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Sleep in brain development
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ABSTRACT

With the discovery of rapid eye movement (REM) sleep, sleep was no longer considered a homogeneous state
of passive rest for the brain. On the contrary, sleep, and especially REM sleep, appeared as an active
condition of intense cerebral activity. The fact that we get large amounts of sleep in early life suggested that
sleep may play a role in brain maturation. This idea has been investigated for many years through a large
number of animal and human studies, but evidence remains fragmented. The hypothesis proposed was that
REM sleep would provide an endogenous source of activation, possibly critical for structural maturation of
the central nervous system. This proposal led to a series of experiments looking at the role of REM sleep in
brain development. In particular, the influence of sleep in developing the visual system has been highlighted.
More recently, non-REM (NREM) sleep state has become a major focus of attention. The current data
underscore the importance of both REM sleep and NREM sleep states in normal synaptic development and
lend support to their functional roles in brain maturation. Both sleep states appear to be important for
neuronal development, but the corresponding contribution is likely to be different.

Key terms: sleep development, brain development, brain plasticity, NREM sleep, REM sleep,

Introducing sleep

Sleep is usually considered a resting state.
In reality, this conception does not
necessarily agree with some of the
physiological processes during sleep.
Neurons in most parts of the brain remain
active during sleep and the brain expends
much energy with this neural activity
during sleep. It is easy to conceive that
neurons responsible for autonomic
functions such as respiration remain active
in both sleep and waking, but neurons in
other parts of the brain also remain active,
often in a highly synchronous and rhythmic
manner (Steriade, 2006).

Studies in humans half a century ago
first demonstrated that sleep occurs in two
distinct states: rapid eye movement (REM)
sleep and non-REM (NREM) sleep
(Aserinski and Kleitman, 1953). These
sleep states exist in human fetuses and
newborns, although their earliest age of
appearance 1is controversial (Curzi-

Dascalova et al., 1988; Curzi-Dascalova
and Challamel, 2000; Mirmiran et al.,
2003a; Peirano et al., 2003). Studies using
chronically catheterized fetal animals and
imaging of the human fetus have
emphasized the similarities between fetal
and postnatal sleep states (Richardson et
al., 1994; Morrison et al., 1997; Czikk et
al., 2001; Czikk et al., 2002; Morrison et
al., 2005). The current concept regarding
REM sleep is that there is a controlling
network composed of several areas of the
forebrain and that brainstem structures may
be responsible for its final expression
(Pace-Schott and Hobson, 2002; McCarley,
2007). With respect to the development of

NREM sleep, it also requires the
establishment of a specific network of
excitatory and inhibitory neural

components, that includes the formation of
thalamocortical and intracortical patterns of
innervation  (Curzi-Dascalova and
Challamel, 2000; Pace-Schott and Hobson,
2002; McCarley, 2007).
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Based on data from animals with
prenatal brain development (sheep, for
instance), there is evidence for prenatal
sleep states development (Richardson et al.,
1994; Morrison et al., 1997; Czikk et al.,
2001; Czikk et al., 2002; Morrison et al.,
2005). Of note, (i) regional blood flow
within the brain increases during REM
sleep, especially in areas thought to be
involved with the generation of this sleep
state (Czikk et al., 2001), (ii) cerebral
leucine metabolism correlates to sleep
states (Czikk et al., 2002), suggesting that
protein synthesis and degradation processes
within the brain are modified by them, and
(iii) cerebral blood flow and oxygen
delivery are higher during spontaneous and
carbachol-induced REM sleep relative to
spontaneous and scopolamine-induced
NREM sleep (Morrison et al., 2005),
indicating that pharmacologic manipulation
induced fetal sleep states behaviorally,
electrophysiologically and metabolically. In
addition, in newborn lambs, the cerebral
metabolic rate of oxygen consumption is as
high during REM sleep as during
wakefulness (Silvani et al., 2006). As a
whole, these studies emphasize that
comparisons of fetal and adult sleep states
in developmental profile and
pharmacological responses may be species
specific (Morrison et al., 1997).

Regarding human sleep ontogeny,
physiological and behavioral parameters
that characterize REM sleep are present
well before the normal term age (Curzi-
Dascalova et al., 1988; Curzi-Dascalova
and Challamel, 2000). There is also
evidence showing that REM sleep may be
more accurately described as having phasic
and tonic stages (Shimohira et al., 2002);
furthermore, these REM sleep patterns
demonstrate consistent results on a night-
by-night basis (Kimura et al., 2001). This
distinction within REM sleep may
contribute to the more appropriate
interpretation of sleep differences between
species with prenatal and postnatal brain
development (Peirano et al., 2003).

The above mentioned considerations
could be particularly relevant while
considering that the last decades have
witnessed a renewed interest in the study of
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the role of sleep in two main manifestations
of brain plasticity: brain development on
the one hand, and learning and memory, on
the other hand (see Maquet et al., 2003;
Frank and Heller, 2006).

Development of sleep

Fetal movements are interspersed with
periods of quiescence and this cycling
pattern increases in duration and becomes
more regular with advancing gestation. This
basic rest/activity cycle evolves into
recognizable distinct behavioral states only
after the neural mechanisms that underlie
the patterning of each variable reach the
corresponding developmental stage that
allow them to cycle in concert. In all
mammals studied to date (i) the amount of
REM sleep is initially much higher early in
development than it is in later adult life;
conversely, the amount of NREM sleep
(and wakefulness if ever present) is lower
early in development than it is in later on;
(i1) patterns of REM sleep and NREM sleep
brain activity continue to change
postnatally, although some precocious
species, humans in particular, clearly begin
this process in utero; (iii) ultradian,
circadian, and homeostatic sleep regulatory
mechanisms undergo important
modifications in the neonatal period and
thereafter (see Peirano et al., 2003).

Sleep is more than the absence of
wakefulness, since them both are regulated
and active processes that occur at particular
times within the 24-hour period. The timing
of sleep and waking is regulated by two
processes: (i) a circadian pacemaker located
in the suprachiasmatic nuclei of the anterior
hypothalamus, which is entrained to the
light-dark cycle and promotes wake during
an active phase of the cycle and permits
sleep during a rest phase of the cycle, and
(ii) a homeostatic process in which a need
for sleep accumulates during waking and is
dissipated or satisfied during sleep
(Borbély, 1982). Since these two processes
do not necessarily run during the same time
period, they need a strong signal to
synchronize them. The first process is
affected by light, and the second one
appears more like a buildup and decay of an
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unknown chemical that gets used up during
the day and then is replenished when we
sleep. Although these regulatory processes
can operate independently, growing
evidence indicates an intimate relationship
between them. Finally, a third mechanism
controls the ultradian alternance between
NREM sleep and REM sleep, which
appears to be controlled by a permanent
interacting balance between brainstem
aminergic and cholinergic neuronal
discharges (Pace-Schott and Hobson, 2002;
McCarley 2007). However, a recently
described model (Lu et al., 2006) postulates
that the main switching mechanisms for
REM sleep involve reciprocal inhibitory
interactions between mesopontine
tegmentum GABA-ergic REM-off and
REM-on populations (in this model the role
for cholinergic and monoaminergic
populations is to modulate the components
of the main REM switch, but are not a part
of it). These three mechanisms, in concert,
produce organized sleep-wake patterns.

Several findings in adult mammals
suggest that sleep is homeostatically
regulated. Periods of forced waking lead to
increased sleep drive, or sleepiness, with
compensatory increases in the amount of
sleep states in subsequent sleep (Borbély,
1982). Sleep homeostatic mechanisms
undergo several important modifications
during the neonatal period. The amount of
waking is very low and neonates are unable
to maintain consolidated bouts of waking.
Short periods of sleep deprivation lead to a
rapid rise in sleep pressure and produce
compensatory increases in sleep time and/or
intensity during recovery (Alfoldi et al.,
1990; Anders and Roffwarg, 1973; Canet et
al 1989; Thomas et al., 1996). Human
neonates respond to selective (Anders and
Roffwarg, 1973) or total sleep (Canet et al
1989; Thomas et al., 1996) deprivation with
compensatory increases only in NREM
sleep time.

Neonates show no evidence of circadian
variations in sleep or waking states; it
begins to emerge by about 5-6 weeks of
age. In addition, the consolidation of sleep-
waking states and their synchronization
with a 24-hour day appear to be
independent processes. Recent findings
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further support the notion that episodes of
sleep and wakefulness are regulated
independently, and suggest that their
developmental changes can be attributed in
part to increasing forebrain influences
(Blumberg et al., 2005). Changes in the
circadian distribution of sleep and waking
episodes are also accompanied by changes
within the sleep cycle itself. Young infants,
unlike adults, typically begin a sleep
episode in REM sleep and spend
approximately equal amounts of time in
each sleep state with episodes of REM
sleep and NREM sleep alternating with a
period of 50-60 minutes (Bes et al., 1994).
Within the first weeks of life there is a
rapid decrease in REM sleep during the
day, accompanied by a large increase in
NREM sleep at night (Coons and
Guilleminault, 1982; Fagioli and Salzarulo,
1982; Navelet et al., 1982). Time spent in
REM sleep declined inversely with
increased wakefulness during daytime but
remains fairly constant during the night
(Coons and Guilleminault, 1982; Fagioli
and Salzarulo, 1982; Navelet et al., 1982).
Finally, changes in the nightly distribution
of sleep stabilized by 3-4 months of age
with a clear predominance of NREM sleep
during the first third of the night and a
predominance of REM in the last third
(Hoppenbrouwers et al., 1982). The
establishment of this adult-like distribution
is marked by the changeover from REM
sleep onset to the pattern of NREM sleep
onset.

Sleep and brain development

A key factor in the maturation of central
sensory pathways is stimulus-induced
neuronal activity (Hubel and Wiesel, 1979).
Depriving kittens of normal visual
experience during the critical period for
visual development permanently alters the
physiologic response of the brain to visual
stimulation. During this developmental
period, synaptic connectivity in the cortex
exhibits a high level of plasticity as
synapses are formed and retracted, a
process strongly driven by sensory activity.
Brain plasticity, therefore, refers to the
ability of the brain to persistently change its
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structure and function according to genetic
information in response to environmental
changes or to comply with the interaction
between these two factors (Chen and
Tonegawa, 1997). By facilitating brain
plasticity, sleep would allow the organism
to adapt its behaviour to the circumstances,
within the constraints set by species-
specific genetic material (Maquet et al.,
2003).

The neonatal brain has brief periods of
waking in which to interact and learn in
the adult sense of the word. The gradual
reduction in REM sleep amount with
advancing age is offset by an increase in
waking amount. It is clear that the waking
state favors cognitive processes during
early life. Transient periods of alertness
can be induced or prolonged by changes in
body posture and articulated visual or
auditory stimuli during the first weeks of
life; in both circumstances waking
extension depends on a social partner.
However, the essential changes in
alertness that occur at 2 months of age are
“the infant’s ability to construct its own
context of wakefulness by initiating goal-
directed actions and inventing new
combinations among  coordinated
movements” (Wolff, 1984). The timing for
these changes coincides with major
transitions in various aspects of the
infant’s neural and sensory repertoire, and
the infant becomes better adapted to the
extra-uterine environment.

It seems paradoxical that CNS
maturational processes in the late prenatal
and neonatal periods are highly active at the
time that extrinsic sensory stimulation is
quite limited. During these periods, a large
percentage of time is spent in REM sleep,
characterized by endogenous, intense,
generalized neuronal firing in most areas of
the brain, “it is the intensity of phasic
neuronal activity during REM sleep which
is high in early development and diminishes
as rapid brain maturation is completed”
(Mirmiran and Ariagno, 2003b). Roffwarg
and coworkers were the first to propose that
the primary purpose of REM sleep was to
act as an inducer of CNS development in
the fetus and the neonate (Roffwarg et al.,
1966). Based on the early myelination of
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the sensory processing areas in the CNS,
they further proposed that REM sleep
provided endogenous stimulation to these
areas. Fetal movements that are anticipatory
in nature (breathing, sucking, swallowing,
yawns, stretches and eye movements) occur
during REM sleep.

Studies of REM sleep deprivation have
provided consistent support to the role of
REM sleep in brain maturation and
especially on  subsequent visual
development (Marks et al., 1995;
Oksenberg et al., 1996; Shaffery et al.,
1998; Shaffery et al., 1999; Hogan et al.,
2001; Shaffery et al., 2002). Kittens with
normal binocular vision subjected to REM
sleep deprivation during the second week of
a 2-week monocular deprivation (MD)
period, had further anatomically and
functionally deleterious effects on the
lateral geniculate nucleus (LGN) relative to
MD alone (Marks et al., 1995). The effect
of REM sleep deprivation in unoccluded
kittens resulted in a higher magnitude
impact than the one provoked by MD,
suggesting that deprivation of REM sleep
during CNS development amplifies the
plasticity processes generated when normal
visual afferentation to central visual areas is
interrupted (Oksenberg et al., 1996).
Further, they demonstrated that (a) the
elimination of ponto-geniculo-occipital-
wave phasic activity during REM sleep (a
method that preserves sleep and wake
proportions as well as other REM features)
similarly yielded enhanced plasticity effects
in the LGN (Shaffery et al., 1999), and (b)
REM sleep deprivation delayed the
development of synaptic plasticity in the
LGN (Hogan et al., 2001), and retarded the
maturational reduction of long-term
potentiation (LTP) in visual cortex of
immature rats (Shaffery et al., 2002), as
was the case for rats reared in darkness
(Kirkwood et al., 1995).

These results emphasize that REM sleep
is also an important part of visual
development after birth, stimulating
neurons in a fundamentally different way
from that derived from visual experience
(Marks et al., 1999). Moreover, since REM
sleep excites neural components elsewhere
in the brain —not just in the visual system—
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it also might help other areas of the brain
develop. Recent studies indicate that
mechanisms of synaptic plasticity, which
participate in brain development and
perhaps also in learning and memory
processes, remain susceptible to the effects
of REM sleep deprivation in the adolescent
rat (Shaffery et al., 2006a; Shaffery et al.,
2006Db).

Although further research is needed to
show the significance of these findings in
humans, based on our own results showing
increased retinal activity during REM sleep
relative to NREM sleep in humans during
early infancy (Pefia et al., 1999), we
suggested that greater retinal activity during
this sleep state may represent a biological
condition that favors the maturation of the
retina (and probably other structures within
the visual system). The association between
retinal activity and sleep states was
markedly attenuated at 4 months of post
term age (Pefla et al., 1999), when the
quantity of wakefulness has increased
(Curzi-Dascalova and Challamel, 2000;
Coons and Guilleminault, 1982; Fagioli and
Salzarulo, 1982; Peirano et al., 2003) and
its quality improved (Wolff, 1984),
paralleling the daytime decrease in the
amount of REM sleep (Curzi-Dascalova
and Challamel, 2000; Coons and
Guilleminault, 1982; Fagioli and Salzarulo,
1982; Fagioli et al., 1989; Peirano et al.,
2003).

The role of REM sleep on CNS
development is further illustrated by studies
indicating long-lasting behavioral changes
resulting from pharmacologic REM sleep
deprivation in early life (Mirmiran et al.,
1983; Mirmiran, 1986; Mirmiran and Van
Someran, 1993; Mirmiran, 1995). REM
sleep deprived animals have a reduced brain
size, hyperactivity, anxiety, attention and
learning difficulties, increased voluntary
alcohol consumption and reduced
masculine sexual behavior. Moreover,
while environmental enrichment has been
shown to enhance cortical maturation, this
was no longer possible in the REM sleep
deprived rats (Mirmiran et al., 1983). These
findings, however, should be interpreted
cautiously because (i) drugs have multiple
effects on the developing brain, and (ii)
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neonatal REM sleep suppression may not
be the causal factor in adult deficits in sleep
behavior (Frank and Heller, 1997). In the
earlier pharmacological manipulation for
REM sleep suppression more than a single
neurotransmitter system was modified
(Mirmiran et al., 1983; Mirmiran, 1986),
while later studies used more selective
pharmacologic agents that enabled the
suppression of REM by changing individual
neurotransmitter systems (Frank and Heller,
1997). Therefore, to what extent the
outcome of the pharmacological
suppression of REM in these studies is the
result of interference with neurotransmitter
systems rather than the loss of REM sleep
per se, or even the balance between NREM
sleep and wakefulness is still controversial
(Mirmiran and Van Someran, 1993; Frank
and Heller, 1997; Vogel et al., 1990; Vogel
et al., 2000; Feng et al., 2001; Feng and
Ma, 2002).

The presence of NREM sleep regulation
in both neonatal rats (Alfoldi et al., 1990)
and humans (Anders and Roffwarg, 1973;
Thomas et al., 1996) suggests that NREM
sleep may also be important for developing
animals. The maturation of NREM sleep
not only coincides with the formation of
thalamocortical and intracortical patterns of
innervation and periods of heightened
synaptogenesis, but it is also associated
with important processes in synaptic
remodeling (Bear and Malenka, 1994;
Cramer and Sur, 1995).

During NREM sleep, waking patterns of
neuronal activity are reactivated, suggesting
that information acquired during
wakefulness is further processed during this
sleep state. Buzsaki have suggested that
sharp wave bursts initiated in the
hippocampus during slow-wave sleep
(SWS) and associated with theta and
gamma oscillations may provide the
mechanism by which “quanta” of
information may be relayed back to the
neocortex during memory consolidation
(Buzsaki, 1996). His group further
demonstrated a correlation between
neocortical and hippocampal activity during
SWS, which suggests that these
hippocampal patterns are coupled
selectively to the neocortical cell groups
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that participated in the triggering of the
bursts (Sirota et al., 2003). It is therefore
possible that NREM sleep contributes to
synaptic remodeling by providing an
endogenous source of repetitive,
synchronized activity within specific
neuronal pathways (Kavanau, 1994). Frank
and coworkers have shown plasticity in the
developing visual cortex induced during
NREM sleep immediately following a novel
experience of MD (Frank et al., 2001).
Sleep, following MD, facilitated cortical
changes in ocular dominance. The
magnitude of plasticity was similar to that
observed after continued MD, and larger
than that seen after sleep deprivation in
darkness, suggesting that sleep
independently enables mechanisms of
cortical plasticity. Since there was a
positive correlation between the amount of
NREM sleep and enhancement of cortical
plasticity, they suggested that this sleep
state, at least during the first hours after
MD, plays an important role in the rapid
cortical synaptic remodeling elicited by
MD. This study provides support to results
showing that recent experiences are
strongly replayed (sleep reactivation)
during SWS (Kudrimoti et al., 1999; Ji and
Wilson, 2007).

CONCLUDING REMARKS

The large amounts of sleep during periods
of rapid brain growth, connectivity and
synaptic plasticity suggest a role for sleep
in brain development. The evidence
indicates that sleep states may be important
for neuronal development, although the
contribution of each state is likely to be
different. In addition, the possible
importance role of the succession of NREM
sleep and REM sleep has recently been
emphasized. Finally, since both sleep states
also appear to promote processes dependent
on synaptic remodeling, such as learning
and memory (Maquet et al., 2003; Walker
and Stickgold, 2006; Yoo et al., 2007;
Stickgold and Walker 2007), they might
influence periods of heightened synaptic
plasticity and development in the maturing
brain.
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