
45ROTH Biol Res 39, 2006, 45-57
Biol Res 39: 45-57, 2006 BR
Homeostatic and toxic mechanisms regulating
manganese uptake, retention, and elimination

JEROME A ROTH

Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA

ABSTRACT

This review attempts to summarize and clarify our basic knowledge as to the various factors that potentially
influence the risks imposed from chronic exposure to high atmospheric levels of manganese (Mn). The studies
describe the interrelationship of the different systems in the body that regulate Mn homeostasis by
characterizing specific, biological components involved in its systemic and cellular uptake and its elimination
from the body. A syndrome known as manganism occurs when individuals are exposed chronically to high
levels of Mn, consisting of reduced response speed, intellectual deficits, mood changes, and compulsive
behaviors in the initial stages of the disorder to more prominent and irreversible extrapyramidal dysfunction
resembling Parkinson’s disease upon protracted exposure. Mn intoxication is most often associated with
occupations in which abnormally high atmospheric concentrations prevail, such as in welding and mining.
There are three potentially important routes by which Mn in inspired air can gain access the body to: 1) direct
uptake into the CNS via uptake into the olfactory or trigeminal presynaptic nerve endings located in the nasal
mucosa and the subsequent retrograde axonal transport directly into the CNS; 2) transport across the
pulmonary epithelial lining and its subsequent deposition into lymph or blood; and/or 3) mucocilliary elevator
clearance from the lung and the subsequent ingestion of the metal in the gastrointestinal tract. Each of these
processes and their overall contribution to the uptake of Mn in the body is discussed in this review as well as
a description of the various mechanisms that have been proposed for the transport of Mn across the blood-
brain barrier which include both a transferrin-dependent and a transferrin-independent process that may
involve store-operated Ca channels.
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Manganese (Mn) is one of the most
prevalent metals on the earth, being the
fifth most abundant metal and twelfth most
abundant element on earth. It is an essential
component for the production of steel,
batteries, welding metals, ceramics, and
pigments. In nature, Mn exists in 11
different oxidation states ranging from -3 to
+7, although within biological systems the
+2 and +3 valences are the most dominant
species. Within recent years, the U.S. has
developed considerable interest in Mn
because of the potential health r isk
associated with increased atmospheric
levels prompted by the impending use of
the gas additive methylcyclopentadienyl
manganese tricarbonyl (MMT).

Mn is an essential trace metal required
for a variety of enzymatic and cellular
processes within the human body
(Schroeder et al., 1966; Hurley, 1981;
Grieger, 1999; Keen et al., 1999). Under
normal dietary consumption, systemic
homeostasis of Mn is maintained by both its
rate of transport across enterocytes lining
the intestinal wall and by its efficient
removal within the liver (Papavasiliouet al.,
1966). At the cellular level, Mn balance is
proficiently managed by processes
controlling cellular uptake, retention, and
excretion. These processes are in delicate
balance to maintain essential levels of Mn
that fulfill nutritional requirements of the
different organelles within the body. This
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normally efficient system of checks and
balances that regulate Mn levels in vivo,
however, appear to fail under conditions of
exposure to chronic high doses of the metal,
and thus, alterations in the elaborate
homeostatic mechanisms are no longer
adaptable to maintaining the status quo
required.

Mn intoxication, a syndrome known as
manganism, is most often associated with
prolonged occupational exposure to
abnormally high atmospheric
concentrations of the metal. Neurological
symptoms consist of reduced response
speed, irritability, intellectual deficits,
mood changes, and compulsive behaviors in
the initial stages of the disorder to more
prominent and irreversible extrapyramidal
dysfunction resembling Parkinson’s disease
upon protracted exposure (Mena et al.,
1969; Huang et al., 1993; Olanow et al.,
1996; Mergler and Baldwin, 1997; Pal et
al., 1999). Classic symptoms include mask-
like face, limb rigidity, mild tremors, gait
disturbance, cock-like walk, slurred speech,
excessive salivation and sweating and a
disturbance of balance. Although Mn
intoxication and Parkinson’s disease are
both associated with neurological changes
in the basal ganglia, the latter disorder
correlates with loss of dopaminergic
neurons within the nigro-striatal pathway,
whereas manganism is associated with the
preferential degeneration of GABAminergic
neurons within the globus pallidus, at least
in the acute exposure paradigm and in the
initial stages of the disorder (Olanow et al.,
1996; Pal et al., 1999).

The strongest evidence indicating the
sparing of neurons within the nigro-striatal
pathway in manganism comes from studies
demonstrating that fluorodopa scans are
normal in individuals with high brain Mn
levels (Olanow et al., 1996; Kim et al.,
1998). Fluorodopa is a dopamine derivative
that is taken up selectively within the
presynaptic dopaminergic nerve endings in
the striatum. The intensity of fluorodopa
scans is depressed signif icantly in
individuals with Parkinson’s disease,
indicative of the loss of dopaminergic
neurons in the nigro-striatal pathway,
whereas these scans are normal, for the

most part, in individuals with high Mn
content in blood and brain. Abnormal
fluorodopa scans, however, have been
reported recently in a patient with
manganism, suggesting that overexposure
to Mn may manifest in a more diffuse
injury within the basal ganglia than
generally acknowledged (Racette et al.,
2005). These findings are consistent with
studies demonstrating loss of neurons in the
substantia nigra in rats treated with Mn for
18 months (Gupta et al., 1980) and with
recent studies demonstrating Mn-induced
injury to the substantia nigra subsequent to
degeneration of neurons within the globus
pallidus of rats (Wright et al., 2004). Thus,
the central nervous system (CNS) injury
caused by Mn actually manifests in a
diverse set of symptoms reflecting upon the
fact that the basal ganglia is one of the most
complex areas of the brain and associated
with many positive and negative feedback
loops in an attempt to preserve normal
function. A disturbance in any one of these
components, whether it occurs in the globus
pallidus as in manganism or the nigro-
striatal neurons as in Parkinson’s disease,
may manifest with insidious neurological
deficits that are remarkably similar. In fact,
there is not always a clear distinction in the
expressed symptoms between the two
disorders since the observed neurotoxic
responses to Mn tend to vary greatly
between individuals. Differences in
response to Mn overexposure, most likely,
are due to underlying genetic variability,
which ultimately manifests in variation in
both susceptibility and in the characteristics
of the neurological lesions and symptoms
expressed. The similarities in symptoms
between the two disorders are not totally
unexpected, since exposure to high levels of
Mn is associated with elevated levels in
both the globus pallidus and the substantia
nigra, as seen in T1-weighted magnetic
resonance imaging (MRI) scans (Hauser et
al., 1994; Burkhard et al., 2003). Moreover,
there also is increasing evidence that
chronic exposure to elevated levels of Mn
correlates with increased vulnerability to
develop Parkinsonism, again implicating a
possible common genetic component
regulating these disorders (Pal et al., 1999;
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Gorell et al., 1999; Hudnell, 1999; Kim et
al., 2002; Racette et al., 2001; Racette,
2005). This is consistent with the
observation that chronic asymptomatic
exposure to miners manifests in a
detectable late-l i fe abnormalit ies of
movement (Hochberg et al.,  1996).
Similarly, markedly decreased D2 receptor
density using F18-methylspiperone positron
emission tomography (PET) scans have
been reported during the very late stages of
chronic manganese toxicity, suggesting that
manganese intoxication may trigger a
neurodegenerative disease process (Kessler,
et al., 2003).

Actually Mn overexposure can manifest
in a broad spectrum of symptoms not
necessarily confined to or associated with
the degeneration of the basal ganglia. For
example, tremor and seizures were shown
to develop in a 2-year-old girl receiving
total parenteral nutrition (Komaki et al.,
1999). In her case, blood Mn levels were
elevated, and T1-weighted MRI images
revealed areas of hyperintensity in the basal
ganglia, brainstem, and cerebellum. Other
studies suggested that Mn also may play a
role in the pathogenesis of encephalopathy
in patients with liver failure (Kreiger et al.,
1995).

ROUTES OF EXPOSURE TO MANGANESE

As noted above, Mn intoxication generally
is considered to be an occupational disorder
confined to individuals mining the metal or
those individuals working at or near
industrial settings in which Mn is used in
production or processing of other materials.
Thus, welders and those working in or
living near ferroalloy processing plants are
at particular r isk for developing
manganism. The common feature in each of
these exposure sett ings is elevated
atmospheric levels of the metal that initially
enter the body via the inspired ambient air.
The Occupational Safety and Health
Administration (OSHA) has set the
permissible occupational airborne exposure
limit (PEL) to 5 mg/mm3 based on an eight-
hour total weighted average exposure,
whereas the current threshold limit value

(TLV) in the U.S. is set at 0.2 mg/mm3.
There is strong sentiment, however, in
much of the scientific community that these
concentrations are actually set too high,
since there is the potential risk that these
concentrations are sufficient to provoke
neurological damage in particularly
susceptible individuals (Roels et al., 1987).

This raises an important question as to
how Mn in inspired air actually enters the
body and ends up in the brain. There are
three potential ly important routes by
which Mn can gain access to the body: 1)
direct uptake into the CNS via transport
into the olfactory or trigeminal presynaptic
nerve endings located in the nasal mucosa
and the subsequent retrograde axonal
delivery directly into the CNS; 2) transport
across the pulmonary epithelial lining and
its subsequent deposition into lymph or
blood; and/or 3) mucocilliary elevator
clearance from the lung and the subsequent
ingest ion of the metal  in the
gastrointest inal  t ract.  The relat ive
contribution of each of these to increasing
the body burden of Mn is difficult to
determine, although chances are that all
three components factor into the final
accumulated toxic levels observed.

Since the lung is the first organ exposed
to Mn, the events that take place within the
respiratory tract will determine, without
question, i ts biological availabil i ty.
Deposition within the pulmonary airway of
the inspired particulates containing Mn is
dependent on the size, mass, and density of
the particle. In general, ultrafine particles
that are breathed in are rapidly exhaled
without being deposited in the lung,
whereas particles ranging from 0.02 to 1 µ
are preferentially deposited in the lower
airway (Pityn et al, 1989; Yu et al, 2000).
Larger particles, (> 5 µ) in general, fail to
penetrate the smaller branches of the
respiratory tract and are mainly deposited in
the upper airway. In addition to the site of
deposition, several other factors ultimately
govern biological availability of inspired
Mn and include the composition of Mn
within the particulate matter, the time of
exposure within the lung, and how
efficiently the metal is solubilized by
macrophage within the lung.
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The first potential site for entry of
inspired Mn into the body is a relatively
unique process that allows for the direct
transport of Mn into the brain, bypassing
the blood-brain barrier. Numerous studies
confirm that Mn is readily taken up within
the nasal cavity in presynaptic nerve
endings of axonal projections leading from
the olfactory (Tjalve and Henriksson, 1999;
Vitarella et al., 2000; Fechter et al., 2002;
Dobson et al., 2003; Normandin et al.,
2004; Dorman et al., 2002) and trigeminal
nerves (Lewis et al., 2005). Mn that is taken
up into these axons undergoes retrograde
transport up the axons to the perikarya of
the respective neurons within the CNS,
where it is subsequently released into the
interstitial space. The amount of Mn that is
transported into brain via this route is
dependent on its composition in the inhaled
air with the more soluble forms being more
efficiently taken up via this process. There
also is evidence that extremely small
ultrafine particles can be taken up by the
nerve endings and subsequently delivered
to the CNS via a similar retrograde
transport process (Oberdorster et al., 2004).
The majority of the studies examining this
process have utilized the rat as a model, and
therefore, the significance of this delivery
system in humans should be viewed with
some caution since the rat may not be a
suitable paradigm for comparison in
humans. The caveat lies in the fact that the
nasal surface of the rat is almost 20 times
greater than that for the human, and thus,
the overall contribution of neuronal uptake
process in primates may l ikely be
attenuated.

The second process responsible for
transport of Mn, and that which probably
represents the major factor contributing to
its uptake, is transport across the pulmonary
epithelial lining. Mn that is taken into the
lung from inspired air is probably a
complex mixture of soluble and insoluble
Mn oxides along with aggregates of other
metals. The particulate matter deposited in
the lung is normally cleared by a process
involving engulfment and the subsequent
solubilization by pulmonary macrophage
(Antilla, 1986; Lehnert, 1992; Antonini et
al., 2004). Pulmonary macrophages

represent approximately 3-5% of all cells in
the alveolar region (Lehnert, 1992), and the
fundamental process of metal solubilization
is facilitated by the acidic environment
within the macrophage (Kreyling, 1992;
Heilmann et al., 1992; Lundborg et al.,
1992, 1995). Once solubilized, one of two
things can happen: either Mn or some other
potentially cytotoxic component within the
particulate can provoke degeneration of the
pulmonary macrophage (Antonini et al.,
1999; Wesselius et al., 1999) or a specific
transport processes can expel the
solubilized metal back into the pulmonary
fluid. Particulates that are liberated intact
can again be rephagocit ized, and the
process of resolubilization will be resumed.
The solubilized metal that is released is
presumably transported across the epithelial
l ining of the lung by a transferrin-
independent or transferrin-dependent
process that is subject to the valence state
of solubilized Mn. If Mn+3 is released, it
will bind avidly to transferrin present
within the pulmonary fluid, whereas Mn+2

will bind to other proteins such as albumin
(Wang et al., 2002; Yang et al., 2002). The
transport proteins, divalent metal
transporter 1 (DMT1) and ferroportin, are
both present within the alveolar epithelial
cells lining the pulmonary/blood partition,
presumably to aid in the transport of metals
across the alveolar cells for deposition in
the lymphatic system or directly into blood
(Wang et al., 2002; Yang et al., 2002). In
addition to this carrier-mediated system,
there is also the possibility that Mn, which
is complexed to transferrin in the
pulmonary fluid, can be directly transported
across the epithelium by the process of
transcytosis, as recently reported for the
GCSF-transferrin complex (Widera et al.,
2003a,b). In this case, the Mn-TfR
complex, located within the endosomal or
pinocytotic vesicles that are formed,
transverses directly from the apical-to-
basolateral surface of the alveolar cell
lining the pulmonary/blood interface. It also
is feasible that over an extended period of
time the accumulated Mn and other noxious
components of particulates can lead to
disruption of the epithelial cells, allowing
the direct access of the metals into the
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circulatory system (Pascal and Tessier,
2004). It is difficult to quantitate the extent
to which pulmonary uptake contributes to
the overall increase of Mn in blood and
brain seen in miners and welders, but it is
likely to represent the major route for entry
of metals into the body. It is important to
realize the fact that much of the Mn that
accumulates in the lung persists for
extended periods of time, having a biphasic
half-life in the lung of 2 and 125 days
(Kalliomaki et al., 1983), thus allowing the
biological systems that are in place to
eventually solubilize the metal within the
particulates, thus favoring its entry into the
fluids of the body.

The remaining Mn within the pulmonary
fluid, whether it represents particulate or
solubilized Mn that is bound to proteins or
present in macrophage, wil l  undergo
mucocilliary escalator transport up the
bronchioles, where it is eventually ingested
and enters the digestive system. It is
estimated, at least in the rat, that
approximately 2.4% of the alveolar
macrophage are transported to the upper
respiratory tract daily (Fritsch and Masse,
1992). The fate of Mn ingested via the
mucocilliary escalator likely will behave
within the intestinal tract in a similar
fashion as dietary Mn. The stomach, being
approximately pH 2, readily dissolves
complexed metal al lowing for i ts
subsequent uptake within the intestinal
tract. The emptying time for the stomach
varies considerably from 1 to 5 hrs and is
largely dependent on content of the
stomach. Thus, the extent to which Mn is
solubilized within the stomach is a function
of its concentration and composition as well
as the presence of other ingested foods,
which directly impacts on emptying time.
Solubilized Mn that is released from the
stomach into the duodenum is transported
across the microvilli into blood via the
transport protein, DMT1 and ferroportin
(Canonne-Hergaux et al., 1999; Trinder et
al., 2000; Knopfel et al., 2005). The
percentage for Mn entering the intestines
from mucocilliary escalator is not known
nor is it known what percentage is actually
absorbed into the body via this route.
Assuming it behaves like dietary Mn, we

anticipate uptake to only be around 5%
suggesting that a small percentage of Mn
from inspired air actually will enter the
blood stream via the gastrointestinal tract
(Davidsson et al., 1989; Johnson et al.,
1991).

Although the mechanism responsible for
the delivery of Mn from inspired air into
the body is still under investigation, the
literature is unequivocal about the fact that
the levels of Mn are elevated significantly
in blood and brains of individuals exposed
to high levels of Mn in the environmental
workplace. Regardless of the route of entry,
its prevalence is brought about by its
protracted accumulation on a daily basis to
high levels of the metal in particulate
matter. The accumulated Mn in the lung
more than likely reaches a steady state in
which increased stores are met with an
equal rate of elimination ultimately leading
to enhance uptake and the creation of
noxious levels within the body.

BLOOD – BRAIN BARRIER

Other than the direct uptake of Mn via the
olfactory or trigeminal nerves, Mn must
cross the blood-brain barrier to get into the
brain. Unfortunately, the mechanism for
transport of Mn across the endothelial cells
lining the cerebral vasculature has not been
identif ied satisfactori ly, as there is
considerable confl ict ing data in the
literature as to the actual biochemical
processes involved. Substantial evidence
has been presented in recent years
indicating that Mn is transported into these
cells via DMT1, in a transferrin-dependent
or possibly a transferrin-independent
process (Burdo et al., 2001, 2004; Zheng et
al., 2003; Wu et al., 2004; Roth and
Garrick, 2003). Arguments in favor of
DMT1 being the major transport protein
responsible for Mn uptake is based on
several observations including the fact that
DMT1 is present in the vasculature wall
along with the transferrin receptor (Burdo
et al., 2001) and ferroportin 1 (Wu et al.,
2004), the protein assumed to be involved
in export of Mn out of the vascular
endothelial cell. DMT1 expression has been
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reported to be regulated by iron status with
low iron increasing DMT1 expression
(Oates et al., 2000; Moos et al., 2002;
Erikson et al. 2004). Several studies have
reported that Mn accumulation in the CNS
is, in fact, elevated during iron deficiency,
supporting the hypothesis that DMT1 is
involved in this uptake process (Erikson et
al. 2002, 2004). In addition, the Belgrade
rat, which has a mutation in DMT1 that
essentially makes it inactive, has decreased
brain levels of Mn and other divalent metals
known to be transported by this protein
(Burdo et al., 2001). The major arguments
against DMT1 playing a role in Mn
transport into the CNS come from the
studies of Moos and Morgan (2004),
Takeda et al. (2000) and Yokel and
Crossgrove (2004). Their findings reveal
that the Mn/transferrin-complex is not the
most favorable species of the metal capable
of crossing the blood-brain barrier and that
DMT1 is not present in capil lary
endothelial cells. Yokel and Crossgrove
(2004) have further demonstrated that the
neutral pH optimum observed for Mn
transport into the CNS is inconsistent with
the expected acidic pH optimum found for
DMT1-mediated uptake. These
investigators propose that store-operated Ca
channels, as well as other mechanisms, are
responsible for the transport of Mn across
the blood-brain barrier (Crossgrove and
Yokel, 2005). The evidence against a
transferrin-DMT1-dependent process,
however, is not sufficient to exclude the
possibility that DMT1 plays a role in Mn
transport across the blood brain barrier. The
studies of both Takeda et al., (2000) and
Yokel and Crossgrove (2004) may be
explained by the fact that transferrin-
dependent transport into the endothelial cell
may not be the rate-limiting step for Mn
transfer into the CNS. Instead, we also have
to consider the possibility that transport of
Mn out of the cell may be rate limiting, and
this may occur at optimal pH near
neutrality. This suggestion recently has
been introduced for Fe transport across
enterocytes cells (Beutler, 2004). It is also
feasible that Mn can cross the blood-brain
barrier complexed to transferrin by a
process involving transcytosis (Fenart and

Cecchelli, 2003; Moroo et al., 2003).
Obviously, further studies are necessary to
adequately characterize the specif ic
mechanisms responsible for the transport of
Mn across the cerebral vasculature.

MANGANESE HOMEOSTASIS: NUTRITIONAL

REQUIREMENTS, BLOOD SPECIATION AND LIVER

As noted above, Mn is an essential trace
mineral required for normal growth and
development. Deficiency of Mn is
extremely rare in the adult, although
neurological and behavioral deficits as well
as other abnormalities have been observed
during development (Hurley, 1981; World
Health Organization, Environmental Health
Criteria, 1981; Keen et al. 1999; Grieger,
1999). The total body burden of Mn for the
standard 70 kg man is estimated to be
approximately 10 to 20 mg of which 25 to
40% is present in bone. Concentrations in
most adult tissues range between 3 and 20
µM.

Other than occupational exposures, the
major source of Mn is from our diet. Foods
that are particularly rich in Mn include
cereal, vegetables, fruits, nuts, spices and
beverages such as wine, tea and coffee
(Wenlock et al., 1979; Gillies and Birkbeck,
1983). The ubiquitous presence of Mn in a
variety of foods accounts for the fact that
Mn deficiency in the adult is practically
nonexistent. The average daily intake is
estimated to be between 3 and 9 mg/day
which is greater than the recommended
daily allowance of 2.3 mg/day set by the
FDA in the U.S. Overdoses from dietary
intake of Mn are unlikely, as approximately
5% of the Mn ingested actually ends up in
the body via the intestines (Davidsson et
al., 1989; Johnson et al., 1991).

The ionic species of Mn that enters the
blood stream from the intestines is not
known but will have a major impact on the
fate of Mn retained in the body. As noted
above, the liver plays a vital role in
regulating Mn levels in vivo principally
because it is the major route for i ts
elimination. Hepatic elimination of Mn,
however, is greatly dependent on the Mn-
protein complex present in serum. Mn+3,
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the predominant form in blood, is bound
tightly to transferrin (Gibbons et al., 1976)
and, under normal conditions, is not in
direct competition with bound Fe+3, since
only 30% of the available binding sites on
transferrin are typically bound by iron. This
raises an interesting question as to the fate
of Mn in blood in conditions such as sickle
cell anemia or hemochromatosis where
transferrin may be totally saturated with
iron. Mn+3 has a high affinity for transferrin
(Gibbons et al., 1976), but its ability to
compete with iron under these conditions
has not been examined. Because Mn+3

forms a stable complex with transferrin,
hepatic removal is relatively slow and
comparable to that for Tf-Fe+3 complex.
Mn+2 in blood is preferentially bound to a2-
macroglobulin, although because of the
significantly greater abundance of albumin
in serum, a large percentage also is
presumed to be bound to this latter protein,
as well. The ligand interaction between
Mn+2 and serum proteins is rather weak
accounting for the rapid hepatic elimination
from blood. Unlike Fe+2, oxidation of Mn+2

to Mn+3 does not occur spontaneously in
vivo and probably requires the copper-
containing enzyme, ceruloplasmin, or the
equivalent to support this conversion.
Importantly, Mn+2 is essentially the only
oxidation state of Mn that is seen
intracellularly.

Thus, by regulating the body burden of
Mn, the liver can directly influence brain
levels upon chronic exposure to abnormally
high levels of the metal (Papavasiliou et al.,
1966). Since welders and miners experience
substantially elevated Mn blood and brain
levels, the assumption must be made that,
under these condit ions, the l iver is
incapable of keeping up with the demands
to maintain normal homeostatic
concentrations. This may partially be
explained by the fact that much of the Mn
from inspired air that is transported across
the pulmonary epithelium is absorbed into
tissues prior to it ever being encountered by
the liver.

Mn toxicity is not only restricted to
clusters of occupational exposed workers
but also is seen in individuals with cirrhosis
of the liver and related hepatic dysfunction

(Krieger et al., 1995; Hauser et al., 1994,
1996; Spahr et al., 1996; Burkhard et al.,
2003). These individuals express both
elevated blood and brain levels of Mn and
display many of the behavioral and
neurological symptoms associated with this
disorder. Based on T1-weighted MRI scans,
Mn levels were elevated in both the globus
pallidus and substantial nigra (Hauser et al.,
1994). The observation of elevated Mn in
patients with liver failure is not unexpected,
given the fact that hepatic elimination of
Mn is the normal route for its removal from
the body and anything that disrupts normal
hepatic function has the potential to
provoke elevated systemic levels of the
metal. A similar situation occurs for
individuals receiving parenteral nutrition,
since they also display classical symptoms
of Mn overexposure (Reimund et al., 2000;
Fok et al., 2001; Suzuki et al., 2003; Iinuma
et al., 2003). Thus, when evaluating the
contribution of the various factors that
potentially influence Mn toxicity, we must
not only include the different routes of
delivery but also the ability of the liver to
remove the various species of Mn that exist
in blood.

TRANSPORT OF MN

Within the past decade, various transport
mechanisms that are responsible for cellular
uptake of Mn+2 and other divalent transition
metals have been identified. These studies
reveal that Mn is transported into cells via a
mechanism similar to that for iron, as
evidenced by the fact that both Mn and iron,
as well as several other divalent transition
metals, compete for uptake into a number of
different cell systems (Gunshin et al., 1997;
Roth et al., 2002, 2003). As illustrated in
figure 1, there are two distinct but related
mechanisms responsible for the transport of
Mn and ferrous ion: a transferrin-dependent
and a transferrin independent pathway. As
illustrated, the transferrin dependent
pathway proposes that the transferrin-Mn+3

complex initially binds to the transferrin
receptor (TfR) on the cell surface similar to
that which occurs for iron. After attachment
of Tf to the TfR, endosomal vesicles that are
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formed at the cell surface are internalized
and subsequently acidified by a hydrogen
ion ATPase pump causing release of the
metal from the Tf/TfR complex. Mn+3

released into the vesicles is presumably
reduced to Mn+2 although a specific
reductase responsible for this reaction has
not been identified. Mn+2 is subsequently
transported across the endosomal membrane
via the transport protein, divalent metal
transporter 1 (DMT1; also named Nramp2,
DCT1 or SLC11A2) (Gunshin et al., 1997;
Fleming et al., 1997; Fleming et al., 1998).
Since Mn+2 forms a relatively weak complex
with either a2-macroglobulin or serum
albumin, there is also the possibility that
transport of Mn+2 released from this complex
can be taken up directly at the cell surface by
DMT1, independent of transferrin. Which of
the two uptake mechanisms functionally
predominates is likely to be cell specific and
dependent on the presence of TfR on the cell
surface. In addition to cellular uptake by
DMT1, there is also evidence in the
literature, as illustrated in figure1, for
transport of Mn via the voltage regulated and
store-operated Ca+2 channels, as well as the
ionotropic glutamate receptor Ca+2 channels
(Lucaciu et al., 1997; Kannurpatti et al.,
2000; Riccio et al., 2002). In each of these
processes, Mn transport requires an external
signal to initiate its entry into the cell such
as membrane depolarization, agonist
mediated depletion of Ca+2 stores, or
glutamate attachment to its receptor,
respectively. The extent to which these
processes contribute to the overall cellular
uptake of Mn is not known, however as
noted above, recent evidence suggests that
the store-operated Ca+2 channels may play
an important role in the transport of Mn
across the blood-brain barrier (Crossgrove
and Yokel, 2005).

CYTOTOXIC MECHANISMS OF MANGANESE

Considerable progress has been made within
the past decade regarding the mechanism by
which Mn induces cell death. Both apoptosis
and necrosis have been implicated in
provoking Mn-induced cell toxicity with
differences in the mechanisms reflecting

Figure 1. Transport mechanisms responsible for
the uptake of manganese. Tf – transferrin; TfR
transferrin receptor; DMT1 – divalent metal
transporter 1; VR – voltage gated Ca+2 channel;
SOC – store operated Ca+2 channel; Glu Rec –
glutamic acid ionotropic receptor.

variation in the signaling processes and
disposition of Mn in different cells. There is
strong evidence that apoptosis contributes to
Mn toxicity, since many of the classical
markers and signaling pathways associated
with programmed cell death are activated in
cells treated with Mn. These include:
increased TUNEL staining; internucleosomal
DNA cleavage; activation of the JNK and
p38 (stress-activated protein kinase);
activation of caspase activity; cytochrome c
release; and caspase-dependent cleavage of
PARP (Desole et al., 1996, 1997; Hirata et
al., 1998; Schrantz et al., 1999; Roth et al.,
2000; Chun et al., 2001; Latchoumycandane
et al., 2005). In addition, Bcl-2
overexpression is capable of preventing Mn-
stimulated toxicity (Schrantz et al., 1999;
Kitazawa et al., 2005).



53ROTH Biol Res 39, 2006, 45-57

In contrast, other studies have suggested
that Mn is, in fact, a potent antioxidant
capable of suppressing oxidative-initiated
events within the cell (Sziraki et al., 1995,
1998, 1999; Talavera et al., 1999; Roth et
al., 2000). Studies in our laboratory have
shown that Mn toxicity is probably not
solely due to apoptosis, since inhibitors of
several classic apoptotic markers fail to
prevent cytotoxicity (Roth et al., 2000). For
example, selective inhibitors of both the
caspase family of proteases and the stress-
activated protein kinase, p38, do not
prevent Mn toxicity in PC12 cells, even
though these apoptotic markers are
stimulated upon treatment with Mn. Thus,
other cytotoxic events must be responsible
for the observed cell death initiated by Mn.
Several studies have reported that Mn is
capable of inducing mitochondrial
membrane transients leading to disruption
of mitochondrial function (Gavin et al.,
1992, 1999). These investigators have
proposed that Mn promotes calcium
accumulation within the mitochondria by
inhibiting both the sodium-dependent and
sodium-independent exporter, resulting in
the activation of the permeability transition
pore (PTP) and loss of mitochondrial
function. In addition, Mn also can interfere
with oxidative phosphorylation by
inhibiting both mitochondrial F1-ATPase
(Gavin et al., 1992, 1999) and complex I
(Galvani et al., 1995), causing a depletion
of ATP (Brouillet et al., 1993; Roth et al.,
2000; Chen and Liao, 2002; Zhang et al.,
2005). Thus, either apoptosis or necrosis
may lead to the ultimate demise of the cell
integrity with the predominant cytotoxic
pathway most likely being cell specific.

Because of the similarities between the
neurological symptoms associated with
manganism and Parkinson’s disease, most
research efforts in the past have focused on
model cell systems in which dopamine is
the principal neurotransmitter. Although
considerable information has been profited
from these studies, it is reasonable to
assume that signaling events controlling Mn
cytotoxicity may be considerably different
than those provoking cell death within the
neurons of the globus pallidus, since these
neurons do not contain dopamine (Olanow

et al. 1996; Mergler and Baldwin, 1997).
Pallidal neurons are GABAminergic and
receive glutaminergic input from the
subthalamic nuclei. Because of this, there
have been a number of studies that have
attempted to examine the actions of the
excitatory neurotransmitter, glutamate, on
Mn-induced toxicity (Plenz et al., 1998;
Rouse et al., 2000). Results of these studies
implicate glutamate as a potential
contributing factor to the toxicity of Mn
within pallidal neurons and suggest that
toxicity is not caused by any one factor but,
instead, result from an amalgamation of
several events occurring simultaneously,
the center of which includes accumulation
of glutamate in this area of the brain. These
factors include: 1) excess accumulation of
Mn in the globus pallidus; 2) Mn inhibition
of glutamate transport leading to increase
synaptic levels of glutamate (Hazell and
Norenberg, 1997; Erikson and Aschner,
2002); and 3) increased uptake of Mn in
pallidal neurons by activated glutamate
channels (Kannurpatti et al., 2000). This
hypothesis is supported by the studies of
Brouil let and coworkers (1993)
demonstrating that the noncompetitive
NMDA receptor antagonist, MK-801, is
capable of blocking lesions produced by
intrastriatal injections of Mn.

CONCLUSIONS

The studies above attempt to summarize
and clarify our basic knowledge as to the
various factors that potentially influence the
risks imposed from chronic exposure to
high atmospheric levels of Mn. These
studies endeavored to define the
interrelationship of the different systems in
the body that regulate Mn homeostasis by
characterizing specif ic biological
components involved in its systemic and
cellular uptake, transport in blood and
delivery to organelles, retention in the brain
and other target organs, and its elimination
from the body. Results from these studies
have begun to define environmental and
dietary conditions, such as iron deficiency,
that alter the biological parameters that
maintain normal iron balance and to explain
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how these changes may result in adverse
condit ions that actually support and
accelerate Mn toxicity. It is reasonable to
hypothesize that genetic and environmental
factors regulating susceptibility to develop
Mn toxicity also may influence
vulnerabil i ty to acquire Parkinson’s
disease, since physiological processes
control l ing the two disorders are
mult i faceted, contingent on the
interdependence of many overlapping
biochemical and molecular systems within
the body. To ful ly understand these
relationships, future studies will need to
focus on genetic differences in the
population that regulate vulnerability to
develop Mn toxicity and that control the
expressed symptoms in this disorder.
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