other, we block on study characteristics to help us understand
y. It is very useful to be able to make general statements about fruit. If, in
addition, it is also useful to make general statements about apples, about

[i. L.OSS OF INFORMATION

II.A. Overemphasis on Single Values

The first of two criticisms relevant to information loss notes the danger of
trying to summarize a research domain by a single value such as a mean
effect size. This criticism holds that defining a relation in nature by a single
value leads to overlooking moderator variables. The force of this criticism
is removed when meta-analysis is seen as including not only combining
effect sizes (and significance levels) but also comparing effect sizes in both
diffuse and, especially, in focused fashion.

ILA.1. Overlooking negative instances. A special case of the criticism
under discussion is that, by emphasizing average values, negative cases are
overlooked. There are several ways in which negative cases can be defined;
e.g., p> .05, r = 0, r negative, r significantly negative, and so on. However
we may define negative cases, when we divide the sample of studies into
negative and positive cases we have merely dichotomized an underlying
continuum of effect sizes or significance levels and accounting for negative
cases is simply a special case of finding moderator variables.

IL.B. Glossing Over Details

Although it is accurate to say that meta-analyses gloss over details, it is
equally accurate to say that traditional narrative reviews do so and that data
analysts do so in every study in which any statistics are computed. Summa-
rizing requires us to gloss over details. If we describe a nearly normal -
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.B. Studies within Sets of Studies

Even when all studies yield only a single effect size estimate and level of
gnificance and even when all studies employ sampling units that do not
so appear in other studies, there is a sense in which results may be non-
dependent. That is, studies conducted in the same laboratory, or by the
me research group, may be more similar to each other (in the sense of an
traclass correlation) than they are to studies conducted in other laborato-
es or by other research groups (Jung, 1978; Rosenthal, 1966, 1969, 1979,
90b; Rosenthal & Rosnow, 1984a). The conceptual and statistical impli-
tions of this problem are not yet worked out. However, there are some
preliminary data bearing on this issue that are at least moderately reassuring.
_ Table 7.1 shows a series of 94 studies blocked or subdivided into seven
eas of research on interpersonal expectancy effects (Rosenthal, 1969). For
ch area, the combined Z was computed; once based on the n of studies in
at area, and once based on the n of laboratories or principal investigators.
r most of the research areas there is little difference in n between studies
d laboratories so there is little difference in their Z’s. The only noticeable
fference in Z's is for the research area in which there were substantially
ore studies (n = 57) than there were laboratories (n = 20). Even there,
wever, it seems unlikely that we would have drawn very different conclu-
ns from these two methods of analysis.

Perhaps the most important result, however, is seen when we compare
e overall Z for all 94 studies with the overall Z for the 48 laboratories.
ere is less than a 3% decrease in the combined Z when we go from the
alysis per study to the analysis per laboratory. It would be useful if similar
alyses employing effect size estimates were available.

oranges, and about the differences between them, there is nothing in meta.
analytic procedures to prevent us from doing so. Indeed, Chapter 4 espe.
cially deals with these procedures in detail.

HIB. Heterogeneity of Quality

One of the most frequent criticisms of meta-analyses is that bad Studieg
are thrown in with good. This criticism must be broken down into ty,
questions: (1) What is a bad study? and (2) What shall we do about hyq
studies?

IIL.B.1. Defining “bad” studies. Too often, deciding what is a bad study
is a procedure unusually susceptible to bias or to claims of bias (Fiske
1978). Bad studies are too often those whose results we do not like or, 5
Glass et al. (1981) have put it, the studies of our “enemies.” Therefore whep
reviewers of research tell us they have omitted the bad studies, we should
satisfy ourselves that this has been done by criteria we find acceptable A
discussion of these criteria (and the computation of their reliability) canbe
found in Chapter 3.

I11.B.2. Dealing with bad studies. The distribution of studies on adimen.
sion of quality is of course not really dichotomous (good versus bad) but
continuous with all possible degrees of quality. Because we dealt with the
issue in detail in Chapter 3, we can be brief here: The fundamental method
of coping with bad studies or, more accurately, variations in the quality of
research, is by differential weighting of studies. Dropping studies is merely
the special case of zero weighting.

The most important question to ask about study quality is asked by Glass
(1976): Is there a relationship between quality of research and effect size
obtained? If there is not, the inclusion of poorer quality studies will have no
effect on the estimate of the average effect size though it will help to de-
crease the size of the confidence interval around that mean. If there isa
relationship between the quality of research and effect size obtained, we can

TABLE 7.1
Significance Levels Computed Separately
for Studies and for Laboratories

employ whatever weighting system we find reasonable (and that we can Keboorch Area Zs'“d’esn L;b"’a"’r ies b ’ff”ze,"“’
persuade our colleagues and critics also to find reasonable). - - 2 el
imal learning 8.64 9 8.46 5 18
Learning and ability 3.01 9 2.96 8 .05
. chophysical judgments 2.55 9 2.45 6 .10
IV. PROBLEMS OF INDEPENDENCE action time 1.93 3 1.93 3 .00
L. . Inkblot tests 3.55 4 3.25 3 .30
IV.A. Responses within Studies _ Laboratory interviews 530 6 530 6 00
The first of two criticisms relevant to problems of independence notes Person perception 407 57 " 277 20 1.30

that several effect size estimates and several tests of significance may be ‘

9.82 942 9.55 482 27

generated by the same subjects within each study. This can be a very ap!
criticism under some conditions. Chapter 2 deals with the problem in detai

hree entries were nonindependent and the mean Z across areas was used for the single
independent entry.
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V. EXAGGERATION OF SIGNIFICANCE LEVELS oint of view of practical usefulness (Cooper, 1981). Rosenthal and Ru-
(1979b, 1982¢) found that neither experienced behavioral researchers
experienced statisticians had a good intuitive feel for the practical mean-
of such common effect size estimators as r2, omega?, epsilon?, and simi-
estimates.
Accordingly, Rosenthal and Rubin introduced an intuitively appealing
encral purpose effect size display whose interpretation is perfectly trans-
arent: the binomial effect size display (BESD). There is no sense in which
ey claim to have resolved the differences and controversies surrounding
e use of various effect size estimators but their display is useful because it
s easily understood by researchers, students, and lay persons, applicable in
4 wide variety of contexts, and conveniently computed.
The question addressed by BESD is: what is the effect on the success rate

(.8 survival rate, cure rate, improvement rate, selection rate, and so on) of
he institution of a new treatment procedure, a new selection device, or a
new predictor variable? It therefore displays the change in success rate (e.g.,
arvival rate, cure rate, improvement rate, accuracy rate, selection rate, etc.)
attributable to the new treatment procedure, new selection device, or new
predictor variable. An example shows the appeal of the display. Suppose the
estimated mean effect size were found to be an r of .32, approximately the
size of the effects reported by Smith and Glass (1977) and by Rosenthal and
Rubin (1978) for the effects of psychotherapy and of interpersonal expect-
ancy effects, respectively.

Table 7.2 is the BESD corresponding to an r of .32 or an r? of .10. The
table shows clearly that it is absurd to label as modest an effect size equiva-
lent to increasing the success rate from 34% to 66% (e.g., reducing a death
rate from 66% to 34%). Even so small an r as .20, accounting for “only” 4%
of the variance is associated with an increase in success rate from 40% to
60%, e.g., a decrease in death rate from 60% to 40%, hardly a trivial effect.
It might be thought (e.g., Hunter & Schmidt, 1990, p. 202) that the BESD can
be employed only for dichotomous outcomes (e.g., alive vs. dead) and not
for continuous outcomes (e.g., scores on a Likert-type scale of improvement
due to psychotherapy, or gains in performance due to favorable interpersonal
expectations). Fortunately, however, the BESD works well for both types of
outcomes under a wide variety of conditions (Rosenthal & Rubin, 1982c).
A great convenience of the BESD is how easily we can convert it to r (or
r%) and how easily we can go from r (or r2) to the display.
Table 7.3 shows systematically the increase in success rates associated
with various values of r? and r. For example, an r of .30, accounting for
“only” 9% of the variance is associated with a reduction in death rate from
65% to 35%, or more generally with an increase in success rate from 35% to
65%. The last column of Table 7.3 shows that the difference in success rates

V.A. Truncating Significance Levels
It has been suggested that all p levels less than .01 (Z values greater .
2.33) be reported as .01 (Z = 2.33) because p’s less than .01 are likel rtth
in error (Elashoff, 1978). This truncating of Z’s cannot be recommendido
will, in the long run, lead to serious errors of inference (Rosenthal & Ru;f’
1978). If there is reason to suspect that a given p level < .01 is in err :
should, of course, be corrected before employing it in the meta-analysi(;r"

should not, however, be changed to p = .01 simply because it is less th
0L

V.B. Too Many Studies
It has been noted as a criticism of meta-analyses that as the number
studies increases, there is a greater and greater probability of rejecting th
null hypothesis (Mayo, 1978). When the null hypothesis is false and, they
fore, ought to be rejected, it is indeed true that adding observations (eith
sampling units within studies or new studies) increases statistical powe
However, it is hard to accept as a legitimate criticism of a procedure
characteristic that increases its accuracy and decreases its error rate;i
this case, type Il errors. When the null hypothesis is really true, of cours
adding studies does not lead to increased probability of rejecting the ny
hypothesis. Adding studies, it should also be noted, does not increase th
size of the estimated effect.
A related feature of meta-analysis is that it may, in general, lead to
decrease in type Il errors even when the number of studies is modest. Th
empirical support for this was described in Chapter 1 when the research b
Cooper and Rosenthal (1980) was summarized. Procedures requiring th
research reviewer to be more systematic and to use more of the information
in the data seem to be associated with increases in power, i.e., decreasesi 1
type I errors.

VI. THE PRACTICAL IMPORTANCE OF
THE ESTIMATED EFFECT SIZE

Mayo (1978) criticized Cohen (1977) for calling an effect size large (d
.80) when it accounted for “only” 14% of the variance. Similarly, Rimland
(1979) feit that the Smith and Glass (1977) meta-analysis of psychotherapy |
outcome studies sounded the death knell for psychotherapy because the ‘}

effect size was equivalent to an r of .32 accounting for “only” 10% of the
variance. ‘

VI.A. The Binomial Effect Size Display (BESD)
Despite the growing awareness of the importance of estimating effect
sizes, there is a problem in evaluating various effect size estimators fro
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titute to break off its study? Was the use of propranolol accounting

The Binomial Effect Size Display (BESD) for an r of .32 90% of the variance in death rates? Was it 50% or 10%, the overly
that Accounts for “Only” 10% of the Variance est effect size that should prompt us to give up psychotherapy? From
ation 2.15, we find the proportion-of-variance-accounted-for (r 2.

TABLE 7.2 s

_Treatment Result
Condition Alive Dead b X 4.2
Treatment 66 34 100 £ = ~ ~ 2168 = .002
Control 34 66 100
) 100 . . .
100 200 s, the propranolol study was discontinued for an effect accounting for

h of 1% of the variance! To display this result as a BESD we take the
are root of 2 to obtain the r we use for the BESD. That r is about .04
ch displays as shown in Table 7.4. As behavioral researchers we are not
ustomed to thinking of r's of .04 as reflecting effect sizes of practical
ortance. If we were among the 4 per 100 who moved from one outcome
o the other, we might well revise our view of.the practical import of small

is identical to r. Consequently, the experimental group success rate in th
BESD is computed as .50 + r/2 whereas the control group success rate ;
computed as .50 — r/2. l

VI.B. The Propranolol Study and the BESD

On October 29, 1981, the National Heart, Lung, and Blood Instityt
officially discontinued its placebo-controlled study of propranolol becaus
the results were so favorable to the treatment that it would be unethical tg |
keep the placebo control patients from receiving the treatment (Kolatz
1981). The two-year data for this study were based on 2108 patients and
x*(1) was approximately 4.2. What then, was the size of the effect that led

cts!

TABLE 7.4
The Binomial Effect Size Display
for the Discontinu€ed Propranolol Study

TABLE 7.3
Changes in Success Rates (BESD) y _Treatment Result
Corresponding to Various Values of r2and r Condition Alive Dead >
Propranolol 52 48 100
Equivalent to a e Placebo 48 52 100
Effect Sizes ) Success Rate Increase Difference in ) 100 100 200
r? r From [ Success Rates®
.00 .02 49 )
.00 .04 48 gi :gi _ This type of result seen in the propranolol study is not at all unusual in
'g? 'gg 47 33 .06 hiomedical research (Rosenthal, 1990a). Some years later, on December 1?,
o1 10 ::2 "5"5‘ -‘l)g 987, it was decided to far}d prematufely a randomized double blind experi-
01 12 44 56 : 13 ment on the effect of aspirin on reducing heart attacks (Rosnow & Rosenthal,
.03 16 42 58 16 1989; Steering Committee of the Physicians Health Study Research Group,
.04 20 40 .60 20 1988). The reason for this termination of this large study (N = 22,071) was
:gg ‘gg 2*53 -gi 24 hat aspirin was so effective in preventing heart attacks (and deaths) that it
16 40 50 70 -Zg would be unethical to continue to give half the physician subjects a placebo.
25 .50 25 75 so The r* for this important effect was about half the size of the r? for the
.36 .60 20 80 60 propranolol effect, .0011 versus .0020, and r for the aspirin effect was 034,
49 70 15 .85 70 Table 7.5 summarizes these results and presents several others that also yield
'g‘: 'gg ‘ (1)2 90 .80 ‘small” 1’s despite being results of major medical, behavioral, and/or eco-
100 100 00 N 3(5) 1 :gg nomic importance.

a. The difference in success rates in a BESD is identical to r.
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TABLE 7.5
Effect Sizes of Seven Independent Variables

Independent Variable Dependent Variable
Aspirin® Heart attacks
Propranolol® Death
Vietnam veteran status® Alcohol problems
Testosterone® Adult delin
quenc
C)’closporined Death ’ REFEREN CES
e
AZT . Death
Psychotherapy Improvement

a. See text for references.

b. Centers for Disease Control Vietnam Experienc

c. Dabbs & Morris, 1990, perience Study, 1968
d. Canadian Multicentre Transplant Study Group, 1

e.Barnes, 1988. Y Group. 1963

ck; C. 1. (1960). A note on combining probabilities. Psychometrika, 25, 303-305.

.ander, R. A., Scozzaro, M. 1., & Borodkin, L. J. (1989). Statistical and empirical
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psychological Bulletin, 106, 329-331.

rican Psychological Association, (1983). Publication manual of the American Psycho-

ogical Association (3rd ed.). Washington, DC: Author.
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VI.C. Concluding Note on Interpreting Effect Sizes

Rosenthal and Rubin (1982c) proposed that the reporting of effect
could be made more intuitive and more informative by using the BES%;
was their belief that the use of the BESD to display the increase in sue ‘5
rate due to treatment would more clearly convey the real-world importac |
of treatment effects than would the commonly used descriptions of ef;;
size, especially those based on the proportion of variance accounted for

One effect of the routine employment of a display procedure such as. th
BESD to index the practical meaning of our research results would be to v
us more useful and realistic assessments of how well we are doingl
researf:hers in applied social and behavioral science and in the social an
behavioral sciences more generally. Employment of the BESD has, in fac
shown that we are doing considerably better in our “softer” sciences’than W
thought we were.
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