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Abstract: Models for the processes by which ideas and influence propagate through a
social network have been studied in a number of domains, including the diffusion of medical
and technological innovations, the sudden and widespread adoption of various strategies
in game-theoretic settings, and the effects of “word of mouth” in the promotion of new
products. Motivated by the design of viral marketing strategies, Domingos and Richardson
posed a fundamental algorithmic problem for such social network processes: if we can try
to convince a subset of individuals to adopt a new product or innovation, and the goal is to
trigger a large cascade of further adoptions, which set of individuals should we target?

We consider this problem in several of the most widely studied models in social network
analysis. The optimization problem of selecting the most influential nodes is NP-hard
here. The two conference papers upon which this article is based (KDD 2003 and ICALP
2005) provide the first provable approximation guarantees for efficient algorithms. Using an
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analysis framework based on submodular functions, we show that a natural greedy strategy
obtains a solution that is provably within 63% of optimal for several classes of models; our
framework suggests a general approach for reasoning about the performance guarantees of
algorithms for these types of influence problems in social networks.

We also provide computational experiments on large collaboration networks, showing
that in addition to their provable guarantees, our approximation algorithms significantly
out-perform node-selection heuristics based on the well-studied notions of degree centrality
and distance centrality from the field of social networks.

1 Introduction

A social network—the graph of relationships and interactions within a group of individuals—plays a
fundamental role as a medium for the spread of information, ideas, and influence among its members.
An idea or innovation will appear—for example, the use of cell phones among college students, the
adoption of a new drug within the medical profession, or the rise of a political movement in an unstable
society—and it can either die out quickly or make significant inroads into the population. If we want to
understand the extent to which such ideas are adopted, it can be important to understand how the dynamics
of adoption are likely to unfold within the underlying social network: the extent to which people are
likely to be affected by decisions of their friends and colleagues, or the extent to which “word-of-mouth”
effects will take hold.

Such network diffusion processes have a long history of study in the social sciences. Some of the
earliest systematic investigations focused on data pertaining to the adoption of medical and agricultural
innovations in both developed and developing parts of the world [23, 69, 79]; in other contexts, research
has investigated diffusion processes for “word-of-mouth” and “viral marketing” effects in the success
of new products [8, 14, 26, 33, 32, 59, 68], the sudden and widespread adoption of various strategies in
game-theoretic settings [11, 29, 61, 85, 86], and the problem of cascading failures in power systems [7, 6].

Motivated by applications to marketing, Domingos and Richardson posed a fundamental algorithmic
problem for such systems [26, 68]. Suppose that we have data on a social network, with estimates for the
extent to which individuals influence one another, and we would like to market a new product that we
hope will be adopted by a large fraction of the network. The premise of viral marketing is that by initially
targeting a few “influential” members of the network—say, giving them free samples of the product—we
can trigger a cascade of influence by which friends will recommend the product to other friends, and
many individuals will ultimately try it. But how should we choose the few key individuals to use for
seeding this process? In [26, 68], this question was considered in a probabilistic model of interaction;
heuristics were given for choosing customers with a large overall effect on the network, and methods
were also developed to infer the influence data necessary for posing these types of problems.

In this article, we consider the issue of choosing influential sets of individuals as a problem in
discrete optimization. The optimal solution is NP-hard for most models that have been studied, including
the model of [26]. The framework proposed in [68], on the other hand, is based on a simple linear
model where the solution to the optimization problem can be obtained by solving a system of linear
equations. Here we focus on a collection of related, NP-hard models that have been extensively studied
in the social networks community, and obtain the first provable approximation guarantees for efficient
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algorithms in a number of general cases. The generality of the models we consider lies between that of
the polynomial-time solvable model of [68] and the very general model of [26], where the optimization
problem cannot even be approximated to within a non-trivial factor.

We define the concrete classes of models for the diffusion of innovations in Section 2 below, departing
somewhat from the Domingos-Richardson framework: where their models are essentially descriptive,
specifying a joint distribution over all nodes’ behavior in a global sense, we focus on more operational
models from mathematical sociology [41, 74] and interacting particle systems [33, 32, 28, 56] that
explicitly represent the step-by-step dynamics of adoption. Concretely, our models assume that a certain
subset A0 of nodes is targeted for activation by the algorithm, and starts active. In turn, the active nodes At

in time step t may activate further nodes in the next time step according to a known probabilistic rule. In
cascade models, this rule is based on (independent) edge-wise decisions [33, 32, 28, 56], while threshold
models posit cumulative effects on nodes [41, 74] which lead to activation once a certain threshold is
exceeded. When no activations occur from round t to t +1, we say that the process has quiesced, and
the outcome is the set At of active nodes in the end. Notice that our models explicitly assume that the
activation process is progressive, in the sense that once activated, a node will never become inactive
subsequently. A more detailed discussion of this assumption, as well as ways to remove it, is given in
Section 6.

Given the above model, we can formally express the Domingos-Richardson style of optimization
problem—choosing a good initial set of nodes to target—as follows: the algorithm chooses an initial set
A0 = A of active nodes that start the diffusion process. The influence of a set A of nodes, denoted σ(A),
is the expected number of active nodes at the end of the process, given that A is this initial active set
A0. Formally, σ(A) = E [|At |], where t is the (random) time of quiescence. The influence maximization
problem asks, for a parameter k, to find a k-node set of maximum influence. We will show below that for
the models we consider, it is NP-hard to determine the optimum set for influence maximization.

1.1 Our results

Our first main result is that the optimal solution for influence maximization can be efficiently approximated
to within a factor of (1−1/e− ε).

Theorem 1.1. In the Linear Threshold and Independent Cascade models (defined formally in Section 2),
there is a polynomial-time algorithm approximating the maximum influence to within a factor of (1−
1/e− ε), where e is the base of the natural logarithm and ε is any positive real number.

This is a performance guarantee slightly better than 63%. The algorithm that achieves this performance
guarantee is a natural greedy hill-climbing strategy, and so the main content of this result is the analysis
framework needed for obtaining a provable performance guarantee, and the fairly surprising fact that
hill-climbing is always within a factor of at least 63% of optimal for this problem. We prove this result in
Section 4 using techniques from the theory of submodular functions [24, 65]. The key ingredient of our
proofs is to exhibit, for both models, distributions over graphs with the following property: the expected
activation σ(A) equals the expected number of nodes reachable from A if a graph G is chosen according
to the distribution. We call this technique the triggering set technique.

While the triggering set technique leads to approximation guarantees for several models studied in
mathematical sociology, we show in Section 5 that the Decreasing Cascade model (a natural generalization
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of the Independent Cascade model, also defined in Section 2) leads to a submodular function σ(A), yet
does not admit a proof using triggering sets. Instead, we present a more elaborate proof, based on a
step-by-step analysis of the activation process.

The analysis framework of submodular functions also allows us to design and prove guarantees
for approximation algorithms in much richer and more realistic models of the processes by which we
market to nodes. The deterministic activation of individual nodes is a highly simplified model; an issue
also considered in [26, 68] is that we may in reality have a large number of different marketing actions
available, each of which may influence nodes in different ways. The available budget can be divided
arbitrarily between these actions. In Section 7, we show how to extend the analysis to this substantially
more general framework. Our main result here is that a generalization of the hill-climbing algorithm still
provides approximation guarantees arbitrarily close to (1−1/e).

Our theoretical results are complemented by an experimental evaluation of our algorithms. In
Section 8, we report on the results of computational experiments with both the Linear Threshold and
Independent Cascade models. These experiments show that in addition to its provable guarantees, the
hill-climbing algorithm significantly out-performs strategies based on targeting nodes of high degree or
distance centrality [83], i. e., the nodes with high degrees or small average distances to all other nodes.

1.2 Subsequent work

Since the original publication of the conference papers that this article is based on [51, 52], there has
been a large amount of follow-up work. We review some of the main directions and several representative
papers for each; a complete review of subsequent work is beyond the scope of this article. Several
papers addressing concrete questions directly related to the present discussions are also discussed in
those contexts. An interested reader can find a more detailed survey in the recent monograph of Chen,
Lakshmanan and Castillo [19].

The paper by Mossel and Roch [62] positively resolves a conjecture from [51], showing that for
a broader class of local influence functions, the resulting objective function is submodular. (See the
discussion in Section 2.1.2.) Their result implies that the (1− 1/e)-approximation guarantee for the
greedy algorithm extends to a broader class of influence models. On the other hand, Even-Dar and
Shapira [30] showed that for the much more restricted Voter model [22, 48], the objective function
decomposes linearly across nodes, allowing an optimal algorithm or FPTAS, depending on the precise
problem definition.

A large number of papers have been written with the aim of reducing the running time for the influence
maximization problem. These broadly fall into two categories: (1) heuristics which retain the (1−1/e)
approximation guarantee of the greedy algorithm while speeding up the computation in practice (without
any worst-case running time improvements, however), and (2) heuristics which guarantee a faster running
time, but sacrifice the (1−1/e) approximation guarantee, either providing no guarantees or significantly
weaker ones. We give a review of some papers representative of the directions pursued in this domain—a
complete review of this literature is impossible due to its sheer volume.

In the first category, the paper by Leskovec et al. [55] proposed the CELF heuristic, based on a lazy
evaluation of the objective function. The main insight is the following. If a node’s marginal contribution
to the objective function in the previous iteration of the greedy algorithm was already smaller than the
current best node’s, then it need not be reevaluated: by submodularity, its contribution in the current
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iteration can only be lower. Goyal et al. [38] proposed several additional heuristic optimizations to add to
CELF, calling the resulting algorithm CELF++.

In the second category, much of the focus is on speeding up the computation of the objective function
via approximations. Several papers use approximations of the influence in terms of the influence only
among simple local structures, such as shortest paths [53], local arborescences [81], local neighbor-
hoods [39] or local DAGs [21]. Chen et al. [20] propose reusing previous randomly drawn structures
(and the computations on them), as well as a discounted high-degree heuristic. Jung et al. [50] speed up
computation of influence by setting up a recurrence relation between the influence of different nodes and
linearizing it. Algorithms differing from the greedy addition of one node at a time have been investigated
as well. Jiang et al. [49] report significant speedups by using simulated annealing, while Wang et al. [82]
propose a pre-processing step breaking the graph into communities, which can then be treated practically
separately.

A heuristic which is in spirit similar to those of [20, 21, 39, 81], but comes with provable guarantees,
was recently proposed by Borgs et al. [12]. In order to speed up the repeated computation of the influence
of sets of nodes, they propose a preprocessing step which generates a random hypergraph sampled
according to reverse reachability probabilities in the original graph. Subsequently, the greedy algorithm
can be run to solve the maximum coverage problem on the sampled hypergraph, which leads to a
near-linear running time of O((m+n)ε−3 logn) to achieve a 1−1/e− ε approximation. The (constant)
correctness probability can be boosted with repeated invocations. [12] also gives a quantitative tradeoff
between faster (sublinear) running time and the deterioration of the approximation guarantee.

In the present article (Section 7), we consider more general marketing strategies than simply selecting
a seed set of vertices to activate. In general, a company intent on exploiting social network effects in
marketing can combine such effects with differential pricing, as well as possibly offering products to
individuals at specific times. This approach has been pursued by several recent papers [1, 2, 5, 43, 45].

The first work along this line was by Hartline et al. [45]. They show that the following “Influence
and Exploit” strategies are within a factor 1/4 of optimal: first, give the product for free to a most
influential subset; then, choose prices for the remaining bidders in random order to maximize revenue,
ignoring their network effects. By showing that the most influential set in this sense can be approximated
within a constant factor, they overall obtain a constant-factor approximation. A slightly modified model
was studied by Arthur et al. [5]: in their model, the seller cannot choose arbitrarily whom to offer the
product to. Instead, the product spreads by recommendations, but the seller can decide on a price for
each individual once a recommendation occurs. In this model, Arthur et al. prove competitive guarantees
based on the type of buyer model. Akhlaghpour et al. [2] study a Bayesian model wherein a price
trajectory is offered to all buyers (whose values are private), and each individual buys myopically the
first time his value for the item exceeds its current price. Under some restrictions, such as about possible
price trajectories, they provide algorithms with provable guarantees. Haghpanah et al. [43] consider the
design not just of fixed prices, but general auction schemes, and provide a (Bayesian) auction over social
networks which achieves a constant approximation to optimal revenue under restricted (all-or-nothing)
valuations among the buyers.

The related question of extracting truthfully from individuals how much incentivization they would
require to become early adopters and recommenders was studied by Singer [76]. He provides a truthful
constant-factor approximation for the problem of choosing and paying individuals to start a cascade.
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A different generalization from pricing is suggested in a recent paper by Seeman and Singer [75].
They base their model on the well-known observation that friends of random nodes tend to have higher
degrees in expectation than the nodes themselves. Based on this observation, they suggest a two-stage
process: first choose several nodes to invite; then, choose a seed set among their friends if they actually
are available. They give a constant-factor approximation for this two-stage adaptive optimization process.

The motivations for studying influence maximization also naturally suggest that there will frequently
be competition between influences. This competition could occur between companies marketing similar
products or between different political movements or ideologies seeking societal acceptance. Indeed,
several papers [4, 10, 13, 16, 27, 40, 46, 78] have proposed and analyzed models for competition between
multiple cascades.

To our knowledge, Dubey et al. [27] were the first to explicitly propose a model for competing
cascades, extending the simple linear model of Richardson and Domingos [68] to competing cascades,
and characterizing its equilibria. Subsequently, Carnes et al. [16] and Bharathi et al. [10] proposed
extensions of the Independent Cascade model. The main challenge in extending diffusion models to
multiple influences is deciding which of the influences will convince a node if multiple influences try at
once. Carnes et al. [16] propose tie breaking rules under which the best response of the last player remains
submodular. Bharathi et al. [10] side-step the issue by introducing a continuous timing component into
diffusion, which guarantees that with probability 1, no two influences reach a node at the exact same
time. The result is again submodularity of best responses; Bharathi et al. also prove that this makes the
competitive cascade game a valid utility game [80], leading to a low Price of Anarchy.

Borodin et al. [13] show that such an extension is not as straightforward for the Linear Threshold
model: most natural extensions to multiple influences do not preserve submodularity of the objective
function. By adding a fixed sequence in which nodes are considered for state updates, and having them
draw new independent thresholds each time, Goyal and Kearns [40] define a threshold-like model that
retains many of the desirable properties; in particular, they achieve a Price of Anarchy of 4 for 2 players.
He and Kempe [46] subsequently showed that a Price of Anarchy of 2 for arbitrarily many players follows
analogously to the result of Bharathi et al. [10], by reducing the game to a valid utility game [80]. Alon et
al. [4] and Tzoumas et al. [78] focus on the existence of pure Nash Equilibria in different versions of the
game, with 2 [78] or N [4] players. Tzoumas et al. [78] also consider the Price of Anarchy, but in their
(deterministic) version of the game, it is unbounded in general, even for 2 players.

Motivated by applications in which the competing cascade is considered “harmful” (such as a harmful
rumor, computer virus, or dangerous conviction), several papers [15, 47, 77] have considered the objective
of minimizing the spread of a cascade, or maximizing the number of uninfluenced nodes. In this context,
like in the previous one, the algorithmic questions studied include the efficient heuristic computation of
equilibrium strategies [77] as well as the optimization problem for a single first mover [47]. A slightly
different, but related situation arises when negative opinions about a product may emerge on their own as
a result of the adoption of a product. The optimization problem under this variant of the model has been
studied by Chen et al. [18].
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2 Models for the diffusion of an innovation

The social network is represented by a directed graph G, and we write u→ v to denote the existence of
a directed edge from u to v. In considering operational models for the spread of an idea or innovation,
we will speak of each individual node as being either active (an adopter of the innovation) or inactive.
We will focus on settings, guided by the motivation discussed above, in which each node’s tendency to
become active increases monotonically as more of its neighbors become active.

Also, we will first focus on the progressive case in which nodes can switch from being inactive to
being active, but do not switch in the other direction. (In Section 6, we show how this assumption can be
lifted.) Thus, the process will look roughly as follows from the perspective of an initially inactive node
v: as time unfolds, more and more of v’s neighbors become active; at some point, this may cause v to
become active, and v’s decision may in turn trigger further decisions by nodes to which v is connected.
We let At denote the set of nodes active at time t.

2.1 The Threshold model

Granovetter and Schelling were among the first to propose models that capture such a process; their
approach was based on the use of node-specific thresholds [41, 74]. Many models of this flavor were
subsequently investigated (see, e. g., [9, 41, 57, 58, 61, 67, 74, 79, 84, 85, 86]), but the following Linear
Threshold model lies at the core of most generalizations. In this model, a node v is influenced by each
incoming neighbor w according to a weight bv,w ∈ [0,1]. Each node v has a threshold θv in the interval
[0,1]; this represents the total weight which has to be exerted upon v by its active neighbors in order for v
to become active. The implications of how these thresholds are chosen will be discussed momentarily.

Given a choice of all nodes’ thresholds, and an initial set of active nodes A0 (with all other nodes
inactive), the diffusion process unfolds deterministically in discrete steps: in step t, all nodes that were
active in step t−1 remain active; furthermore, each currently inactive node v becomes active if and only
if the total weight of its active neighbors is at least θv:

∑
w→v,w active

bv,w ≥ θv .

Thus, the thresholds θv intuitively represent the different latent tendencies of nodes to adopt the innovation
when their neighbors do.

There are three natural ways to model nodes’ thresholds. They could be either hard-wired at a
known value (such as 1/2), be part of the input to the optimization problem, or assumed to be random.
Models with hard-wired thresholds were studied by Berger [9], Morris [61], and Peleg [67], for example.
Unfortunately, we show in Section 3.2 that hard-wired thresholds make the optimization problem hard to
approximate to within a multiplicative factor of n1−ε for any ε > 0; the same hardness results naturally
apply to the case in which the thresholds are part of the input. For this reason, and to model our lack
of knowledge of the thresholds, we instead assume that the thresholds θv are chosen independently and
uniformly at random from the interval [0,1]; thus, in effect, we average over all possible threshold values.

Given the Linear Threshold model with random node thresholds, the influence maximization problem
is now defined as in Section 1. Even with random node thresholds, we can prove that finding the best set
A to target is NP-hard.
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Theorem 2.1. The influence maximization problem is NP-hard for the Linear Threshold model.

Proof. Consider an instance of the NP-complete VERTEX COVER problem, defined by an undirected
n-node graph G = (V,E) and an integer k; we want to know if there is a set S of k nodes in G so that every
edge has at least one endpoint in S. We show that this can be viewed as a special case of the influence
maximization problem.

We define a corresponding instance of the influence maximization problem by directing all edges
of G in both directions, assigning each directed edge e = (u,v) a weight of 1/degv. If there is a vertex
cover S of size k in G, then one can deterministically make σ(A) = n by targeting the nodes in the set
A = S, since each node is either in A or has all its neighbors in A. Conversely, this is the only way to
get a set A with σ(A) = n; for if a pair of adjacent nodes u,v had neither node in A, then with random
thresholds close enough to 1, neither node would become active.

2.1.1 A General Threshold model

The Linear Threshold model can be naturally generalized, by lifting the assumption that influences from
individual nodes can only be aggregated linearly. In the general Threshold model, a node v’s decision
to become active can be based on an arbitrary monotone function of the set of neighbors of v that are
already active. Each node v has associated with it a monotone threshold function fv mapping subsets of
v’s neighbor set to real numbers in [0,1], subject to the condition that fv( /0) = 0. The diffusion process
follows the general structure of the Linear Threshold model. Each node v initially chooses θv uniformly
at random from the interval [0,1]. Now, however, v becomes active in step t iff fv(S)≥ θv, where S is the
set of neighbors of v that are active in step t−1. Note that the Linear Threshold model is the special case
in which each threshold function has the form

fv(S) = min
(

1,∑
u∈S

bv,u

)
for parameters bv,u ∈ [0,1].

2.1.2 The Submodular Threshold model

As we will see below, the influence maximization problem under the general Threshold model is highly
intractable. A natural restriction is to require the local influence functions at nodes to have diminishing
influence as the size of the influencing set increases. Diminishing influence of individual additions is
naturally modeled by submodularity, which also plays a central role in our proofs of approximation
guarantees. Recall that a function f is submodular if it satisfies the following property: the marginal gain
from adding an element to a set S is at least as high as the marginal gain from adding the same element to
a superset of S. Formally, a submodular function satisfies

f (S∪{v})− f (S)≥ f (T ∪{v})− f (T ) ,

for all elements v and all pairs of sets S⊆ T .
The Submodular Threshold model is obtained from the general Threshold model by requiring that

each fv(S) be submodular. In the original version of this paper [51], we conjectured that the Submodular
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Threshold model would yield the same 1−1/e approximation guarantee for the greedy hill-climbing
algorithm as the Linear Threshold model. This conjecture has since been resolved positively by Mossel
and Roch [62].

2.2 The Cascade model

Based on work in interacting particle systems [28, 56] from probability theory, we can also consider
dynamic cascade models for diffusion processes. The conceptually simplest model of this type is what
one could call the Independent Cascade model, investigated in the context of marketing by Goldenberg,
Libai, and Muller [32, 33]. We again start with an initial set of active nodes A0, and the process unfolds
in discrete steps according to the following randomized rule. When node v first becomes active in step t,
it is given a single chance to activate each currently inactive neighbor w; it succeeds with a probability
pv,w—a parameter of the system—independently of the history thus far. (If w has multiple newly activated
neighbors, their attempts are sequenced in an arbitrary order.) If v succeeds, then w will become active in
step t +1; but whether or not v succeeds, it cannot make any further attempts to activate w in subsequent
rounds. Again, the process runs until no more activations are possible.

For the Independent Cascade model, too, the problem of finding the best set to target is NP-hard. In
fact, for this model, we can even prove an approximation hardness result.

Theorem 2.2. For the Independent Cascade model, it is NP-hard to approximate the most influential set
to within better than a factor 1−1/e.

Proof. Consider an instance of the MAXIMUM COVERAGE problem, defined by a collection of subsets
S1,S2, . . . ,Sm of a ground set U = {u1,u2, . . . ,un}; the goal is to select k of the subsets to maximize the
size of their union. (We can assume that k < n < m.) We show that this can be viewed as a special case of
the influence maximization problem.

We define a corresponding directed bipartite graph with m+ n2 nodes: for each set Si, there is a
corresponding node i, and for each element u j, there are n corresponding nodes j1, . . . , jn. Whenever
u j ∈ Si, there is a directed edge (i, j`) with activation probability pi, j` = 1 for all `= 1, . . . ,n.

If X is a set of k of the subsets Si, and T ⊆ U the union of the elements covered by the Si ∈ X ,
then choosing the k nodes corresponding to X will deterministically activate those nodes and the nodes
corresponding to elements in T , for a total of k+n|T | active nodes.

Next, we consider the converse direction, and an initially active set A. Without loss of generality,
the set A contains only nodes i corresponding to sets Si; otherwise, choosing any set covering element j
would activate strictly more nodes. Now, let X be the set of sets Si corresponding to the nodes in A, and
T ⊆U the set of elements covered by X . The number of activated nodes in the IC instance is k+n|T |.

In summary, we have shown that in the MAXIMUM COVERAGE instance, r nodes can be covered by
k sets if and only if k+nr nodes can be activated by a size-k seed set in the IC instance. As k ≤ n, we
obtain (up to lower order terms) an approximation preserving reduction from MAXIMUM COVERAGE.
Since MAXIMUM COVERAGE is known to be hard to approximate better than 1−1/e [31], we obtain the
same approximation hardness for influence maximization.
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2.2.1 A General Cascade model

The Independent Cascade model, too, can be naturally generalized, by allowing the probability that u
succeeds in activating a neighbor v to depend on the set of v’s neighbors that have already tried. Thus, we
define an incremental function pv(u,S) ∈ [0,1], where S is a subset of v’s neighbors, and u /∈ S. A general
cascade process works by analogy with the independent case: when u attempts to activate v, it succeeds
with probability pv(u,S), where S is the set of neighbors that have already tried (and failed) to activate v.
The Independent Cascade model is the special case where pv(u,S) is a constant pu,v, independent of S.
We will only be interested in cascade models defined by incremental functions that are order-independent
in the following sense: if neighbors u1,u2, . . . ,u` try to activate v, then the probability that v is activated at
the end of these ` attempts does not depend on the order in which the attempts are made. More formally,
let S = {u1, . . . ,u|S|}, and π,ψ two arbitrary permutations of {1, . . . , |S|}. Then, we require that

|S|

∏
i=1

(1− pv(uπ(i),{uπ(1),uπ(2), . . . ,uπ(i−1)})) =
|S|

∏
i=1

(1− pv(uψ(i),{uψ(1),uψ(2), . . . ,uψ(i−1)})) .

Otherwise, even the definition of the outcome of the activation process would depend on the specific
tie-breaking rules for multiple simultaneous activations.

2.2.2 The Decreasing Cascade model

Much like the general Threshold model, the general Cascade model makes influence maximization highly
intractable—indeed, we will show in Section 3 that the two general models are equivalent. However, as
for the threshold model, a natural “diminishing returns” condition leads to a tractable model again.

In the Decreasing Cascade model, the probability of a node u influencing v is non-increasing as a
function of the set of nodes that have previously tried to influence v. This means that pv(u,S)≥ pv(u,T )
whenever S⊆ T . We call this the diminishing influence condition. Notice that the Decreasing Cascade
model is a generalization of the Independent Cascade model. (On the other hand, in Section 3.1, we show
that it is a special case of the Submodular Threshold model.)

Whenever the incremental functions satisfy the diminishing influence condition, we will be able to
show that the greedy hill climbing algorithm is a 1−1/e approximation. This is despite the fact that there
are functions pv(u,S) satisfying the diminishing influence condition which do not admit an equivalent
formulation in terms of the Triggering Set model at the heart of most of our proofs.

2.3 Node weights

The discussion so far has been treating all nodes as equal, in that the stated goal was to simply maximize
the number of nodes that are eventually activated in expectation. The model is naturally extended by
associating with each node v a non-negative weight ωv, capturing how important it is that v be activated
in the final outcome. (For instance, if we are marketing textbooks to college teachers, then the weight
could be the number of students in the teacher’s class, resulting in a larger or smaller number of sales.)
If we let t be the time at which the diffusion process quiesces, we can define the weighted influence
function σw(A) = E

[
∑v∈At ωv

]
= ∑v ωv · Prob [v active at time of quiescence]. The influence function
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defined previously is the special case obtained by setting ωv = 1 for all nodes v. As we will see below,
most results we obtain for the influence maximization problem carry over directly to the weighted version.

3 Equivalence of models and hardness

The Linear Threshold and Independent Cascade models are two specific, widely studied models for
the diffusion of influence. Above, we proposed natural ways of generalizing the models. The goal of
such generalizations is to prove approximation guarantees for a broader class of influence models, and
to explore the limits of models in which strong approximation guarantees can be obtained. Perhaps
somewhat surprisingly, the general Threshold model and the general Cascade model are in fact equivalent.
Not only does this equivalence imply that both models can be considered “natural” descriptions of
real-world processes, but the two different views of the same random process will also be a key ingredient
in our proof of approximation guarantees in Section 5.

We give an explicit method to convert between the two models. Given success probabilities pv(u,S),
we define the activation functions

fv(S) = 1−
r

∏
i=1

(1− pv(ui,Si)) , (3.1)

where S = {u1,u2, . . . ,ur}, and Si = {u1, . . . ,ui−1}. That fv is well-defined follows from the order-
independence assumption on the pv(u,S). Conversely, given activation functions fv, we define success
probabilities

pv(u,S) =
fv(S∪{u})− fv(S)

1− fv(S)
. (3.2)

It is straightforward to verify that the activation functions defined via Equation (3.1) satisfy Equation (3.2),
and the success probabilities defined via Equation (3.2) satisfy Equation (3.1). The equivalence of the
models is then captured by the following lemma.

Lemma 3.1. Assume that the success probabilities pv(u,S) and activation functions fv(S) satisfy Equa-
tion (3.2). Then, for each node set T and each time t, the probability that exactly the nodes of set T
are active at time t is the same under the order-independent cascade process with success probabilities
pv(u,S) and the general threshold process with activation functions fv(S).

Proof. We show, by induction, a slightly stronger statement: namely that for each time t and any pair
(T,T ′), the probability that exactly the nodes of T are active at time t−1, and exactly those of T ′ are
active at time t, is the same under both views. By summing over all sets T ′, this clearly implies the
lemma.

At time t = 0, the inductive claim holds trivially, as the probability is 1 for the pair ( /0,A0) and 0 for
all other pairs, for both processes. For the inductive step to time t, we first condition on the event that the
nodes of T are active at time t−1, and those of T ′ at time t.

Consider a node v /∈ T ′. Under the cascade process, v will become active at time t +1 with probability

1−
r

∏
i=1

(
1− pv(ui,T ∪T ′i )

)
,
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where we write T ′ \ T = {u1, . . . ,ur} and T ′i = {u1, . . . ,ui−1}. Under the threshold process, node v
becomes active at time t +1 iff fv(T )< θv ≤ fv(T ′). Because node v is not active at time t, and by the
Principle of Deferred Decisions, θv is uniformly distributed in ( fv(T ),1] at time t, so the probability that
v becomes active is

fv(T ′)− fv(T )
1− fv(T )

.

Substituting Equation (3.1) for fv(T ) and fv(T ′), a simple calculation shows that

fv(T ′)− fv(T )
1− fv(T )

= 1−
r

∏
i=1

(
1− pv(ui,T ∪T ′i )

)
.

Thus, each individual node becomes active with the same probability under both processes. As both
the thresholds θv and activation attempts are independent for distinct nodes, the probability for any set T ′′

to be the set of active nodes at time t +1 is the same under both processes. Finally, as the probability
distribution over active sets T ′′ is the same conditioned on any pair (T,T ′) of previously active sets, the
overall distribution over pairs (T ′,T ′′) is the same in both the cascade and threshold processes.

Lemma 3.1 shows that the general Threshold model is a non-trivial reparametrization of the general
Cascade model.1 In a natural way, it allows us to make all random choices at time 0, before the process
starts. An alternate way of attempting to pre-flip all coins, for instance by providing a sequence of
random numbers from [0,1] for use in deciding the success of activation attempts, would not preserve
order-independence.

For our later proofs, it will be useful to allow delaying the activation of a node whose activation
criterion has been met. We therefore generalize the Threshold and Cascade models as follows: each node
v has a finite waiting time τv, meaning that when v’s criterion for activation has been met at time t (i. e.,
an influence attempt was successful in the Cascade model, or fv(S)≥ θv in the Threshold model), v only
becomes active at time t+τv. Notice that when τv = 0 for all nodes, this is the original Threshold/Cascade
model. The following lemma shows that delaying the activation of nodes does not change the eventual
outcome under the general Threshold model. Because Lemma 3.1 can be extended straightforwardly to
include delays in activation, we obtain the same result for the general Cascade model.

Lemma 3.2. Under the general Threshold model, the distribution ϕ(A) over active sets at the time of
quiescence is the same regardless of the waiting times τv. This even holds conditioned upon any random
event E.

Proof. We prove the stronger statement that for every choice of thresholds θv, and every vector τττ of
waiting times τv, the set Sτττ of nodes active at the time of quiescence is the same as the set S000 of nodes
active at quiescence when all waiting times are 0. This will clearly imply the claim, by integrating over
all thresholds that form the event E. So from now on, fix the thresholds θv.

Let A0,t denote the set of nodes active at time t when all waiting times are 0, and Aτττ,t the set of nodes
active at time t with waiting times τττ . A simple inductive proof using the monotonicity of the activation

1Note, however that the Independent Cascade model and Linear Threshold model are different subclasses of this general
model, and are not themselves reparametrizations of each other.
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functions fv shows that Aτττ,t ⊆ A0,t for all times t, which, by setting t to be the time of quiescence of the
process with waiting times τττ , implies that Sτττ ⊆ S000.

Assume now that Sτττ 6= S000, and let T = S000 \ Sτττ 6= /0. Among the nodes in T , let v be one that was
activated earliest in the process without waiting times, i. e., T ∩ A0,t = /0, and v ∈ T ∩ A0,t+1 for some
time t. Because v was activated, we know that θv ≤ fv(A0,t), and by definition of v, no previously active
nodes are in T , i. e., A0,t ⊆ Sτττ . But then, the monotonicity of fv implies that θv ≤ fv(Sτττ), so v should be
active in the process with waiting times τττ , a contradiction.

3.1 Decreasing Cascade model and Submodular Threshold model

We use the insights of the preceding reduction to show that the Decreasing Cascade model is a special
case of the Submodular Threshold model.

By Lemma 3.1, the influence function defined via Equation (3.1) gives rise to an instance of the general
Threshold model, and the success probabilities pv(u,S) and activation functions fv satisfy Equation (3.2),
i. e.,

pv(u,S) =
fv(S∪{u})− fv(S)

1− fv(S)
.

The condition that pv(u,S)≥ pv(u,T ) whenever S⊆ T now translates to

fv(S∪{u})− fv(S)
1− fv(S)

≥ fv(T ∪{u})− fv(T )
1− fv(T )

,

whenever S ⊆ T and u /∈ T . This is in a sense a “normalized submodularity” property; it is stronger
than submodularity, which would consist of the same inequality on just the numerators. (Note that by
monotonicity of fv, the denominator on the left is larger.) Hence, the Decreasing Cascade model is a
special case of the Submodular Threshold model.

3.2 Inapproximability results and discussion

The general model proposed above includes large families of instances for which the influence maximiza-
tion problem is not tractable. Indeed, it may become NP-hard to approximate the optimization problem
to within any non-trivial factor.

Theorem 3.3. In general, it is NP-hard to approximate the influence maximization problem to within a
factor of n1−ε , for any ε > 0.

Proof. To prove this result, we reduce from the SET COVER problem. We start with the construction
from the proof of Theorem 2.2; however, we do not need duplicates of the element nodes. Specifically,
we let u1, . . . ,un denote the nodes corresponding to the n elements; i. e., ui becomes active when at least
one of the nodes corresponding to sets containing ui is active. Next, for an arbitrarily large constant c, we
add N = nc more nodes x1, . . . ,xN ; each x j is connected to all of the nodes ui, and it becomes active only
when all of the ui are.

If there are at most k sets that cover all elements, then activating the nodes corresponding to these k
sets will activate all of the nodes ui, and thus also all of the x j. In total, at least N +n+ k nodes will be
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active. Conversely, assume that there is no set cover of size k, and consider a seed set A. Without loss of
generality, A contains no node ui, since such a node can always be replaced with the node corresponding
to any set containing element i, which will still result in activating ui, and possibly other nodes as well.
Because there is no set cover of size k, A cannot activate all of the ui, and hence none of the x j will become
active (unless targeted). In particular, fewer than n+ k nodes are active in the end. If an algorithm could
approximate the problem within n1−ε for any ε , it could distinguish between the cases where N +n+ k
nodes are active in the end, and where fewer than n+ k are. But this would solve the underlying instance
of SET COVER, and therefore is impossible assuming P 6= NP.

Note that our inapproximability result holds in a very simple model, in which each node is “hard-
wired” with a fixed threshold.2 It is thus worth briefly considering the general issue of performance
guarantees for algorithms under the above models. For both the Linear Threshold and the Independent
Cascade models, the influence maximization problem is NP-complete, but, as we prove in the next section,
it can be approximated well. In the linear model of Richardson and Domingos [68], on the other hand,
both the propagation of influence as well as the effect of the initial targeting are linear. Initial marketing
decisions here are thus limited in their effect on node activations; each node’s probability of activation is
obtained as a linear combination of the effect of targeting and the effect of the neighbors. In this fully
linear model, the influence can be maximized by solving a system of linear equations.

In contrast, generalizing Theorem 3.3, we can show that general models like that of Domingos and
Richardson [26], and even simple models that build in a fixed threshold (like 1/2) at all nodes [9, 61, 67],
lead to influence maximization problems that cannot be approximated to within any non-trivial factor,
assuming P 6= NP. Our analysis of approximability thus suggests a way of tracing out a more delicate
boundary of tractability through the set of possible models, by helping to distinguish among those for
which simple heuristics provide strong performance guarantees and those for which they can be arbitrarily
far from optimal. This in turn can suggest the development of both more powerful algorithms, and the
design of accurate models that simultaneously allow for tractable optimization.

4 Approximation algorithm and analysis

In this section, we describe and analyze the approximation algorithm for the influence maximization
problem. Using approximation results for submodular functions, we will establish Theorem 1.1, our main
theorem.

The approximation algorithm we use and analyze is a simple greedy hill-climbing algorithm. Starting
from the empty set, it repeatedly adds to A the node x maximizing the marginal gain σ(A∪{x})−σ(A).
Note that it is not clear how to evaluate σ(·) exactly in polynomial time; indeed, subsequent to the initial
publication of this work [51], it has been proven that evaluating σ(A) is generally #P-complete both for
the Linear Threshold model [21] and the Independent Cascade model [81].

However, it is possible to obtain arbitrarily good approximations to σ(·) in polynomial time, simply
by simulating the random choices and diffusion process sufficiently many times. Because 1≤ σ(A)≤ n

2Chen [17] showed, subsequent to the conference version of the present work, that with fixed node thresholds, the goal of
minimizing the number of seed nodes required to reach all or a large fraction of the network, is hard to approximate within
poly-logarithmic factors.
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for all sets A, standard Chernoff–Hoeffding bounds (e. g., Theorem 2.3 from [60]) imply the following
proposition.3

Proposition 4.1. If the diffusion process starting with A is simulated independently at least

Ω

(n2

ε2 ln(1/δ )
)

times, then the average number of activated nodes over these simulations is a (1± ε)-approximation to
σ(A), with probability at least 1−δ .

Proof. Assume that the sampling process is repeated T = Ω((n2/ε2) ln(1/δ )) times, and let X1, . . . ,XT ∈
[0,1] be the fraction of nodes activated in each of the runs. The estimate of σ(A) is then

n
T
·

T

∑
i=1

Xi .

Writing X := ∑
T
i=1 Xi, the expectation of X is exactly (T/n) ·σ(A), and standard bounds (e. g., Theorem

2.3 from [60]) give that

Prob
[∣∣∣∣X− T

n
·σ(A)

∣∣∣∣≥ T γ

]
≤ 2e−2T γ2

.

Substituting γ = (2ε/n)σ(A)≥ 2ε/n bounds the right-hand side by δ .

We can now specify the greedy approximation algorithm formally as Algorithm 1:

Algorithm 1 Greedy Approximation Algorithm
1: Start with A = /0.
2: while |A| ≤ k do
3: For each node x, use repeated sampling to approximate σ(A∪{x}) to within (1± ε) with proba-

bility 1−δ .
4: Add the node with largest estimate for σ(A∪{x}) to A.
5: end while
6: Output the set A of nodes.

To obtain good approximation guarantees for the influence maximization problem in a particular
model of diffusion, we use a two-step strategy. First, we show that the influence function σ(·) is a
submodular function of the initial set of active nodes A. (Recall the definition of submodularity from
Section 2.1.2.)

Once we have proved submodularity, we can apply the following theorem of Nemhauser, Wolsey and
Fisher [24, 65].

3The assumption that σ(A)≤ n holds for the unweighted model. When there are nodes with very high (exponential in n)
weight and very small influence probability leading to them, sampling may lead to very inaccurate results unless the number
of samples is polynomially large in the weights, which is pseudo-polynomial in the input size. How well σω (A) can be
approximated for an influence model with arbitrary node weights remains an interesting open question.
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Theorem 4.2 ([24, 65]). Let σ(·) be a non-negative monotone submodular function. Then the greedy
algorithm that (for k iterations) adds an element with the largest marginal increase in σ(·) produces a
k-element set A such that σ(A)≥ (1−1/e) ·max|B|=k σ(B).

Due to its generality, this result has found applications in a number of areas of discrete optimization
(see, e. g., [44, 64]). In particular, it has become a very popular technique for optimization with provable
approximation guarantees since the original publication of the present article; see the survey by Krause
and Golovin [54] for a recent overview.

Theorem 4.2 assumes that the function σ(·) to be optimized can be evaluated exactly at any point. As
we argued above, σ(·) can in general not be evaluated exactly in polynomial time. However, as shown
above, by simulating the diffusion process and sampling the resulting active sets, we are able to obtain
arbitrarily close approximations to σ(A), with high probability. It is a fairly straightforward extension
of Theorem 4.2 that by using (1±δ )-approximate values for the function to be optimized, we obtain
a (1− 1/e− ε)-approximation, where ε depends on δ and goes to 0 as δ → 0. To finish the proof of
Theorem 1.1, it thus remains to show that the objective function σ(·) is non-negative, monotone and
submodular.

4.1 The triggering set technique

Primarily for the purpose of analysis,4 we define the following Triggering model:

Definition 4.3 (Triggering model). Each node v independently chooses a random “triggering set” Tv

according to some distribution over subsets of its incoming neighbors. Initially, a set A is activated.
Subsequently, an inactive node v becomes active in step t if it has a neighbor in its chosen triggering set
Tv that is active in step t−1.

Thus, compared to, say, the Threshold model, v’s threshold has been replaced by a latent subset Tv of
neighbors whose behavior actually affects v. It is useful to think of the triggering sets Tv in terms of “live”
and “blocked” edges: if node u belongs to the triggering set Tv of v, then we declare the edge (u,v) to
be live, and otherwise we declare it to be blocked. Since we are only interested in the node set active at
the end of the process, Definition 4.3 is equivalent to stating that An is the set of nodes v such that v is
reachable from A via a path consisting entirely of live edges.

The key fact about the Triggering model is that any of its instances will directly lead to a submodular
influence function:

Lemma 4.4. In every instance of the Triggering model, the influence function σ(·) is submodular.

Proof. For any outcome X = (Tv)v of the choices of live and blocked edges, let σX(·) denote the number
of nodes reached with this particular outcome; note that σX(S) is a deterministic quantity. First, we
claim that for each fixed outcome X , the function σX(·) is submodular. To see this, let S and T be
two sets of nodes such that S ⊆ T , and consider the quantity σX(S∪{v})−σX(S). Let R(v,X) be the
set of nodes that are reachable from v given the edge choices X . Then, σX(S∪{v})−σX(S) is the
number of elements in R(v,X) that are not already in the union

⋃
u∈S R(u,X); it is at least as large

4The technique can also be helpful for evaluating the objective function σ(A) more efficiently.
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as the number of elements in R(v,X) that are not in the (bigger) union
⋃

u∈T R(u,X). It follows that
σX(S∪{v})−σX(S)≥ σX(T ∪{v})−σX(T ), which is the defining inequality for submodularity.5

When we instead consider distributions over outcomes X , we can write

σ(A) = ∑
outcomes X

Prob [X ] ·σX(A) ,

since the expected number of nodes activated is just the weighted average over all outcomes. But a non-
negative linear combination of submodular functions is also submodular, and hence σ(·) is submodular,
which concludes the proof.

With Lemma 4.4 in hand, our strategy for establishing submodularity of the Independent Cascade
and Linear Threshold models will be to exhibit instances of the Triggering model which have identical
distributions over activated sets. We will also see other natural models that can be analyzed using this
technique, but (in Section 5), we will see that for the Decreasing Cascade model, no equivalent instance
of the Triggering model exists, even though the activation functions are submodular.

4.2 Independent Cascade

In this section, we will establish the following theorem:

Theorem 4.5. For an arbitrary instance of the Independent Cascade model, the resulting influence
function σ(·) is submodular.

Proof. We establish this theorem by giving an equivalent instance of the Triggering model; the result
then follows directly from Lemma 4.4. To derive the Triggering model instance, consider a point in the
cascade process when node v has just become active, and it attempts to activate its neighbor w, succeeding
with probability pv,w. We can view the outcome of this random event as being determined by flipping a
coin of bias pv,w. From the point of view of the process, it clearly does not matter whether the coin was
flipped at the moment that v became active, or whether it was flipped at the very beginning of the whole
process and is only being revealed now. Continuing this reasoning, we can in fact assume that for each
pair of neighbors (v,w) in the graph, a coin of bias pv,w is flipped at the very beginning of the process
(independently of the coins for all other pairs of neighbors), and the result is stored so that it can be later
checked in the event that v is activated while w is still inactive.

Thus, an equivalent view of the process is as follows: each edge (v,w) is present in the graph G of
live edges independently with probability pv,w, and absent otherwise. The preceding argument shows
that conditioned on the outcome of the coin flips for each edge (v,w), a node u is reachable from A in
the resulting graph if and only if it is activated by the Independent Cascade process with the same coin
flip outcomes. Since the outcomes are pointwise the same, the expected number (or weight) of nodes
reachable from A in the Triggering model is the same as the expected number of nodes activated in the
Independent Cascade model.

5Notice that the argument in this paragraph did not make use of the fact that each node contributed exactly 1 to the objective
function. It therefore carries over verbatim to the weighted version with non-negative weights, establishing the same result.
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4.3 Linear Threshold

We now prove an analogous result for the Linear Threshold model.

Theorem 4.6. For instances of the Linear Threshold model in which ∑w:w→v bv,w ≤ 1 for all nodes v, the
resulting influence function σ(·) is submodular.

Proof. We again use Lemma 4.4, exhibiting an equivalent instance of the Triggering model. In this case,
the analysis is a bit more intricate than in the proof of Theorem 4.5, because there is no clear “pointwise”
equivalent process.

Recall that each node v has an influence weight bv,w ≥ 0 from each of its neighbors w, and we are
assuming that ∑w bv,w ≤ 1. (We can extend the notation by writing bv,w = 0 when w is not a neighbor of
v.) The equivalent instance of the Triggering model we analyze is the following: v picks at most one
of its incoming edges at random, selecting the edge from w with probability bv,w and selecting no edge
with probability 1−∑w bv,w. Thus, each set Tv is either empty or contains exactly one edge. Note the
contrast with the proof of Theorem 4.5: there, we determined whether an edge was live independently of
the decision for each other edge; here, we negatively correlate the decisions so that at most one live edge
enters each node.

To show the equivalence of the models formally, we will establish that for any given targeted set A,
the following two distributions over sets of nodes are the same:

1. The distribution over active sets obtained by running the Linear Threshold process to completion
starting from A; and

2. The distribution over sets reachable from A via live-edge paths, under the random selection of live
edges defined above.

To obtain some intuition, it is useful to first analyze the special case in which the underlying graph
G is directed and acyclic. In this case, we can fix a topological ordering of the nodes v1,v2, . . . ,vn (so
that all edges go from earlier nodes to later nodes in the order), and build up the distribution of active
sets by following this order. For each node vi, suppose that we have already determined the distribution
over active subsets of its neighbors. Then under the Linear Threshold process, the probability that vi

will become active, given that a subset Si of its neighbors is active, is ∑w∈Si bvi,w. This is precisely the
probability that the live incoming edge selected by vi lies in Si, and so inductively, we see that the two
processes define the same distribution over active sets.

To prove the claim generally, consider a graph G that is not acyclic. It becomes trickier to show the
equivalence, because there is no natural ordering of the nodes over which to perform induction. Instead,
we argue by induction over the iterations of the Linear Threshold process. We define At to be the set of
active nodes at the end of iteration t, for t = 0,1,2, . . .. (Note that A0 is the set initially targeted.) If node
v has not become active by the end of iteration t, then the probability that it becomes active in iteration
t +1 is equal to the probability that the influence weights in At \At−1 push it over its threshold, given that
its threshold was not exceeded already; this probability is

∑u∈At\At−1 bv,u

1−∑u∈At−1 bv,u
.
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On the other hand, we can run the Triggering process by revealing the identities of the live edges
gradually as follows. We start with the targeted set A. For each node v with at least one edge from the
set A, we determine whether v’s live edge comes from A. If so, then v is reachable; but if not, we keep
the source of v’s live edge unknown, subject to the condition that it comes from outside A. Having now
exposed a new set of reachable nodes A′1 in the first stage, we proceed to identify further reachable nodes
by performing the same process on edges from A′1, and in this way produce sets A′2,A

′
3, . . .. If node v has

not been determined to be reachable by the end of stage t, then the probability that it is determined to be
reachable in stage t +1 is equal to the probability that its live edge comes from At \At−1, given that its
live edge has not come from any of the earlier sets. But this is

∑u∈At\At−1 bv,u

1−∑u∈At−1 bv,u
,

which is the same as in the Linear Threshold process of the previous paragraph. Thus, by induction over
these stages, we see that the Triggering process produces the same distribution over active sets as the
Linear Threshold process.

Even when ∑w:w→v bv,w > 1 for some nodes v, the result of Mossel and Roch [62] implies that the
objective function σ(·) is submodular, albeit not via a Triggering process proof. The reason is that the
function

f (S) = min
(

1, ∑
w∈S:w→v

bv,w

)
is submodular for every node v. Mossel and Roch proved as their main result that this is sufficient for
σ(·) to be submodular. Thus, we obtain submodularity for all instances of the Linear Threshold model.

4.4 Other models

Beyond the Independent Cascade and Linear Threshold, there are other natural special cases of the
Triggering model. One example is the “Only-Listen-Once” model. Here, each node v has a parameter
pv so that the first neighbor of v to be activated causes v to become active with probability pv, and all
subsequent attempts to activate v deterministically fail. (In other words, v only listens to the first neighbor
that tries to activate it.) This process has an equivalent formulation in the Triggering Set model, with an
edge distribution defined as follows: for any node v, the triggering set Tv is either the entire neighbor set
of v (with probability pv) or the empty set.

As a result, the influence function in the Only-Listen-Once model is also submodular, and we can
obtain a (1−1/e− ε)-approximation here as well.

5 The Decreasing Cascade model

In this section, we investigate the Decreasing Cascade model (defined in Section 2.2.2) in detail. First,
we show that the Decreasing Cascade model is not an instance of the Triggering model, implying that the
Triggering Set technique cannot be used to establish the submodularity of the objective function in this
case. Nonetheless, using a more involved coupling argument and the Principle of Deferred Decisions, we

THEORY OF COMPUTING, Volume 11 (4), 2015, pp. 105–147 123

http://dx.doi.org/10.4086/toc


DAVID KEMPE, JON KLEINBERG, AND ÉVA TARDOS

will be able to show that the objective function is in fact submodular, and hence, the 1−1/e approximation
guarantee of the greedy algorithm applies to the Decreasing Cascade model as well.

5.1 Relationship to the Triggering Model

We first show an instance of the Decreasing Cascade model that is not equivalent to any instance of the
Triggering model. This example shows that the Triggering Set Technique cannot be applied to show
submodularity of the Decreasing Cascade model in general.

Our example has five nodes. Node v could potentially be influenced by four nodes u1, . . . ,u4. The first
two nodes to try activating v have a probability of 1/2 each to succeed, whereas all subsequent attempts
fail. The influences are thus pv(ui,S) = 1/2 whenever |S|< 2, and pv(ui,S) = 0 otherwise. Notice that
this is indeed an instance of the Decreasing Cascade model, and order-independent.

Assume, for contradiction, that there is a distribution on graphs such that node v is reachable from a
set S with the same probability that S will activate v in the Cascade model. For any set S⊆ {1,2,3,4}, let
qS denote the probability that in this distribution over graphs, exactly the edges from ui to v for i ∈ S are
present. Because with probability 1/4, v does not become active even if all ui are, we know that q /0 = 1/4.
If u1,u2,u3 are active, then v is also active with probability 3/4, so the edge (u4,v) can never be present
all by itself. (If it were, then the set {u1,u2,u3,u4} together would have higher probability of reaching v
than the set {u1,u2,u3}.) Thus, we have that q{i} = 0 for all i. The same argument shows that q{i, j} = 0
for all i, j.

Thus, the only non-empty edge sets with non-zero probabilities can be those of size three or four. If
node u1 is the only active node, then v will become active with probability 1/2, so the edge (u1,v) is
present with probability 1/2. Hence,

q{1,2,3}+q{1,2,4}+q{1,3,4}+q{1,2,3,4} =
1
2
,

while

q{1,2,3}+q{1,2,4}+q{1,3,4}+q{2,3,4}+q{1,2,3,4} = 1−q /0 =
3
4
.

Therefore, q{2,3,4} = 1/4, and a similar argument for nodes u2,u3,u4 gives that qS = 1/4 for each set S of
cardinality 3. But then, the total probability mass on edge sets is at least 5/4, as there are four such sets S,
and the empty set also has probability 1/4. This is a contradiction, so there is no such distribution over
graphs.

The example above raises the interesting question of which instances of the General Threshold or
Cascade model are in fact instances of the Triggering model, for a suitably defined distribution over
graphs. In other words, for which models does the Triggering Set technique imply submodularity?
Subsequent to the publication of the conference versions of the present work, a complete characterization
of such models was provided by Salek et al. [73]: an instance of the general threshold model has an
equivalent Triggering model formulation if and only if each node’s activation function fv has discrete
derivatives of alternating signs. More specifically, the derivative of a set function g with respect to
an element v is defined as gv(S) = g(S∪{v})− g(S); higher derivatives are defined as derivatives of
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derivatives. The precise necessary and sufficient condition for the Triggering model is then that all
functions fv be non-negative and decreasing, all even derivatives be non-positive, and all odd derivatives
be non-negative.

5.2 Proof of submodularity

We now establish the following theorem:

Theorem 5.1. If all influence functions pu(v,S) are non-increasing in S, then σ(·) is monotone and
submodular.

Proof. The monotonicity is an immediate consequence of Lemma 5.2 below, applied with V =V ′ and
p′v(u,S) = pv(u,S) for all S,v,u. So we focus on submodularity for the remainder of the proof. We have
to show that, whenever A⊆ A′, we have σ(A∪{x})−σ(A)≥ σ(A′∪{x})−σ(A′), for any node x /∈ A′.

The basic idea of the proof is to characterize σ(A∪{x})−σ(A) in terms of a residual process which
targets only the node x, and has appropriately modified success probabilities (similarly for σ(A′∪{x})−
σ(A′)). Let ϕ(A) denote the set of nodes active at the time of quiescence (a random variable). To show
that the residual processes indeed have the same distributions over final active sets ϕ({x}) as the original
processes, we use Lemma 3.2.

Given a node set B, we define the residual process on the set V \B: the success probabilities are

p(B)v (u,S) := pv(u,S∪B) ,

and the only node targeted is x, targeted at time 1. Let ∆B(x) denote the set of nodes active at the time of
quiescence of the residual process; notice that this is a random variable. We claim that, conditioned on
the event that [ϕ(A) = B], the variable ∆B(x) has the same distribution as the variable ϕ(A∪{x})\ϕ(A).

In order to prove this fact, we focus on the threshold interpretation of the process, and assign node x a
waiting time of τx = n+1. By Lemma 3.2, this view does not change the distribution of ϕ(A∪{x})\ϕ(A).
Then, x is the only node at time n+1 which has not exhausted its activation attempts; by the conditioning,
the other active nodes (which have exhausted their activation attempts) are those from B. This implies
that only nodes from V \B will make activation attempts after time n+1. By using the same order of
activation attempts, and the same coin flips for each pair u,v ∈V \B, a simple inductive proof on the time
t shows that the set S of nodes is active in the residual process at time t if and only if the set S∪B is active
in the original process at time n+ t. In particular, this shows that the two random variables have the same
distributions.

Having shown this equivalence, we want to compare the expected sizes of ∆B(x) and ∆B′(x), when
B⊆ B′. We write

σB(x) = E [|∆B(x)|] as well as σB′(x) = E [|∆B′(x)|] .

First off, notice that the node set V \B of the former process is a superset of V \B′. Furthermore, for all
nodes u,v and node sets S, the decreasing cascade condition implies that

p(B)v (u,S) = pv(u,S∪B) ≥ pv(u,S∪B′) = p(B
′)

v (u,S) .
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Lemma 5.2 below proves the intuitively obvious fact that the combination of a larger ground set of nodes
and larger success probabilities results in a larger set of activated nodes, i. e.,

σx(B)≥ σx(B′) . (5.1)

Finally, we can rewrite the expected number of active nodes as

σ(A∪{x})−σ(A) = ∑
B

σx(B) ·Prob [ϕ(A) = B]

= ∑
B

∑
B′⊇B

σx(B) ·Prob
[
ϕ(A) = B,ϕ(A′) = B′

]
≥∑

B
∑

B′⊇B
σx(B′) ·Prob

[
ϕ(A) = B,ϕ(A′) = B′

]
= ∑

B′
σx(B′) ·Prob

[
ϕ(A′) = B′

]
= σ(A′∪{x})−σ(A′) .

The inequality followed by applying Inequality (5.1) under the sum. In both of the steps surrounding the
inequality, we used that Prob [ϕ(A) = B,ϕ(A′) = B′] = 0 whenever B 6⊆ B′, by the monotonicity of the
cascade process. This completes the proof of submodularity.6

Lemma 5.2. Let V ′ ⊆ V , and assume that p′v(u,S) ≤ pv(u,S) for all nodes u,v ∈ V and all sets S. If
A′ ⊆ A are the targeted sets for cascade processes on V ′ and V , then the expected size of the active set at
the end of the process on V is no smaller than the corresponding expected size for the process on V ′.

Proof. This claim is most easily seen in the threshold view of the process. Equation (3.1) shows that
the activation functions f ′v, fv corresponding to the success probabilities p′v(u,S) and pv(u,S) satisfy
f ′v(S)≤ fv(S), for all nodes v and sets S. Then, for any fixed thresholds θv, a simple inductive proof on
time steps t shows that the set of active nodes in the former process (with functions f ′v) is always a subset
of the set of active notes in the latter one (with functions fv). Since the inequality thus holds for every
point of the probability space, it holds in expectation.

We remark here again that subsequent to the original publication of our work, a stronger version
of Theorem 5.1 was established by Mossel and Roch [62], who showed that in the general Threshold
model, whenever the activation functions fv(·) are monotone and submodular, so is σ(·). As we showed
in Section 3.1 that the Decreasing Cascade model is equivalent to a (special case of the) Threshold model
with submodular activation functions, the theorem of [62] implies Theorem 5.1.

6 Non-progressive processes

We have thus far been concerned with the progressive case, in which nodes only go from inactivity to
activity, but not vice versa. When considering the non-progressive case, in which nodes can switch in

6In fact, Lemma 5.2 shows a stronger result: pointwise over random choices, the activated set under B is a superset of the
one under B′. Using this fact in the preceding calculations shows that submodularity also holds with non-negative node weights,
as we established earlier using the Triggering Set technique for the Independent Cascade and Linear Threshold models.
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both directions, the first question is how to exactly define the process and the objective function, since the
“number of active nodes” is not a well-defined quantity any more. In this section, we consider what is
likely the most natural choice of the process and objective function, and show that with these choices, the
non-progressive case can in fact be reduced to the progressive case.

Because the local threshold functions fv are monotone, the Threshold model is inherently progressive,
as is the Cascade model. Perhaps the simplest way of defining a non-progressive version of the process is
to have each node choose a new threshold θ

(t)
v in each time step t.7 Thus, a previously active node can

become inactive as a result of choosing a larger threshold. Formally, at each step t, each node v chooses a
new value θ

(t)
v independently and uniformly at random from the interval [0,1]. Node v will be active in

step t iff fv(St−1)≥ θ
(t)
v , where St−1 is the set of neighbors of v that are active in step t−1.

When nodes can switch from active to inactive, care must be taken in defining the objective function.
A natural choice is to define σ(A) as the sum, over all nodes v, of the number of time steps during
which v is active. This definition is motivated by considering an active node as a potential customer in
that time step, such as an instructor adopting a textbook during a particular semester. This definition is
naturally generalized by assigning different weights to nodes in different time steps, such as exponential
time-discounting common in economics.

Compared to the progressive model, it may now also be beneficial to choose times for particular
activations. More formally, we assume that there is a time horizon τ for which the process will be run.
We define an intervention as the activation of a particular node v at a particular time t ≤ τ . (Notice that
v itself may quickly de-activate, but we hope to create a large “ripple effect.”) Simple examples show
that to maximize influence, one should not necessarily perform all k interventions at time 0; for example,
G may not even have k nodes. Thus, from the perspective of influence maximization, we now ask the
following question: Suppose that we have a non-progressive model that is going to run for τ steps, and
during this process, we are allowed to make up to k interventions. Which k interventions should we
perform? The influence maximization problem in the non-progressive Threshold model is to find the k
interventions with maximum influence.

We can show that the non-progressive influence maximization problem reduces to the progressive
case in a different graph. Given a graph G = (V,E) and a time limit τ , we build a layered graph Gτ on
τ · |V | nodes: there is a copy vt for each node v in G and each time step t ≤ τ . Let

Lt = {vt | v ∈V}

be the t th layer of Gτ . For each node vt , we define its influence function to be

f ′vt
(S) = fv({u | ut−1 ∈ S}) ;

this function simply applies v’s original influence function to the set of nodes that are active in step t−1.8

7At the other extreme would be for each node to have the same threshold throughout. This model would be identical to the
Linear Threshold model as we have defined it previously. A more realistic model would posit a strong but not perfect correlation
between thresholds for different time steps; we leave the exploration of such models to future work.

8If different time steps carry different weights, then we simply assign each node vt the corresponding weight; see the
discussion in Section 2.3.
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Theorem 6.1. The non-progressive influence maximization problem on G over a time horizon τ is
equivalent to the progressive influence maximization problem on the layered graph Gτ . Node v is active
at time t in the non-progressive process if and only if vt is activated in the progressive process.

Proof. The proof simply couples the thresholds of nodes vt with the threshold chosen by node v in step t
in the non-progressive model. Then, the theorem follows by a straightforward induction proof on t.

Thus, models where we have approximation algorithms for the progressive case carry over. Theo-
rem 6.1 also implies approximation results for certain non-progressive models used by Asavathiratham et
al. to model cascading failures in power grids [6, 7].

Note that the non-progressive model discussed here differs from the model of Domingos and Richard-
son [26, 68] in two ways. We are concerned with the sum over all time steps t ≤ τ of the (possibly
weighted) expected number of active nodes at time t, for a given a time limit τ , while [26, 68] study the
limit of this process: the expected number of nodes active at time t as t goes to infinity. Further, we
consider interventions for a particular node v, at a particular time t ≤ τ , while the interventions considered
by [26, 68] permanently affect the activation probability function of the targeted nodes.

7 General marketing strategies

In the formulation of the problem, we have so far assumed that for one unit of budget, we can deterministi-
cally target any node v for activation. This is clearly a highly simplified view. In a more realistic scenario,
we may have a number m of different marketing actions Mi available, each of which may affect some
subset of nodes by increasing their probabilities of becoming active, without necessarily making them
active deterministically. The more we spend on any one action, the stronger its effect will be; however,
different nodes may respond to marketing actions in different ways.

In a general model, we choose investments xi into marketing actions Mi, such that the total investments
do not exceed the budget. A marketing strategy is then an m-dimensional vector xxx of investments. The
probability that node v will become active is determined by the strategy, and denoted by hv(xxx). We
assume that this function is non-decreasing and satisfies the following “diminishing returns” property for
all xxx≥ yyy and aaa≥ 000 (where we write xxx≥ yyy or aaa≥ 000 to denote that the inequalities hold in all coordinates):

hv(xxx+aaa)−hv(xxx)≤ hv(yyy+aaa)−hv(yyy) . (7.1)

Intuitively, inequality (7.1) states that any marketing action is more effective when the targeted
individual is less “marketing-saturated” at that point; it captures concavity of the activation functions in
non-negative directions.

We are trying to maximize the expected size of the final active set. As a function of the marketing
strategy xxx, each node v becomes active independently with probability hv(xxx), resulting in a (random) set
of initial active nodes A. Given the initial set A, the expected size of the final active set is σ(A).9

9Recently, a slightly different model of partial influence by a marketer has been proposed by Günneç and Raghavan (see [42])
and Demaine et al. [25]. In their model, a marketer also divides a budget among actions, but each action only affects a single
individual. Their model is best understood in the threshold model: a node v on whom the marketer spent xv units of budget
becomes active when θv ≤ xv + fv(S). Thus, the effort of the marketer not only creates a possibility of initial activation, but
permanently increases a node’s propensity for being activated. The models are technically incomparable.
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The expected revenue of the marketing strategy xxx is therefore

g(xxx) = ∑
A⊆V

σ(A) ·∏
u∈A

hu(xxx) ·∏
v/∈A

(1−hv(xxx)) .

In order to (approximately) maximize g, we assume that we can evaluate the function at any point xxx
approximately, and find a direction i with approximately maximal gradient. Specifically, let eeei denote the
unit vector along the ith coordinate axis, and δ be some constant. We assume that there exists some γ ≤ 1
such that we can find an i with

g(xxx+δ · eeei)−g(xxx)≥ γ ·
(
g(xxx+δ · eee j)−g(xxx)

)
for each j. We divide each unit of the total budget k into equal parts of size δ . Starting with an all-0
investment 000, we perform an approximate gradient ascent, by repeatedly (a total of k/δ times) adding δ

units of budget to the investment in the action Mi that approximately maximizes the gradient. Formally,
the algorithm is defined as Algorithm 2.

Algorithm 2 The Hill Climbing algorithm

1: Start with xxx(0) = 000.
2: for all rounds t = 0, . . . ,k ·δ−1−1 do
3: Let it be a direction maximizing g(xxx(t)+δ · eeeit )−g(xxx(t)).
4: Set xxx(t+1) = xxx(t)+δ · eeeit .
5: end for

The proof that this algorithm gives a good approximation consists of two steps. First, we show
that whenever a function g is non-negative, non-decreasing, and satisfies the “diminishing returns”
condition (7.1), the hill-climbing algorithm gives a constant-factor approximation. Then, we show that
the specific function g we are trying to optimize is indeed non-negative, non-decreasing, and satisfies
Condition (7.1).

Theorem 7.1. Let g be a non-negative and monotone non-decreasing function satisfying the “diminishing
returns” condition (7.1). Assume that the hill climbing algorithm is run with a total budget of k, divided
into pieces of size δ each, and a direction it with γ-approximately largest gradient10 is chosen in each
step t.

When the hill-climbing algorithm finishes with strategy xxx, it guarantees that

g(xxx)≥
(
1− e−

k·γ
k+δ ·m

)
·g(x̂xx) ,

where x̂xx denotes the optimal solution subject to ∑i x̂i ≤ k.

10A direction i has γ-approximately largest gradient from a point xxx if

g(xxx+δ · eeei)−g(xxx)≥ (1− γ) · (g(xxx+δ · eeei)−g(xxx))

for all j.
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Proof. The proof is quite similar to, and builds on, the analysis used by Nemhauser et al. [65].
The investments of the optimal solution x̂xx may not be multiples of δ , so we round them up to the

nearest multiple of δ , resulting in a vector yyy = (y1, . . . ,ym) ≥ x̂xx. The increase in each coordinate is at
most δ , so ∑i yi ≤ k+mδ .

Consider iteration t of the algorithm. Because g is non-decreasing, we know that xxx(t) ≥ 000, so
xxx(t)+yyy≥ yyy, and therefore (again by monotonicity of g) g(xxx(t)+ yyy)≥ g(yyy)≥ g(x̂xx). In turn, we now derive
an upper bound on g(xxx(t)+ yyy) in terms of our solution xxx(t).

Because g has diminishing returns, we know that

g(xxx(t)+ yyy)−g(xxx(t))≤
m

∑
i=1

(
g(xxx(t)+ yi · eeei)−g(xxx(t))

)
.

Because yi is a multiple of δ , we obtain, again from the diminishing returns property of g, that

g(xxx(t)+ yi · eeei)≤ g(xxx(t))+
yi

δ
· (g(xxx(t)+δ · eeei)−g(xxx(t))) .

By the choice of the direction it ,

g(xxx(t)+ yyy)≤ g(xxx(t))+∑
i

yi

δ
·
(
g(xxx(t)+δ · eeei)−g(xxx(t))

)
≤ g(xxx(t))+

k+δm
δγ

·
(
g(xxx(t+1))−g(xxx(t))

)
.

Defining ∆t = g(xxx(t+1))−g(xxx(t)), and rewriting xxx(t) as a telescoping series now shows that

g(x̂xx)≤ g(xxx(t)+ yyy) ≤ g(000)+∑
j<t

∆ j +
k+δm

δγ
·∆t .

Multiplying both sides of the t th inequality by(
1− δγ

k+δm

)k·δ−1−t

,

and summing them all up yields that the term ∆t appears with coefficient

k+δm
δγ

·
(

1− δγ

k+δm

)k·δ−1−t

in the t th inequality, and with coefficient (
1− δγ

k+δm

)k·δ−1− j

in the jth inequality for j > t, so it appears a total of

k+δm
δγ

·
(

1− δγ

k+δm

)k·δ−1−t

+
k·δ−1

∑
j=t+1

(
1− δγ

k+δm

)k·δ−1− j

=
k+δm

δγ
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times. On the left-hand side of the inequality obtained by summing up, the coefficient for g(x̂xx) is

k·δ−1

∑
t=1

(
1− δγ

k+δm

)k·δ−1−t

=
k+δm

δγ
·

(
1−
(

1− δγ

k+δm

)k·δ−1)
,

and similarly for the coefficient of g(000). Hence, the inequality obtained by summing is

k+δm
δγ

·

(
1−
(

1− δγ

k+δm

)k·δ−1)
·
(
g(x̂xx)−g(000)

)
≤ k+δm

δγ
·

k·δ−1

∑
t=0

∆t =
k+δm

δγ
·
(
g(xxx)−g(000)

)
.

Dividing both sides by (k+δm)/(δγ), and bounding that(
1− δγ

k+δm

)k·δ−1

≤ e−
γk

k+δm

now shows that

g(xxx) ≥ (1− e−
γ·k

k+δm ) ·g(x̂xx)+ e−
γ·k

k+δm ·g(000) ≥ (1− e−
γ·k

k+δm ) ·g(x̂xx) ,

by the non-negativity of g. This completes the proof.

With Theorem 7.1 in hand, it remains to show that g is non-negative, monotone, and satisfies
Condition 7.1. The first two are clear, so we only prove the third.

First, we determine an expression for the difference g(xxx+aaa)−g(xxx) when aaa≥ 000, and then show that
this difference is non-increasing as a function of xxx. Using Lemma 7.2 below, and changing order of
summations, we can write (for an arbitrary, but fixed, ordering of vertices)

g(xxx+aaa)−g(xxx) = ∑
A

σ(A) ·
(
∏
i∈A

hi(xxx+aaa) ·∏
i/∈A

(1−hi(xxx+aaa))−∏
i∈A

hi(xxx) ·∏
i/∈A

(1−hi(xxx))
)

= ∑
A

σ(A) ·
(
∑
u
(hu(xxx+aaa)−hu(xxx))·

∏
i<u,i∈A

hi(xxx+aaa) · ∏
i<u,i/∈A

(1−hi(xxx+aaa)) · ∏
i>u,i∈A

hi(xxx) · ∏
i>u,i/∈A

(1−hi(xxx))
)

= ∑
u

(
(hu(xxx+aaa)−hu(xxx)) · ∑

A:u/∈A
(σ(A∪{u})−σ(A))·

∏
i<u,i∈A

hi(xxx+aaa) · ∏
i<u,i/∈A

(1−hi(xxx+aaa)) · ∏
i>u,i∈A

hi(xxx) · ∏
i>u,i/∈A

(1−hi(xxx))
)
.

Next, we study the difference(
g(xxx+aaa)−g(xxx)

)
−
(
g(yyy+aaa)−g(yyy)

)
for yyy≤ xxx, and show that it is non-positive. In order to do so, we first use the diminishing returns property
of hu(·), to bound hu(xxx+aaa)−hu(xxx)≤ hu(yyy+aaa)−hu(yyy), and then apply Lemma 7.2 again, and change
the order of summation once more, to obtain that
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(g(xxx+aaa)−g(xxx))− (g(yyy+aaa)−g(yyy))

≤∑
u

(
(hu(yyy+aaa)−hu(yyy)) · ∑

A:u/∈A
(σ(A∪{u})−σ(A))·

∏
i<u,i∈A

hi(xxx+aaa) · ∏
i<u,i/∈A

(1−hi(xxx+aaa)) · ∏
i>u,i∈A

hi(xxx) · ∏
i>u,i/∈A

(1−hi(xxx))
)

−∑
u

(
(hu(yyy+aaa)−hu(yyy)) · ∑

A:u/∈A
(σ(A∪{u})−σ(A))·

∏
i<u,i∈A

hi(yyy+aaa) · ∏
i<u,i/∈A

(1−hi(yyy+aaa)) · ∏
i>u,i∈A

hi(yyy) · ∏
i>u,i/∈A

(1−hi(yyy))
)

= ∑
u,v:v<u

(
(hu(yyy+aaa)−hu(yyy))(hv(xxx+aaa)−hv(yyy+aaa))·

∑
A:u,v/∈A

(σ(A∪{u,v})−σ(A∪{v})−σ(A∪{u})+σ(A))·

∏
i<v,i∈A

hi(xxx+aaa) · ∏
i<v,i/∈A

(1−hi(xxx+aaa)) · ∏
v<i<u,i∈A

hi(yyy+aaa)·

∏
v<i<u,i/∈A

(1−hi(yyy+aaa)) · ∏
i>u,i∈A

hi(yyy) · ∏
i>u,i/∈A

(1−hi(yyy))
)

+ ∑
u,v:v>u

(
(hu(yyy+aaa)−hu(yyy))(hv(xxx)−hv(yyy))·

∑
A:u,v/∈A

(σ(A∪{u,v})−σ(A∪{v})−σ(A∪{u})+σ(A))·

∏
i<u,i∈A

hi(xxx+aaa) · ∏
i<u,i/∈A

(1−hi(xxx+aaa)) · ∏
u<i<v,i∈A

hi(xxx)·

∏
u<i<v,i/∈A

(1−hi(xxx)) · ∏
i>v,i∈A

hi(yyy) · ∏
i>v,i/∈A

(1−hi(yyy))
)
.

Let us consider each of the sums separately. All products are non-negative, as are all of the differences
of the form hu(yyy+aaa)−hu(yyy) (and similar ones), by monotonicity and the diminishing returns property
of the hu(·). That leaves the terms

σ(A∪{u,v})−σ(A∪{v})−σ(A∪{u})+σ(A) ,

which are non-positive by submodularity of σ(·). Hence, g does indeed have the diminishing returns
property.

Lemma 7.2. If a1, . . . ,an and b1, . . . ,bn are any numbers, then

n

∏
i=1

ai−
n

∏
i=1

bi =
n

∑
i=1

(ai−bi) ·
i−1

∏
j=1

a j ·
n

∏
j=i+1

b j .
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Proof. The proof is by induction on n. For n = 1, the claim obviously holds. For n > 1, we can write

n

∏
i=1

ai−
n

∏
i=1

bi = (an−bn) ·
n−1

∏
i=1

ai +bn ·
(n−1

∏
i=1

ai−
n−1

∏
i=1

bi

)
I.H.
= (an−bn) ·

n−1

∏
i=1

ai +bn ·
n−1

∑
i=1

(ai−bi) ·
i−1

∏
j=1

a j ·
n−1

∏
j=i+1

b j

=
n

∑
i=1

(ai−bi) ·
i−1

∏
j=1

a j ·
n

∏
j=i+1

b j ,

completing the proof.

8 Experiments

In addition to obtaining worst-case guarantees on the performance of the greedy approximation algorithm,
we are interested in understanding its behavior in practice, and comparing its performance to other
heuristics for identifying influential individuals. We find that the greedy algorithm achieves significant
performance gains over several widely used structural measures of influence in social networks [83].

8.1 The network data

For evaluation, it is desirable to use a network data set that exhibits many of the structural features of
large-scale social networks. At the same time, we do not address the issue of inferring actual influence
parameters from network observations (see, e. g., [26, 68], or [34, 35, 36, 37, 63, 70, 71, 72] for a string
of more recent work on this question). Thus, for our testbed, we employ a collaboration graph obtained
from co-authorships in physics publications, with simple settings of the influence parameters. It has
been argued extensively that co-authorship networks capture many of the key features of social networks
more generally [66]. The co-authorship data set was compiled from the complete list of papers in the
high-energy physics theory section of the e-print arXiv (www.arxiv.org), as of winter of 2002.11

The collaboration graph contains a node for each researcher who has at least one paper with co-
author(s) in the arXiv database. For each paper with two or more authors, we inserted an edge for each
pair of authors. (Single-author papers were ignored.) Notice that this results in parallel edges when two
researchers have co-authored multiple papers—we kept these parallel edges as they can be interpreted to
indicate stronger social ties between the researchers involved. The resulting graph has 10748 nodes, and
edges between about 53000 pairs of nodes.

While processing the data, we corrected many common types of mistakes automatically or manually.
In order to deal with aliasing problems at least partially, we abbreviated first names, and unified spellings
for foreign characters. We believe that the resulting graph is a good approximation to the actual
collaboration graph. (The sheer volume of data prohibits a complete manual cleaning pass.)

11We also ran experiments on the co-authorship graphs induced by theoretical computer science papers. We do not report on
the results here, as they are very similar to the ones for high-energy physics.
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8.2 The influence models

We compared the algorithms in three different models of influence. In the Linear Threshold model, we
treated the multiplicity of edges as weights. If nodes u,v have cu,v parallel edges between them and
degrees du,dv, then the edge (u,v) has weight cu,v/dv, and the edge (v,u) has weight cu,v/du.

In the Independent Cascade model, we assigned a uniform probability of p to each edge of the graph,
choosing p to be 1% and 10% in separate trials. If nodes u and v have cu,v parallel edges, then we
assume that for each of those cu,v edges, u has a chance of p to activate v, i. e., u has a total probability of
1− (1− p)cu,v of activating v once it becomes active.

The Independent Cascade model with uniform probabilities p on the edges has the property that
high-degree nodes not only have a chance to influence many other nodes, but also to be influenced by
them. Whether or not this is a desirable interpretation of the influence data is an application-specific
issue. Motivated by this issue, we chose to also consider an alternative interpretation, where edges into
high-degree nodes are assigned smaller probabilities. We study a special case of the Independent Cascade
model that we term “weighted cascade,” in which each edge from node u to v is assigned probability 1/dv

of activating v. The weighted Cascade model resembles the Linear Threshold model in that the expected
number of neighbors who would succeed in activating a node v is 1 in both models.

8.3 The algorithms and implementation

We compare our greedy algorithm with heuristics based on nodes’ degrees and centrality within the
network, as well as the crude baseline of choosing random nodes to target. The degree and centrality-based
heuristics are commonly used in the sociology literature as estimates of a node’s influence [83].

The high-degree heuristic chooses nodes v in order of decreasing degrees dv. Considering high-degree
nodes as influential has long been a standard approach for social and other networks [3, 83], and is known
in the sociology literature as “degree centrality.”

“Distance centrality” is another commonly used influence measure in sociology, building on the
assumption that a node with short paths to other nodes in a network will have a higher chance of
influencing them. Hence, we select nodes in order of increasing average distance to other nodes in the
network. As the arXiv collaboration graph is not connected, we assigned a distance of n—the number of
nodes in the graph—for any pair of unconnected nodes. This value is significantly larger than any actual
distance, and thus can be considered to play the role of an infinite distance. In particular, nodes in the
largest connected component will have smallest average distance.

Finally, we consider, as a baseline, the result of choosing nodes uniformly at random. Notice that
because the optimization problem is NP-hard, and the collaboration graph is prohibitively large, we
cannot compute the optimum value to verify the actual quality of approximations.

Both in choosing the nodes to target with the greedy algorithm, and in evaluating the performance of
the algorithms, we need to compute the value σ(A). As discussed in Section 4, computing σ(A) exactly
is #P-complete; however, very good estimates can be obtained by simulating the random process. More
specifically, we simulate the process 10000 times for each targeted set, re-choosing thresholds or edge
outcomes pseudo-randomly from the interval [0,1] every time. Previous runs indicate that the quality of
approximation after 10000 iterations is comparable to that after 300000 or more iterations.

In all of the experiments, we vary k from 1 to 30. This is in part for computational reasons, and in
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part because according to our experiments, the number of activated nodes as a function of k grows very
close to linearly beyond k = 30.

8.4 The results

Figure 1 shows the performance of the algorithms in the Linear Threshold model. The greedy algorithm
outperforms the high-degree node heuristic by about 18%, and the central node heuristic by over 40%.
(As expected, choosing random nodes is not a good idea.) This shows that significantly better marketing
results can be obtained by explicitly considering the dynamics of information in a network, rather than
relying solely on structural properties of the graph.
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Figure 1: Results for the Linear Threshold model.

When investigating the reason why the high-degree and centrality heuristics do not perform as well,
one sees that they ignore such network effects. In particular, neither of the heuristics incorporates the fact
that many of the most central (or highest-degree) nodes may be clustered, so that targeting all of them is
unnecessary. In fact, the uneven nature of these curves suggests that the network influence of many nodes
is not accurately reflected by their degree or centrality.

Figure 2 shows the results for the weighted Cascade model. Notice the striking similarity to the Linear
Threshold model. The scale is slightly different (all values are about 25% smaller), but the behavior is
qualitatively the same, even with respect to the exact nodes whose network influence is not reflected
accurately by their degree or centrality. The reason is that in expectation, each node is influenced by the
same number of other nodes in both models (see Section 4), and the degrees are relatively concentrated
around their expectation of 1.
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Figure 2: Results for the Weighted Cascade model.

The graph for the Independent Cascade model with probability 1%, given in Figure 3, seems very
similar to the previous two at first glance. Notice, however, the very different scale: on average, each
targeted node only activates three additional nodes. Hence, the network effects in the Independent
Cascade model with very small probabilities are much weaker than in the other models. Several nodes
have degrees well exceeding 100, so the probabilities on their incoming edges are even smaller than 1%
in the weighted Cascade model. This suggests that the network effects observed for the Linear Threshold
and weighted Cascade models rely heavily on low-degree nodes as multipliers, even though targeting
high-degree nodes is a reasonable heuristic. Also notice that in the Independent Cascade model, the
heuristic of choosing random nodes performs significantly better than in the previous two models.

The improvement in performance of the “random nodes” heuristic is even more pronounced for the
Independent Cascade model with probabilities equal to 10%, depicted in Figure 4. In that model, the
“random nodes” heuristic starts to outperform both the high-degree and the central nodes heuristics when
more than 12 nodes are targeted. It is initially surprising that random targeting for this model should lead
to more activations than centrality-based targeting, but in fact there is a natural underlying reason that we
explore now.

The first targeted node, if chosen somewhat judiciously, will activate a large fraction of the network,
in our case almost 25%. However, any additional nodes will only reach a small additional fraction of the
network. In particular, other central or high-degree nodes are very likely to be activated by the initially
chosen one, and thus have hardly any marginal gain. This explains the shapes of the curves for the
high-degree and distance centrality heuristics, which leap up to about 2415 activated nodes, but make
virtually no progress afterwards. The greedy algorithm, on the other hand, takes the effect of the first
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Figure 3: Independent Cascade model with probability 1%.

chosen node into account, and targets nodes with smaller marginal gain afterwards. Hence, its active set
keeps growing, although at a much smaller slope than in other models.

The random heuristic does not do as well initially as the other heuristics, but with sufficiently many
attempts, it eventually hits some highly influential nodes and becomes competitive with the centrality-
based node choices. Because it does not focus exclusively on central nodes, it eventually targets nodes
with additional marginal gain, and surpasses the two centrality-based heuristics.

In summary, our experiments show that on a data set with many of the features of a real social
network, a greedy algorithm motivated by theoretical insights significantly outperforms several standard
heuristics. This is not to say that better algorithms do not exist: for example, a local search step after
the greedy algorithm would likely improve the results further. Similarly, there may well be other, more
efficient, heuristics with similar or better performance in practice—see the discussion in Section 1.2. Our
main goal here was primarily to establish that theoretical guarantees and practical performance are not
mutually exclusive.

9 Conclusions

Peer influence and word-of-mouth effects play an important role in the dissemination of ideas and
innovations and the adoption of new products. When designing campaigns to promote the adoption of
ideas or products, it is therefore important to take these network effects into account. In the present
work, we studied this optimization problem formally, under several widely used models of influence
and cascading behavior. We showed that under these models, a simple greedy algorithm gives a 1−1/e
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Figure 4: Independent Cascade model with probability 10%.

approximation for the influence maximization objective, and that these results extend to a more general
setting in which a marketing budget is to be divided among different available marketing actions, each of
which may affect subsets of nodes. Our theoretical analysis is complemented by experiments performed
on a collaboration network extracted from the arXiv site.

Many important directions remain for future work. While Mossel and Roch [62] generalize the
submodularity results of our work to more general Threshold models, we do not as of yet have a
complete understanding of the full range of models for which approximate influence maximization is
tractable. Even more immediately, while the factor 1−1/e in the approximation guarantee is matched
by an approximation hardness result for the Independent Cascade model, no approximation hardness
whatsoever is known for the Linear Threshold model. Establishing an improved approximation guarantee,
or any kind of approximation hardness, would therefore be of high interest.

Several natural modeling extensions have been studied in the literature recently, including competition
between multiple cascades, negative opinions, and negative tie strengths. An important property shared
by these extensions is that they need to introduce a timing component, wherein the decision of a node for
a particular state depends on which neighbor influences the node first. This stands in contrast with the
strong timing independence for our basic models, captured by Lemma 3.2. Defining a consistent model
for negative influence or competition which is independent of timing components would be of interest; a
promising direction could be a return to graphical models in the vein of those studied by Domingos and
Richardson [26].

In order to apply the models and algorithms of the present (or subsequent) work in the real world, it
is necessary to estimate the models’ parameters (such as influence probabilities in the Cascade model, or
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edge weights in the Threshold model). A string of recent papers, e. g., [34, 35, 36, 37, 63, 70, 71, 72],
begin to address the inference problem. The general approach is to use multiple instances of cascades,
usually with information on the times at which nodes became active, and to perform a Maximum
Likelihood or similar estimation. Thus, these inference algorithms assume that the model parameters are
invariant across all observations. This is a strong assumption: in practice, the influence of one node on
another will depend on the context of the product or innovation that is being recommended. Inferring
parameters under weaker assumptions, such as a latent low-dimensional space on products which would
explain the parameters, is a promising direction. At an even more fundamental level, a thorough validation
of the present (and other) models of social influence is clearly necessary.
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