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The Emerging Theme of Redox Bioenergetics in Health and Disease

Philip A. Kramer, Victor M. Darley‑Usmar

Mitochondrial biology continues to play a central role 
in our understanding of the basic biological processes 

and the pathology of disease. Recent technological advances 
in cellular respirometry and microscopy have revealed 
for the first time the dynamic impact of mitochondrial 
networks, the complexity of mitochondrial metabolism 
in cells not traditionally viewed as highly energetic, and a 
completely new pathway for the turnover and removal of 
“rogue” mitochondria, known as mitophagy.[1‑4] Since the 
discovery of diseases directly attributable to mutations in 
mitochondrial DNA (mtDNA), the impact of bioenergetic 
dysfunction has now extended to a broad range of patholo‑
gies including diabetes, neurodegeneration, and cardiovas‑
cular diseases.[5‑11] This, in turn, has ushered onto the stage 
a broad range of mitochondrial therapeutics which function 
through different mechanisms, in addition to the recognition 
that established therapeutics, such as metformin, modulate 
bioenergetics.[12‑17] The role of mitochondria has also de‑
veloped well beyond simply providing ATP to the cell to 
encompass a complex retrograde signaling pathway to the 
nucleus.[18‑20] The mechanisms through which this occurs 
are still not clear, but have been shown in several cases to 

involve the controlled generation of superoxide and hydro‑
gen peroxide from the respiratory chain.[20‑22] Interestingly, 
among the 13 proteins coded for by the mtDNA are the 
critical redox centers in the respiratory chain, which offer 
a mechanism through which mutations in mtDNA could 
modulate superoxide levels in response to stress and, thus, 
impact on pathological processes.[23] Taken together, these 
findings result in the new field of redox bioenergetics.

Our perspective of mitochondrial function is also rapidly 
changing in response to new findings of cellular bioenergetics 
in the cells of the innate immune system.[24,25] The early asso‑
ciation of cancer cells with an altered bioenergetics metabolism 
characterized by aerobic glycolysis has now been extended 
to encompass lymphocytes and monocytes as they adapt to 
their changing biological functions in normal physiology.
[24,26,27] Early studies of mitochondrial function were largely 
based upon the disruption of tissues such as the heart or liver 
abundant in the organelle and characterization of the organ‑
elles isolated from their cellular milieu. The discovery of a 
sophisticated molecular postal system which directs proteins 
to different compartments within the mitochondrion resulted 
in the widespread notion that the mitochondrial proteome 

Review Article

Mitochondrial function has long been recognized as central to normal 
physiology and a contributor to a broad range of pathologies. Much of the 
early research in mitochondrial biology focused on the mechanisms to generate 
ATP and characterization of mitochondria from highly energetic tissues such 
as the heart or liver. More recent studies emphasize the role of mitochondria in 
redox signaling and in less energetic cells such as those in the innate immune 
system and the vasculature. In this short overview, we discuss some of these 
recent developments in translational and basic research in mitochondrial 
pathophysiology. Advanced high throughput analytical techniques are now 
allowing the assessment of bioenergetic health in human populations and the 
emergence of the exciting new field of metabolotherapeutics. These have led to 
the emergence of the new field of redox bioenergetics which encompasses both 
the canonical aspects of mitochondrial energy production and the organelles’ 
role in cell signaling and disease.
(Biomed J 2015;38:294-300)

Key words: bioenergetic health, biomarker, extracellular flux analysis, metabolism, oxidative 
stress, signaling

Dr. Victor Darley‑Usmar



295Philip A. Kramer and Victor M. Darley-Usmar 
Redox bioenergetics and translational medicine

Biomed J   Vol. 38   No. 4
July - August 2015

could be discrete and defined for a given cell type and context. 
However, it is now becoming clear from studies in living cells 
that a more dynamic interaction of cytosolic proteins with the 
mitochondrion is occurring over minutes to seconds and is 
responsive to targeted signaling pathways. For example, func‑
tional associations of mitochondria with nitric oxide synthases, 
NADPH oxidase 4, and cytochrome P450 have recently been 
reported.[28‑30] The functional significance of these interactions 
remains unclear in most cases. In this short overview, we will 
highlight this theme of redox bioenergetics and the articles 
supporting these developments from broader literature.

New aspects of mitochondrial function

The classical approach to measuring mitochondrial 
function has been to prepare the isolated organelle by dis‑
rupting its attachment to the cellular milieu and measuring 
its activity after purification. It is now technically possible 
to determine mitochondrial function in a cellular context and 
then, following permeabilization of the plasma membrane, 
measure oxidative phosphorylation in the mitochondria from 
the same cell.[31,32] Interestingly, it is increasingly becom‑
ing obvious that the activities of oxidative phosphorylation 
from isolated mitochondria represent only a small fraction 
of the metabolic activities they exhibit in the intact cell.[2] 
In addition, it is now becoming possible to measure cells in 
atypical circumstances including under low oxygen tension, 
in spheroids, and to model the air–liquid interface typical 
of lung epithelial cells.[33‑37]

The mitochondria are now emerging as a major contribu‑
tor to a broad range of metabolic diseases and this offers new 
therapeutic targets both aimed at metabolism and modulating 
mitochondrial quality control.[2,5,7] Mitochondria are also a 
target for inflammatory mediators including low levels of 
HOCl which can inhibit platelet function.[38] Conversely, 
mitochondrial toxicity underlies many of the dose‑limiting 
problems with therapeutics and mediates the toxicity of 
numerous xenobiotics, as will be discussed below.[39] Sev‑
eral investigators are developing models for screening for 
mitochondrial toxicities and one approach has been to sub‑
stitute galactose for glucose in the media, which forces the 
cells to rely on mitochondrial function for energetics, thus 
revealing the bioenergetic defects more readily.[40] These new 
approaches will bring new insights into how mitochondria 
behave at the extremes of eukaryotic cellular environments.

Mechanisms of mitochondrial reactive oxygen 
species and therapeutic targeting

The mitochondria are both a source and target of 
reactive oxygen species/reactive nitrogen species (ROS/
RNS), and the interplay between the regulatory processes 
in which redox signaling molecules modulate the activity 

of cytoplasmic signaling cascades (so‑called retrograde 
signaling) is emerging as a major area of interest.[19,41‑44] 
The earliest studies relied heavily on mitochondrial inhibi‑
tors to identify the potential sites for mitochondrial ROS 
formation,[45] but, not surprisingly, it has become clear that 
this is much more complex. In an elegant comprehensive 
investigation of the sites of ROS formation in skeletal 
muscle mitochondria, six independent sites were identified 
which are differentiated by their relative activity and sub‑
strate dependency.[46] How the signals from mitochondrial 
ROS are transduced to modify cell signaling pathways 
remains an active area of research. Interestingly, it is now 
becoming clear that the mitochondrial genetic background 
is capable of conferring resistance or suceptability to 
cardiovascular disease by modulating redox signaling.[23] 
One concept that is gaining acceptance is that it is the 
modulation of the mitochondrial protein thiol networks 
which are an essential intermediate in retrograde signal‑
ing pathways.[41] Interestingly, except in some specialized 
cases, protein thiols are not very reactive with hydrogen 
peroxide. This has led to the suggestion that localized and 
controlled formation of hydrogen peroxide in the respira‑
tory chain can lead to lipid peroxidation. The resulting 
reactive lipid species can act as second messengers for cell 
signaling by modifying protein thiols.[22,47] This opens up 
the possibility, which is gaining experimental evidence, 
that electrophile therapeutics and natural products, such 
as curcumin, are capable of modulating the mitochondrial 
function through electrophilic signaling.[48,49] An interest‑
ing development in this area is the idea that the reaction 
product of nitric oxide (NO) and superoxide, peroxynitrite, 
can induce mitochondrial biogenesis through Peroxi‑
some proliferator‑activated receptor gamma coactivator 
1‑alpha (PGC1α) and this, in turn, is modulated by the 
levels and activity of mitochondrial superoxide dis‑
mutase (SOD).[50] Since mitochondria are a potentially 
controlled site of superoxide production and a target for 
NO‑dependent modulation of respiration, this provides 
a novel and interesting mechanism for maintenance of 
mitochondrial quality by stimulating the synthesis of 
new organelles under conditions of oxidative stress.[51,52] 
The post‑translational modification of proteins mediated 
by NO remains an area of intense interest, particularly in 
the mitochondrion.[53] The mitochondrion is potentially 
particularly susceptible since it contains high concentra‑
tions of reactive protein thiols and has long been thought 
to be a major site for S‑nitrosation.[41,54‑56] Interestingly, 
under conditions of oxidative stress, degradation of mito‑
chondrial S‑nitrosothiols appears to be inhibited and this 
enhances toxicity in the endothelial cells.[57]

From a therapeutic perspective, the need to control 
mitochondrial ROS and the associated signaling has resulted 
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in several different strategies to modulate mitochondrial 
ROS generation both with small molecules and using mo‑
lecular biology approaches.[12,13,15,58‑60] The matrix of the 
mitochondrion is highly negatively charged and this has 
been exploited in a series of compounds using a delocalized 
cationic charge to transport functional pharmacophores into 
the mitochondrion. The best understood of these compounds 
is mitochondrially targeted ubiquinone or MitoQ, which is 
well tolerated in human subjects.[61] It seems likely that the 
most appropriate therapeutic application of these compounds 
relates to the signaling pathways modulated by MitoQ which 
are deranged under conditions of metabolic stress includ‑
ing diabetes, metabolic syndrome, and alcohol‑dependent 
hepatotoxicity.[62‑64] The best understood of these targeting 
molecules is the triphenylphosphonium (TPP+) group which 
can be coupled to a broad range of pharmacophores and 
redox‑sensitive probes.[16,65,66] These molecules have been 
used both in vivo and in cell culture to probe the mechanisms 
of redox signaling, and the effects they elicit are generally 
ascribed to the properties of the functional group and not the 
carrying molecule. However, it was recently shown that the 
TPP + group itself can modulate mitochondrial bioenergetics 
and the effects vary with the linker group used to attach the 
functional pharmacophore.[67] The concentrations needed to 
have these effects cannot usually be achieved in vivo, but 
in cell culture, where treatment conditions are not usually 
constrained by pharmacokinetics, the effects of the carrier 
group need to be taken into account. Some of the effects 
ascribed to mitochondrially targeted antioxidants may, in 
fact, be due to off‑target effects such as uncoupling, rather 
than ROS scavenging.

The adenoviral expression of therapeutic proteins has 
long been recognized as an important approach to redox ther‑
apeutics. Overexpression of the cytosolic isoform of SOD 
in neurons results in its localization to the mitochondrion, 
where it is capable of modulating mitochondrial superoxide 
generation in response to angiotensin II.[68] Importantly, the 
functional impact of modulating mitochondrial superoxide/
hydrogen peroxide is to prevent the angiotensin II–induced 
neuronal potassium current. Angiotensin II is well known to 
induce superoxide formation through activation of NADPH 
oxidase, but it is also becoming clear that mitochondrial 
superoxide is playing a role in its induction of senescence 
in vascular smooth muscle cells.[69]

Although the mitochondrion has a complex integrated 
redox modulatory system, there is a selective pressure 
against the incorporation the antioxidant enzyme, heme 
oxygenase into the organelle. In support of this idea, mito‑
chondria‑targeted heme oxygenase‑1 has recently been re‑
ported to suppress the levels of mitochondrial heme proteins 
and cause oxidative stress and mitochondrial dysfunction in 
macrophages and other cell types.[70,71]

Mitochondrial quality control and novel 
modulators of mitochondrial function

The mitochondrial population is in a dynamic equi‑
librium with a balance maintained between biogenesis 
and mitophagy.[1,2,72‑74] Interestingly, it now appears that 
polyphenolics may be capable of activating autophagy 
and may exert their protective effects through this 
mechanism.[74,75] One of the most important pathways 
in the cell promoting oxidative stress is the activation 
of the cytochrome P450 enzymes which are capable of 
metabolizing a broad range of xenobiotics to form ROS. 
It is now becoming clear that in addition to the suppres‑
sion of toxic xenobiotic reactive species by intracellular 
antioxidants, damaged proteins and organelles must also 
be removed by the autophagic/lysosomal system.[76,77] One 
of the commonest causes of liver failure in human subjects 
is overdose with acetaminophen. Investigation of the 
mechanisms of toxicity of this compound have revealed 
that mitochondria are a primary target, and have also 
revealed a novel mediator of bioenergetic dysfunction, 
the mitochondrial spheroids.[78] The critical importance 
of autophagy in bioenergetic dysfunction was further 
demonstrated in an interesting study in which inhibition 
of autophagy during chronic alcohol exposure and by sev‑
eral other xenobiotics increased hepatotoxicity, but this 
was prevented in a cytochrome P450 knockout model.[79] 
An important alternative mechanism for the removal of 
oxidized proteins in the mitochondria is their proteolytic 
degradation mediated by the Lon protease. Under condi‑
tions of acute stress, Lon is rapidly induced; but under 
conditions of chronic stress, aging, and senescence, the 
levels decline leaving the cell particularly vulnerable to 
bioenergetic dysfunction.[80]

The oxygen binding site in the mitochondrion at 
cytochrome c oxidase is well known to be the site of in‑
teraction with NO.[53] Since the synthesis of NO by nitric 
oxide synthases also requires oxygen, this establishes an 
interesting and potentially important biological interac‑
tion between oxygen and NO gradients in organs and 
tissues.[51,53] Interestingly, under conditions of very low 
oxygen tension or hypoxia, nitrite, a metabolite of NO, 
can be converted by heme proteins such as myoglobin 
back to NO, and this can then modulate mitochondrial 
function.[81]

Hydrogen sulfide (H
2
S) is the latest member of the 

gaseous molecules found to be capable of being gener‑
ated within cells through metabolic processes. Interest‑
ingly, H

2
S has the potential to modulate respiration both 

at cytochrome c oxidase and through modulation of the 
thiol redox state in the mitochondrion.[82] This is clearly an 
area which is likely to develop rapidly given the emerging 
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importance of thiol networks in regulating mitochondrial 
function.[56]

Post‑translational modifications that affect the mito‑
chondrial function include phosphorylation and protein acet‑
ylation.[83,84] Acetylation of lysines within complex I, II, and 
V of the electron transport chain and enzymes that control 
fatty acid oxidation, glycolysis, and amino acid metabolism 
was shown to reduce the enzyme activity and decrease ATP 
production. Most often recognized for their role in increasing 
longevity upon caloric restriction, sirtuins have additionally 
been shown to control the stress response and, most recently, 
to mediate the metabolism through direct deacetylation of 
metabolic enzymes. Mitochondrial Sirt3, specifically, has 
been shown to sense and control the metabolism through 
its enzymatic action which is NAD + dependent, and to 
increase the activity of antioxidant enzymes such as man‑
ganese superoxide dismutase (MnSOD).[84] Dysregulation of 
Sirt3 has pleiotropic effects and is thought to be associated 
with metabolic syndrome, and other metabolic pathologies 
including aging, high fat diet, oxidative stress, and ethanol 
consumption.[84]

Translational bioenergetics

Mitochondrial dysfunction is associated with a broad 
range of metabolic pathologies including diabetes, neu‑
rodegeneration, and cardiovascular diseases.[85] Although 
the clinical focus with many of these diseases is based 
upon specific abnormalities in the organ function which 
impact the patient’s health, the effects are systemic and 
reflected in many tissues including circulating platelets 
and leukocytes.[86,87] Recognition of this concept has led 
to the hypothesis that these cells can act as sensors or 
biomarkers of these pathologies. Testing this hypoth‑
esis over the last 20–30 years, most frequently with 
platelets, has resulted in a robust literature showing that 
bioenergetics defects can be detected in these cells from 
patients with diabetes or neurodegenerative disease.[86] 
The recent development of high‑throughput methods to 
isolate specific cell populations from small quantities of 
patient’s blood and assess their bioenergetics is provid‑
ing the impetus for the next phase of this field. It is now 
becoming possible to define a patient’s “bioenergetics 
health” which may be of both prognostic and diagnostic 
value. Using a mitochondrial stress test, it is now possible 
to determine bioenergetic health index (BHI) which is 
a single value that can define the bioenergetic health in 
the cells isolated from a patient’s blood.[88] Importantly, 
a comparison of the bioenergetics and glycolysis of 
leukocytes and platelets from the patient conclusively 
demonstrates that their metabolism is distinct and they 
can, therefore, act as differential sensors of metabolic 
defects in human subjects.[87,89]

Interestingly, a mitochondrial involvement in patholo‑
gies not directly related to the organelle is beginning to 
emerge. An interesting example is cystic fibrosis in which it 
appears that the defects in the cystic fibrosis transmembrane 
conductance regulator protein CFTR result in perturbations 
in cellular bioenergetics including suppressed complex I 
activity.[90,91]

Conclusion

The field of bioenergetics is now rapidly developing to 
encompass all aspects of redox biology, as summarized in 
Figure 1. This includes defining how the organelle regulates cell 
signaling under physiological conditions and how the cells of 
the  innate immune system change their metabolism in response 
to their evolving role in inflammation. We are now also on the 
threshold of the emergence of the new field of translational bio‑
energetics and the applications of mitochondrial therapeutics.
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Figure 1: Bioenergetics and its interface with redox biology. 
Mitochondria are known to generate ATP and reactive oxygen species 
(ROS) as independently regulated products of metabolism. Critically, 
substrate availability, toxins, nuclear crosstalk, and mitochondrial 
biogenesis and degradation all play a role in mitochondrial efficiency 
and the redox environment. Mitochondrial components such as 
DNA (mtDNA) and the mitochondrial proteome can be affected by 
processes such as protease activity, ROS‑mediated DNA damage, 
and mitochondrial dynamics (fission and fusion). Damage resulting 
to this highly energetic and redox‑sensitive organelle can result in 
an increase in autophagic removal of the mitochondria (mitophagy) 
and disruption of the mitochondrial network. Other redox active 
molecules such as reactive nitrogen, lipid species, and hydrogen 
sulfide have been implicated in oxidative stress and mitochondrial 
damage. Monitoring mitochondrial function in translational studies 
can provide insight into the complex interaction between redox 
biology and cellular bioenergetics.
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