Proyecciones Journal of Mathematics Vol. 32, N^o 3, pp. 235-244, September 2013. Universidad Católica del Norte Antofagasta - Chile

Some results on global dominating sets

S. K. Vaidya Saurashtra University, INDIA and R. M. Pandit A. V. Parekh Technical Institute, INDIA Received : June 2012. Accepted : May 2013

Abstract

A dominating set is called a global dominating set if it is a dominating set for a graph G and its complement \overline{G} . We investigate some general results for global dominating sets corresponding to the graphs P_n , C_n and W_n .

Keywords : Duplication of a vertex, dominating set, global dominating set.

AMS subject classification number : 05C69; 05C75.

1. Introduction

We begin with finite connected and undirected graph G = (V, E) without loops and multiple edges. The set $S \subseteq V$ of vertices in a graph G is called a dominating set if every vertex $v \in V$ is either an element of S or is adjacent to an element of S. A dominating set S is a minimal dominating set(MDS) if no proper subset $S' \subset S$ is a dominating set.

The minimum cardinality of a dominating set of G is called a domination number of G which is denoted by $\gamma(G)$ and the corresponding dominating set is called a γ -set of G.

The open neighborhood N(v) of $v \in V$ is the set of vertices adjacent to v and the closed neighborhood of v is the set $N[v] = N(v) \cup \{v\}$.

The complement \overline{G} of G is the graph with vertex set V and two vertices are adjacent in \overline{G} if and only if they are not adjacent in G.

A subset $D \subseteq V$ is called a global dominating set in G if D is a dominating set of both G and \overline{G} . The global domination number $\gamma_g(G)$ is the minimum cardinality of a minimal global dominating set in G. The concept of global domination in graph was introduced by Sampathkumar [4].

The wheel graph W_n is defined to be the join $C_{n-1} + K_1$. The vertex corresponding to K_1 is known as apex vertex and the vertices corresponding to cycle are known as rim vertices.

Duplication of a vertex v of a graph G produces a new graph G' by adding a vertex v' with N(v') = N(v). In other words a vertex v' is said to be duplication of v if all the vertices which are adjacent to v are now adjacent to v' also.

If the vertices of a graph G are duplicated altogether then the resultant graph is known as splitting graph of G which is denoted as S'(G).

For all standard terminology and notation in graph theory we refer to West [6] while for terminology related to domination in graphs we rely upon Haynes et al. [2]. The various bounds of global domination number in terms of order, degrees and domination number of graph is given by Brigham and Duttom [1]. The global domination number for one-point union of finite number of copies of cycles C_n is reported in Vaidya and Pandit [5] while Kulli and Janakiram [3] have introduced the concept of total global dominating sets.

In the present work we investigate some general results which relate the concept of global domination and duplication of a vertex.

2. Some General Results

Lemma 2.1. For cycle C_n , let C'_n be the graph obtained by duplication of a vertex x by x' where $x \in V(C_n)$. If S is a dominating set of C_n containing either of the vertices which are adjacent to x, then S is also a dominating set of C'_n .

Proof: If $x \in V(C_n)$ is duplicated by a vertex x' then $V(C'_n) = V(C_n) \cup \{x'\}$. Now if S is a dominating set of C_n and $a \in S(a \neq x)$ dominates x then a is adjacent to x' in C'_n . Thus, a dominates x' in C'_n . That is, S is a dominating set of C'_n .

Theorem 2.2. Let C'_n be the graph obtained by duplication of a vertex x of C_n by x'. If S is a global dominating set of C_n containing either of the vertices which are adjacent to x then S is also a global dominating set of C'_n .

Proof: If S is a global dominating set of C_n then S is a dominating set of C_n as well as $\overline{C_n}$. As S is a dominating set of C_n then according to Lemma 2.1, S is also a dominating set of C'_n .

To prove the required result it remains to show that S is a dominating set of $\overline{C'_n}$. For that if $a \in S$ is adjacent to x in C'_n then it is not adjacent to x in $\overline{C'_n}$. Now, S being a dominating set of $\overline{C_n} \exists$ a vertex $b \in S$, $a \neq b$ such that b is not adjacent to x in C_n but dominates x in $\overline{C_n}$. As $a \in S$ is adjacent to both x and x' in C'_n implies that it is not adjacent to both xand x' in $\overline{C'_n}$. Moreover, $V(\overline{C'_n}) = V(\overline{C_n}) \cup \{x'\}$ and S is a dominating set of $\overline{C_n}$ then above referred vertex $b \in S$ must dominate x' in $\overline{C'_n}$. Hence, Sis also a dominating set of $\overline{C'_n}$.

Thus, S is a dominating set of both C'_n as well as $\overline{C'_n}$. Therefore, S is a global dominating set of C'_n .

Theorem 2.3. If S is a γ -set of P_n $(n \ge 6)$ then S is a global dominating set of P_n . Also $\gamma(P_n) = \gamma_g(P_n)$.

Proof: For P_n , $n \ge 6$, consider a γ -set, $S = \{v_2, v_5, \dots, v_{3j+2}\}$ if $n \equiv 0 \text{ or } 2 \pmod{3}$ and $S = \{v_2, v_5, \dots, v_{3j+2}\} \cup \{v_{n-1}\}$ if $n \equiv 1 \pmod{3}$ where $0 \le j \le \lfloor \frac{n-2}{3} \rfloor$.

In P_n , there are two vertices of degree 1 and (n-2) internal vertices are of degree 2. Now, let $v_i \in S$ and $v_j \in S$ be any two vertices such that $v_j \notin N[v_i]$. Then we claim that these two vertices are sufficient to dominate remaining vertices of $\overline{P_n}$. Since the vertices which are not in $N(v_i)$ must belong to $N(v_j)$, any $S \subset V$ containing v_i and v_j will be a dominating set of $\overline{P_n}$. Thus, S is a dominating set of both P_n as well as $\overline{P_n}$. Hence, S is a global dominating set of P_n .

Since, S being a γ -set, it is of minimum cardinality. Therefore, $\gamma(P_n) = \gamma_q(P_n)$ for $n \ge 6$.

Remark 2.4.

(i) $S = \{v_2\}$ is a γ -set of both P_2 and P_3 which is not a dominating set of $\overline{P_2}$ as well as of $\overline{P_3}$ and hence it is not a global dominating set of P_2 as well as of P_3 . Also $\gamma(P_n) \neq \gamma_g(P_n)$ for n = 2, 3 as $\gamma(P_2) = \gamma(P_3) = 1 \neq 2 = \gamma_g(P_2) = \gamma_g(P_3)$.

(*ii*) $S = \{v_1, v_4\}$ is a γ -set as well as a global dominating set of P_4 while $S = \{v_1, v_3\}$ and $S = \{v_2, v_4\}$ are such γ -sets of P_4 which are not dominating sets of $\overline{P_4}$ and hence they are not global dominating sets of P_4 . But $\gamma(P_4) = \gamma_g(P_4) = 2$.

(*iii*) $S = \{v_2, v_5\}$ is a γ -set as well as a global dominating set of P_5 while $S = \{v_2, v_4\}$ is such a γ -set of P_5 which is not a dominating set of $\overline{P_5}$ and hence it is not a global dominating set of P_5 . But $\gamma(P_5) = \gamma_q(P_5) = 2$.

Therefore, γ -set of P_n $(n \leq 5)$ may or may not be a global dominating set of P_n .

Theorem 2.5. S is a global dominating set of P_n if and only if it is a global dominating set of P'_n .

Proof: For P_n $(n \ge 4)$, consider the global dominating set $S = \{v_2, v_5, v_8, \ldots, v_{3j+2}\}$ if $n \equiv 0 \text{ or } 2 \pmod{3}$ and $S = \{v_2, v_5, v_8, \ldots, v_{3j+2}\} \cup \{v_{n-1}\}$ if $n \equiv 1 \pmod{3}$ where $0 \le j \le \lfloor \frac{n-2}{3} \rfloor$.

There are three possibilities when duplication of a vertex of P_n takes place.

(i) Duplication of a pendant vertex.

(ii) Duplication of an internal vertex not belonging to S

(iii) Duplication of an internal vertex belonging to S.

<u>Case-I</u> Either a pendant vertex or an internal vertex of P_n not belonging to S is duplicated.

Here, a duplicated vertex v' is adjacent to a vertex in above referred S and $V(P'_n) = V(P_n) \cup \{v'\}.$

Hence, S is a global dominating set of P'_n .

<u>Case-II</u> An internal vertex of P_n belonging to S is duplicated.

For P_n $(n \ge 4)$, consider the global dominating set $S = \{v_1, v_4, v_7, \ldots, v_{3j+1}\}$ if $n \equiv 1 \text{ or } 2 \pmod{3}$ and $S = \{v_1, v_4, v_7, \ldots, v_{3j+1}\} \cup \{v_n\}$ if $n \equiv 0 \pmod{3}$ where $0 \le j \le \lfloor \frac{n-1}{3} \rfloor$.

Here, the duplicated vertex v' is adjacent to a vertex in above referred S and $V(P'_n) = V(P_n) \cup \{v'\}$. Hence, S is a global dominating set of P'_n .

Conversely, suppose that S is a global dominating set of P'_n . Therefore, S is a dominating set of both P'_n and $\overline{P'_n}$. But $V(P'_n) = V(P_n) \cup \{v'\}$ and $V(\overline{P'_n}) = V(\overline{P_n}) \cup \{v'\}$. Moreover, S being a global dominating set of $P'_n \exists$ a vertex in S which will dominate both the vertices v and v' in P'_n as well as in $\overline{P'_n}$. Hence, S is a dominating set of both P_n and $\overline{P_n}$. Therefore, S is a global dominating set of P_n .

Hence, we have proved that S is a global dominating set of P_n if and only if it is a global dominating set of P'_n .

Theorem 2.6. $\gamma_q(P'_n) = \gamma_q(P_n)$ for n = 2, 3.

Proof: For path P_2 , $V(P_2) = \{v_1, v_2\}$. Then $S = \{v_1, v_2\}$ is a global dominating set of P_2 which is also an MDS with minimum cardinality. Hence, $\gamma_q(P_2) = 2$.

Now on duplicating either of the pendant vertices v of P_2 by a vertex v', $S = \{v_1, v_2\}$ is a global dominating set of P'_2 which is also an MDS with minimum cardinality. Hence, $\gamma_g(P'_2) = 2$. Thus, $\gamma_q(P'_2) = \gamma_q(P_2)$.

Next, consider the path P_3 , $V(P_3) = \{v_1, v_2, v_3\}$. Then $S = \{v_1, v_2\}$ is a global dominating set of P_3 which is also an MDS with minimum cardinality. Hence, $\gamma_q(P_3) = 2$.

Here, duplication of a vertex can take place in either of the following manner:

Case-I

If v' is the duplicated vertex of either of the pendant vertices of P_3 then $S = \{v_1, v_2\}$ is a global dominating set of P'_3 which is also an MDS with minimum cardinality. Hence, $\gamma_q(P'_3) = 2$.

Case-II

If v' is the duplicated vertex of an internal vertex v of P_3 then $S = \{v_1, v_2\}$ is a global dominating set of P'_3 which is also an MDS with minimum cardinality. Hence, $\gamma_g(P'_3) = 2$.

Thus, $\gamma_g(P'_3) = \gamma_g(P_3)$. Hence, we have proved that $\gamma_g(P'_n) = \gamma_g(P_n)$ for n = 2, 3.

Theorem 2.7. For $n \ge 4$,

$$\gamma_q(P'_n) = \gamma_q(P_n)$$
 for $n \equiv 1 \text{ or } 2 \pmod{3}$

and

$$\gamma_g(P_n') = \gamma_g(P_n); \quad if \ v_i \notin S \\ = \gamma_g(P_n) + 1; \quad if \ v_i \in S \ \ \} for \ n \equiv 0 \pmod{3}$$

where v_i is the vertex of P_n which is to be duplicated.

Proof: For P_n $(n \ge 4)$, consider the global dominating set $S = \{v_2, v_5, v_8, \ldots, v_{3j+2}\}$ if $n \equiv 0 \text{ or } 2 \pmod{3}$ and $S = \{v_2, v_5, v_8, \ldots, v_{3j+2}\} \cup \{v_{n-1}\}$ if $n \equiv 1 \pmod{3}$ where $0 \le j \le \lfloor \frac{n-2}{3} \rfloor$.

Consider $S = \{v_2, v_5, v_8, \ldots, v_{3j+2}\}$ if $n \equiv 0 \pmod{3}$. Then, for $v_i \in S$, $S - \{v_i\}$ will not be a dominating set as the vertices v_{i-1} and v_{i+1} will not be dominated by any of the vertices of $S - \{v_i\}$. Hence, S is an MDS of P_n .

For $n \equiv 0 \pmod{3}$, $|S| = \frac{n}{3}$. Suppose, if possible, $S_1 \neq S$ is an MDS with $|S_1| = \frac{n}{3} - 1 < |S|$. Any path P_n has total n vertices and any vertex v of P_n dominates either 1 or 2 vertices of P_n other than vertex v. Therefore, $(\frac{n}{3} - 1)$ vertices of S_1 cannot dominate more than $|S_1| + 2|S_1|$ vertices. But $|S_1| + 2|S_1| = (\frac{n}{3} - 1) + 2(\frac{n}{3} - 1) = \frac{n}{3} - 1 + \frac{2n}{3} - 2 = \frac{3n}{3} - 3 = n - 3 < n = |V(P_n|$. Hence, S_1 is not a dominating set of P_n , which is a contradiction.

Therefore, S is an MDS with minimum cardinality.

<u>Case-I</u> $n \equiv 1 \pmod{3}$.

<u>Subcase-1</u> When a pendant vertex or an internal vertex of P_n not belonging to S is duplicated.

Here, $S = \{v_2, v_5, v_8, \dots, v_{3j+2}\} \cup \{v_{n-1}\}$ is a global dominating set of P_n as well as of P'_n as we have proved in Theorem 2.5 and it is an MDS of minimum cardinality as proved above. Therefore, $\gamma_g(P'_n) = \gamma_g(P_n)$ for $n \equiv 1 \pmod{3}$.

<u>Subcase-2</u> An internal vertex of P_n belonging to S is duplicated.

Here, $S = \{v_1, v_4, v_7, \ldots, v_{3j+1}\}$ is a global dominating set of both P'_n and P_n as we have proved in Theorem 2.5 and it is an MDS of minimum cardinality as proved above. Therefore, $\gamma_g(P'_n) = \gamma_g(P_n)$ for $n \equiv 1 \pmod{3}$. Further, we have the following cases :

<u>Case-2</u> $n \equiv 2 \pmod{3}$.

<u>Subcase-1</u> When a pendant vertex or an internal vertex of P_n not belonging to S is duplicated.

 $S = \{v_2, v_5, v_8, \dots, v_{3j+2}\}$ if $n \equiv 2 \pmod{3}$.

<u>Subcase-2</u> An internal vertex of P_n belonging to S is duplicated. $S = \{v_1, v_4, v_7, \dots, v_{3j+1}\}$ if $n \equiv 2 \pmod{3}$.

<u>Case-3</u> $n \equiv 0 \pmod{3}$.

<u>Subcase-1</u> When a pendant vertex or an internal vertex of P_n not belonging to S is duplicated.

 $S = \{v_2, v_5, v_8, \dots, v_{3j+2}\}$ if $n \equiv 0 \pmod{3}$.

We treat the Subcase-2 of Case-3 separately.

<u>Subcase-2</u> An internal vertex of P_n belonging to S is duplicated.

Here, $S = \{v_1, v_4, v_7, ..., v_{3j+1}\} \cup \{v_n\}$ and $S = \{v_2, v_5, v_8, ..., v_{3j+2}\}$ are global dominating sets of P'_n and P_n respectively.

Now, the respective sets S are global dominating sets of P_n as well as of P'_n as we have proved in Theorem 2.5 and following the analogous argument as above, it can be shown that the respective sets S are MDS with minimum cardinality.

Thus, for $n \ge 4$,

$$\gamma_q(P'_n) = \gamma_q(P_n)$$
 for $n \equiv 1 \text{ or } 2 \pmod{3}$

and

$$\begin{array}{ll} \gamma_g(P_n') &= \gamma_g(P_n); & if \, v_i \notin S \\ &= \gamma_g(P_n) + 1; & if \, v_i \in S \end{array} \right\} for \, n \equiv 0 \pmod{3}$$

where v_i is the vertex of P_n which is to be duplicated.

Theorem 2.8. S is a global dominating set of W_n $(n \ge 4)$ if and only if it is a global dominating set of $S'(W_n)$.

Proof: Consider the wheel $W_n = C_{n-1} + K_1$ with $v_1, v_2, v_3, \ldots, v_n$ as its rim vertices and c_1 as its apex vertex.

Let $v_1', v_2', v_3', \ldots, v_n'$ be the duplicated vertices corresponding to $v_1, v_2, v_3, \ldots, v_n$ while c_1' be the duplication of c_1 .

We observe that $S = \{v_1, v_2, v_3, c_1\}$ is the global dominating set of W_4 as well as $S'(W_4)$.

For $n \ge 5$, consider a global dominating set of W_n , $S = \{v_1, v_2, c_1\}$. Now, $V(S'(W_n)) = V(W_n) \cup V(W_n^d)$ where $V(W_n^d) = \{v_1', v_2', v_3', \dots, v_n', c_1'\}$.

From the definition of splitting graph, any vertex in S which dominates $v \in V(S'(W_n))$ will also dominate the duplicated vertex v' of v in $S'(W_n)$. Hence, S being a dominating set of W_n , it is also a dominating set of $S'(W_n)$.

Now, it remains to show that S is a dominating set of $\overline{S'(W_n)}$.

From the definition of duplication of a vertex, it is obvious that

(i) a vertex v and its duplicated vertex v' can never be adjacent in $S'(W_n)$. Therefore, they are adjacent in $\overline{S'(W_n)}$.

(*ii*) any vertex in S which dominates v will also dominate v' in $\overline{S'(W_n)}$ and S is a dominating set of W_n implies that S is a dominating set of $\overline{S'(W_n)}$.

Thus, S is a dominating set of both $S'(W_n)$ and $\overline{S'(W_n)}$. Therefore, S is a global dominating set of $S'(W_n)$.

Conversely, suppose that S is a global dominating set of $S'(W_n)$. Then, S is a dominating set of both $S'(W_n)$ and $\overline{S'(W_n)}$. But $V(S'(W_n)) = V(W_n) \cup V(W_n^d)$ and $V(\overline{S'(W_n)}) = V(\overline{W_n}) \cup V(W_n^d)$

which implies that S is a dominating set of both W_n and $\overline{W_n}$. Hence, S is a global dominating set of W_n .

Thus, we have proved that S is a global dominating set of W_n if and only if it is a global dominating set of $S'(W_n)$.

3. Concluding Remarks

Some structural properties are derived corresponding to the concept of global dominating sets. Analogous results can be obtained for other graph families and in the context of various types of dominating sets in graphs.

Acknowledgement

The authors are highly thankful to the anonymous referee for careful reading of the first draft of this paper.

References

- R. C. Brigham and R. D. Dutton, Factor domination in graphs, Discrete Mathematics, 86, pp. 127-136, (1990).
- [2] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, (1998).
- [3] V. R. Kulli and B. Janakiram, The total global domination number of a graph, Indian Journal of Pure and Applied Mathematics, 27, pp. 537-542, (1996).
- [4] E. Sampathkumar, The global domination number of a graph, J. Math. Phys.Sci., 23, pp. 377-385, (1989).
- [5] S. K. Vaidya and R. M. Pandit, Some new results on global dominating sets, ISRN Discrete Mathematics, vol. 2012, Article ID 852129, 6 pages, 2012. doi: 10.5402/2012/852129.
- [6] D. B. West, Introduction to Graph Theory, Prentice-Hall of India, New Delhi, (2003).

S. K. Vaidya Department of Mathematics Saurashtra University Rajkot - 360005 Gujarat INDIA e-mail : samirkvaidya@yahoo.co.in

and

R. M. Pandit

Department of Mathematics A. V. Parekh Technical Institute, Rajkot - 360002 Gujarat INDIA e-mail : pandit.rajesh@ymail.com