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Abstract. In 2009, the first author introduced a new class of zeta func-

tions, called ‘distance zeta functions’, associated with arbitrary compact

fractal subsets of Euclidean spaces of arbitrary dimension. It represents a

natural, but nontrivial extension of the existing theory of ‘geometric zeta

functions’ of bounded fractal strings. In this work, we introduce the class of

‘relative fractal drums’ (or RFDs), which contains the classes of bounded

fractal strings and of compact fractal subsets of Euclidean spaces as spe-

cial cases. Furthermore, the associated (relative) distance zeta functions of

RFDs, extend the aforementioned classes of fractal zeta functions. The ab-

scissa of (absolute) convergence of any relative fractal drum is equal to the

relative box dimension of the RFD. We pay particular attention to the ques-

tion of constructing meromorphic extensions of the distance zeta functions

of RFDs, as well as to the construction of transcendentally ∞-quasiperiodic

RFDs. We also describe a class of RFDs, called maximal hyperfractals, such

that the critical line of convergence consists solely of nonremovable singu-

larities of the associated relative distance zeta functions. Finally, we also

describe a class of Minkowski measurable RFDs which possess an infinite

sequence of complex dimensions of arbitrary multiplicity m ≥ 1, and even

an infinite sequence of essential singularities along the critical line.
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Preface

The purpose of this work is to develop the theory of complex dimensions for arbitrary compact
subsets A of Euclidean spaces RN , of arbitrary dimension N ≥ 1. To this end, in 2009, the first
author has introduced a new class of zeta functions, called distance zeta functions ζA of fractal
sets A, the poles of which (after ζA has been suitably meromorphically extended) are defined as
the complex dimensions of A. This notion establishes an important bridge between the geometry
of fractal sets, Number Theory and Complex Analysis.

The development of the higher-dimensional theory of complex dimensions of fractal sets
has led us to the discovery of the tube zeta functions ζ̃A of fractal sets, which are not only
a valuable technical tool, but a natural companion of the distance zeta functions ζA. These
two fractal zeta functions are connected by a simple functional equation, which shows that, in
this generality, the theory of complex dimensions can be developed indifferently from the point
of view of the distance or else of the tube zeta functions. Both the distance and tube zeta
functions enable us to extend in a nontrivial way the existing theory of geometric zeta functions
ζL of bounded fractal strings L. An even broader perspective is achieved by introducing the
so-called relative fractal drums (RFDs) (A,Ω) in Euclidean spaces, which extend the notions of
bounded fractal sets in RN , as well as of bounded fractal strings. The associated relative fractal

zeta functions ζA,Ω enable us to consider the theory of fractal zeta functions from a unified
perspective. An unexpected novelty is that a relative fractal drum (A,Ω) can have a (naturally
defined) Minkowski (or box) dimension dimB(A,Ω) of negative value (and even of value −∞),
or more generally, that its principal complex dimensions (i.e., the poles of ζA,Ω on the critical
line {Re s = D}, where D = dimB(A,Ω) is the upper Minkowski dimension of (A,Ω)) can have
negative real parts.

The residue of a fractal zeta function, computed at the value D of the abscissa of (absolute)
convergence of the zeta function (i.e., at the Minkowski dimension), is very closely related to
the Minkowski content of the corresponding bounded set or RFD. Furthermore, we also study
the quasiperiodicity of relative fractal drums, by using a classical result from (transcendental)
analytic number theory, due to Alan Baker. Roughly, for any given positive integer n, it is possible
to construct a fractal set with n algebraically independent quasiperiods; as a result, we obtain
a transcendentally n-quasiperiodic set. Moreover, we can even construct transcendentally ∞-
quasiperiodic sets, i.e., fractal sets with infinitely many algebraically independent quasiperiods.

Towards the end of this article, special emphasis is given to the construction of fractal sets
A which have principal complex dimensions (i.e., the poles of the distance zeta function ζA
with real part equal to D = dimBA) of any given multiplicity m ≥ 2 and even, with ‘infinite
multiplicity’m = ∞; i.e., in this case, the principal complex dimensions of A are, in fact, essential
singularities of its distance zeta function ζA.

[8]
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Finally, we also construct fractal sets A in RN , which we call maximal hyperfractals, such that
the corresponding distance zeta function has the entire critical line of (absolute) convergence
{Re s = D} as the set of its nonremovable singularities.

We conclude this paper by a discussion of the notion of “fractality”, formulated in terms
of the present higher-dimensional theory of complex dimensions. Furthermore, we illustrate this
discussion by means of an RFD suitably associated with the Cantor graph (or the “devil’s
staircase”).

August 18, 2016

Riverside, California, USA and Paris, France Michel L. Lapidus

Zagreb, Croatia Goran Radunović and Darko Žubrinić
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1. Introduction

1.1. The development of the idea of dimension: From integers to complex numbers.

The development of the mathematical ideas behind the concept of dimension started in the
19th century, with the need to precisely define some basic notions like the ‘line’ and ‘surface’.
Its history can be very roughly subdivided into the following three parts, all of them deeply
interlaced: the history of integer dimensions, fractal dimensions, and complex dimensions.

1.1.1. Integer dimensions. Until the beginning of the 20th century, the notion of ‘dimension’
has been in use exclusively as a nonnegative integer. It was rigourously defined in the 19th cen-
tury, first for linear objects and then, for manifolds; i.e., in the area of linear algebra (where
it was defined as the number of elements of any base of a given linear space), as well as in
differential and algebraic geometry. Soon, several other integer dimensional quantities have been
introduced, in order to study arbitrary subsets of Euclidean spaces (and, more generally, of topo-
logical spaces). These basic dimensional quantities are known as the small inductive dimension
(Menger–Urysohn), the large inductive dimension (Brouwer–Čech) and the covering dimension
(Čech–Lebesgue). A history of the extremely complex subject of integer dimensions appearing
in Topology is given in the survey article [CriJo].

1.1.2. Fractal dimensions. The foundations of the theory of fractal dimensions have already
been laid out in the 1920s, in the works of Minkowski, Hausdorff, Besicovich and Bouligand,
by introducing (suitably defined) dimensions which can assume noninteger (more specifically,
nonnegative real) values, in order to better understand the geometric properties of very general
subsets of Euclidean spaces. These developments resulted in the Hausdorff dimension and the
Minkowski dimension or the Minkowski–Bouligand dimension (also called the box dimension,
the notion that we adopt in this paper), which have become essential tools of modern Fractal

Geometry.
Many distinguished scholars contributed in various ways to popularizing and developing

these ideas, and thereby, in particular, to the introduction of the seemingly counterintuitive
concept of fractal dimension; there are too many of them to name them all here. (See, for
example, [Man, Chapter XI] or [Fal1].) In addition, the methods of Fractal Geometry are today
extremely developed and frequently used in various specialized scientific fields, both from the
theoretical and applied points of view. An overview of the early history of Fractal Geometry and
the development of its main ideas can be found in [Man]. (See also [Lap7].)

1.1.3. Complex dimensions. The idea of introducing complex dimensions (more specifically,
of complex numbers as dimensions) as a quantification of the inner (oscillatory) geometric prop-
erties of objects called bounded fractal strings L, has been proposed in the beginning of the 1990s
by the first author of this paper, based in part on earlier work in [Lap1–3, LapPo1–2, LapMa1–
2]. Very roughly, bounded fractal strings can be identified with certain bounded subsets of the
real line. In order to define the complex dimensions of a given bounded fractal string L, one
has to assign to it the corresponding (geometric) zeta function ζL. The ‘complex dimensions’ of
bounded fractal strings are then defined as the poles of a suitable meromorphic extension of the
geometric zeta function in question. The development of the main ideas and results behind the
mathematical theory of complex dimensions of fractal strings can be found in [Lap-vFr3].

[1]
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It is natural to ask the following question: Is it possible to define the ‘complex dimensions’
for any (nonempty) bounded subset A of Euclidean space? In other words, is there a natural
zeta function ζA, such that its poles can be considered as the ‘complex dimensions’ of a given
set A (assuming that a suitable meromorphic extension of ζA is possible)? The answer to this
question has been obtained by the first author in 2009, by introducing a class of distance zeta

functions ζA, as we call them in this work.

As the result of a collaboration between the authors of this paper, initiated by the first author
in 2009, it soon became clear that the notion of ‘complex dimensions’ can be introduced not
only for bounded subsets of Euclidean spaces, but even for much more general geometric objects,
denoted by (A,Ω), which we call relative fractal drums (RFDs). (An example of relative fractal
drum is given by (∂Ω,Ω), where Ω is a bounded open subset of some Euclidean space RN , with
N ≥ 1, while ∂Ω is its topological boundary. The special case when N = 1 precisely corresponds
to a bounded fractal string.) The study of the complex dimensions of relative fractal drums is
the main goal of the present paper. The flexibility of this notion, as well as of the corresponding
notion of relative distance zeta function ζA,Ω, has enabled us to view the existing theory of
complex dimensions of fractal strings (and their generalizations to fractal sprays) from a unified
perspective and to extend it beyond recognition. An unexpected novelty was the possibility for
the relative Minkowski dimensions of some classes of relative fractal drums to take negative
values (including the value −∞).

We should mention that the set of complex dimensions of a given RFD (and, in particular,
of a given bounded set of RN ) is always a discrete subset of C, and hence, consists of a (finite
or countable) sequence of complex numbers, with finite multiplicities (as poles of the corre-
sponding fractal zeta functions). In the future, we may extend this notion to also include the
possible essential singularities of the corresponding fractal zeta functions. Indeed, in this paper,
we construct fractal sets and RFDs whose fractal zeta functions have infinitely many essential
singularities.

The theory of complex dimensions of relative fractal drums, developed in this work, provides
a useful bridge between Fractal Geometry, Number Theory and Complex Analysis. It has brought
to light numerous interesting questions and new challenging problems for further research; see,
especially, [LapRaŽu1, Chapter 6] and [LapRaŽu7, §8].

1.2. Relative fractal drums and their distance zeta functions. In 2009, the first author
has introduced a new class of zeta functions ζA, called ‘distance zeta functions’, associated with
arbitrary compact subsets A of a given Euclidean space RN of arbitrary dimension N . More
specifically, the distance zeta function ζA of a bounded set A ⊂ RN is defined by

ζA(s) :=

∫

Aδ

d(x,A)s−Ndx, (1.2.1)

for all s ∈ C with Re s sufficiently large, where δ is a fixed positive real number and Aδ is the
Euclidean δ-neighborhood of A. (Here, d(x,A) := inf{|x − a| : a ∈ A} denotes the Euclidean
distance from x to A and the integral is understood in the sense of Lebesgue and is therefore
absolutely convergent.) These new fractal zeta functions have been studied in [LapRaŽu2,3], as
well as in the research monograph [LapRaŽu1, Chapter 2].

We extend the class of distance zeta functions from the family of compact subset of RN to a
new class of objects that we call ‘relative fractal drums’ (RFDs) in RN (still for any N ≥ 1); see
Definition 1.2 below. This enables us to provide a unified approach to the study of fractal zeta
functions. An unexpected novelty is that RFDs may have an upper box (or Minkowski) dimension
(defined by (1.4.3) below), which is negative, or is even equal to −∞; see Proposition 2.12 and
Corollary 2.14 below.

Definition 1.1. Let Ω be an open subset of RN , possibly unbounded, but of finiteN-dimensional
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Lebesgue measure. Assume that A is a subset of RN and

there exists δ > 0 such that Ω ⊆ Aδ. (1.2.2)

We then say that the ordered pair (A,Ω) is a relative fractal drum (or an RFD, in short) in RN .

We stress that when working with an RFD (A,Ω), we always assume that both A and Ω are
nonempty.

Relative fractal drums represent a natural extension of the following classes of objects, si-
multaneously:

(a) The class STRb of (nonempty) bounded fractal strings L := (ℓj)j∈N; indeed, for any given
bounded fractal string(1) L := (ℓj)j∈N, we can define a disjoint union

Ω :=
∞⋃

j=1

Ij (1.2.3)

of open intervals Ij such that |Ij | = ℓj for each j ≥ 1, and A := ∂Ω; then L can be identified
with any such RFD (∂Ω,Ω); the set Ω is referred to as a geometric realization of the bounded

fractal string L; using this identification, we can write L = (∂Ω,Ω); it is sometimes convenient
to deal with the canonical geometric representation of L, defined by

AL :=
{
aj :=

∑

k≥j

ℓk : j ∈ N

}
, (1.2.4)

and in this case, the set

Ωcan,L := (0, ℓ1) \ AL =
∞⋃

j=1

(ak, ak+1) (1.2.5)

is obviously a geometric realization of L, which we call the canonical geometric realization of L;
(b) The class COM(RN) of compact fractal sets A in Euclidean space RN , by identifying A

with the corresponding RFD (A,Aδ), for any fixed δ > 0.

Moreover, denoting by RFD(RN ) the family of all RFDs in RN , we have the following natural
inclusions, for any N ≥ 1:

STRb ⊂ COM(RN) ⊂ RFD(RN ). (1.2.6)

Here, any bounded fractal string L := (ℓj)j∈N can be identified with the compact set A ⊂ R,
where A := {aj =

∑∞
k=j ℓk : j ∈ N} ⊂ R.

We now introduce the main definition of this paper.

Definition 1.2. Let (A,Ω) be a relative fractal drum (or an RFD) in RN . The distance zeta

function ζA,Ω of the relative fractal drum (A,Ω) (or the relative distance zeta function of the
RFD (A,Ω)) is defined by

ζA,Ω(s) :=

∫

Ω

d(x,A)s−Ndx, (1.2.7)

for all s ∈ C with Re s sufficiently large.

The family of relative distance zeta functions represents a natural extension of the following
classes of fractal zeta functions:

(a) The class of geometric zeta functions ζL, associated with bounded fractal strings L :=
(ℓj)j∈N and defined (for all s ∈ C with Re s sufficiently large) by

ζL(s) :=
∞∑

j=1

ℓsj (1.2.8)

(1) A bounded fractal string L := (ℓj)j∈N is defined as a nonincreasing sequence of positive
real numbers (ℓj)j∈N such that

∑∞
j=1 ℓj < ∞; see [Lap-vFr3].
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(it has been extensively studied in the research monograph [Lap-vFr3], by the first author and
van Frankenhuijsen, as well as in the relevant references therein); more precisely, we show that

ζL(s) = s2s−1ζ∂Ω,Ω(s) (1.2.9)

for all s ∈ C with Re s sufficiently large, where Ω is any geometric realization of L, described in
(a), appearing immediately after Definition 1.1.

(b) The class of distance zeta functions ζA associated with compact fractal subsets A of
Euclidean spaces, defined by (1.2.1).

We point out that some of the results of this article (especially in §2.1) can be viewed in the
context of very general convolution-type integrals of the form

H(s) =

∫

E

f(s, t) dµ(t), (1.2.10)

about which we cite the following well-known result. We shall need it in the proofs of Theorem
3.2 and Proposition 3.12 below.

Theorem 1.3. Let V be an open set in C (or even in Cn). Furthermore, let (E,B(E), µ) be a

measure space, where E is a locally compact metrizable space, B(E) is the Borel σ-algebra of

E, and µ is a positive or complex (local, i.e., locally bounded) measure, with associated total

variation measure denoted by |µ|. Assume that a function f : V ×E → C is given, satisfying the

following three conditions:

(1) f( · , t) is holomorphic for |µ|-a.e. t ∈ E,

(2) f(s, · ) is µ-measurable for all s ∈ V , and

(3) a suitable growth property is fulfilled by f : for every compact subset K of V , there exists

gK ∈ L1(|µ|) such that |f(s, t)| ≤ gK(t), for all s ∈ V and |µ|-a.e. t ∈ K.

Then, the function H defined by (1.2.10) is holomorphic on V . Moreover, one can interchange

the derivative and the integral. (The problem of complex differentiating under the integral sign is

discussed, for example, in [Mattn].) More precisely, for every s ∈ V and every k ∈ N, we have

F (k)(s) =

∫

E

∂k

∂sk
f(s, t) dµ(t). (1.2.11)

Remark 1.4. According to [Mattn] and as is well known, if conditions (1) and (2) from Theo-
rem 1.3 are satisfied, then condition (3) is equivalent to the following condition, which is generally
slightly easier to verify in practice:

(3′)
∫
E
|f( · , t)|d|µ|(t) is locally bounded; that is, for each fixed s0 ∈ V , there exists δ > 0

such that

sup
s∈V,|s−s0|<δ

∫

E

|f(s, t)|d|µ|(t) < ∞. (1.2.12)

In other words, we can replace condition (3) with condition (3′) in the statement of Theorem 1.3.
(This is the case because the notion of holomorphicity is local.)

1.3. Overview of the main results. We note that the notion of complex dimensions of a

relative fractal drum (RFD), necessary for a clearer understanding of this overview, is introduced
in Definition 1.6 below. The definitions of the relative Minkowski content and of the relative box
(or, more accurately, Minkowski) dimension can be found in Equations (1.4.1) and (1.4.2) below,
respectively.

Overview of Chapter 2. The main result of §2.1 is contained in parts (a) and (b) of
Theorem 2.1, according to which the abscissa of (absolute) convergence D(ζA,Ω) of the distance
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zeta function ζA,Ω of any RFD (A,Ω) is equal to the upper box (i.e., Minkowski) dimension
dimB(A,Ω) of the RFD. Part (c) of the same theorem provides some mild conditions under
which the value of D := dimB(A,Ω) (assuming that dimB(A,Ω) exists) is a singularity of the
relative distance zeta function ζA,Ω, and therefore also coincides with the abscissa of holomorphic
continuation of the distance zeta function of the RFD.

Theorem 2.2 shows that for a nondegenerate RFD (A,Ω) and provided ζA,Ω possesses a
meromophic extension to an open connected neighborhood of D := dimB A < N , the residue
of ζA,Ω evaluated at D always lies (up to the multiplicative constant (N − D)) between the
lower and the upper D-dimensional Minkowski contents of the RFD. In particular, if the RFD is
Minkowski measurable, then the residue res(ζA,Ω, D) is, up to the same multiplicative constant,
equal to the D-dimensional Minkowski content of the RFD.

In Proposition 2.10 of §2.2, we show that if there is at least one point a ∈ A ∩ Ω at which
the RFD (A,Ω) satisfies a suitable cone property with respect to Ω (see Definition 2.6), then
D(ζA,Ω) ≥ 0. In general, however, the value of D(ζA,Ω) (i.e., of the upper relative box dimension
dimB(A,Ω)) can take on any prescribed negative value (see Proposition 2.12), and even the
value −∞ (see Corollary 2.14). Here we stress that the phenomenon of negative box dimensions
(including −∞) for relative fractal drums of the form (∂Ω,Ω) and ({a},Ω), with a ∈ ∂Ω, have
been studied independently by Tricot in [Tri2], where the notion of inner box dimension of the

boundary ∂Ω and of the point a with respect to Ω is used.

In §2.3, dealing with the scaling property of the relative distance zeta functions, the main re-
sult is stated in Theorem 2.16. It has important applications to the study of self-similar sprays (or
tilings). Corollary 2.17 states an interesting scaling property of the residues of relative distance
zeta functions, evaluated at their simple poles; see Equation (2.3.2). The countable additivity of
the relative distance zeta function with respect to a disjoint union of RFDs (a notion introduced
in Definition 2.18) is established in Theorem 2.19.

In §2.4, we introduce the notion of the relative tube zeta function (see Equation (2.4.1)),
which is closely related to the relative distance zeta function (see the functional equation (2.4.2)
connecting these two fractal zeta functions). Equation (2.4.5) in Proposition 2.21 connects the
residues (evaluated at any visible complex dimension) of the relative tube and distance functions.
In Example 2.22, we calculate (via a direct computation) the complex dimensions of the torus
RFD. Much more generally, in Proposition 2.23, by using Federer’s tube formula established in
[Fed1], we calculate the distance zeta function (and the complex dimensions) of the boundary of
any compact set C of positive reach (and, in particular, of any compact convex subset of RN);
as a special case, we obtain a similar result for a smooth compact submanifold of RN (thereby
significantly extending the results of the aforementioned Example 2.22).

The important problem of the existence and construction of meromorphic extensions of some
classes of relative (tube and distance) zeta functions is studied in §2.5. It is treated in Theorem
2.24 for a class of Minkowski measurable RFDs, and in Theorem 2.25 for a class of Minkowski
nonmeasurable (but Minkowski nondegenerate) RFDs. Naturally, even though the two classes
of examples dealt with here are of interest in their own right and in the applications, additional
results should be obtained along these lines in the future developments of the theory.

The main result of §2.6 is stated in Theorem 2.40 and deals with the construction of ∞-
quasiperiodic relative fractal drums, a notion introduced in Definition 2.37. Its proof makes
an essential use of suitable families of generalized Cantor sets C(m,a) with two parameters m
and a, introduced in Definition 2.28; some of the properties of these Cantor sets are listed in
Proposition 2.29. Theorem 2.40 can be considered as a fractal set-theoretic interpretation of
Baker’s theorem from transcendental number theory (see Theorem 2.30). It provides an explicit
construction of a transcendentally ∞-quasiperiodic relative fractal drum. In particular, this
RFD possesses infinitely many algebraically incommensurable quasiperiods. In Definition 2.38,
we also introduce the new notions of hyperfractal RFDs, as well as of strong hyperfractals and
of maximal hyperfractals. It turns out that the relative fractal drums constructed in Theorem
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2.40 are not only ∞-quasiperiodic, but are also maximally hyperfractal. Accordingly, the critical
line {Re s = D}, where D := dimB(A,Ω), consists solely of nonremovable singularities of the
associated fractal zeta function; a fortiori, the distance and tube zeta functions of the RFD
cannot be meromorphically extended beyond this vertical line.

The scaling property of relative tube zeta functions is provided in Proposition 2.42. This result
is analogous to the one obtained for relative distance zeta functions in Theorem 2.16.

Overview of Chapter 3. This chapter deals with the problem of embeddings of RFDs

into higher-dimensional Euclidean spaces. Theorem 3.3 of §3.1 shows that the notion of complex
dimensions of fractal sets does not depend on the dimension of the ambient space. In Theorem
3.10 of §3.2, an analogous result is obtained for general RFDs. An important role in the accom-
panying computations is played by the gamma function, the Euler beta function, as well as by
the Mellin zeta function of an RFD, introduced in Equation (3.2.19). In Example 3.15, we apply
these results in order to calculate the complex dimensions of the Cantor dust.

Overview of Chapter 4. In this chapter, we study relative fractal sprays in RN , introduced
in Definition 4.1 of §4.1. The main result is given in Theorem 4.6, which deals with the distance
zeta function of relative fractal sprays.

In §4.2, we study the relative Sierpiński sprays and their complex dimensions. Example 4.12
deals with the relative Sierpiński gasket, while Example 4.14 deals with the inhomogeneous
Sierpiński N-gasket RFDs, for any N ≥ 2. Furthermore, Example 4.15 deals with the rela-
tive Sierpiński carpet, while Example 4.17 deals with the Sierpiński N-carpet, for any N ≥ 2.
Interesting new phenomena occur in this context, which are discussed throughout §4.2.

In Definition 4.18 of §4.3, we recall (and extend to RFDs) the notion of self-similar sprays

(or tilings), defined by a suitable ratio list of finitely many real numbers in (0, 1).

Theorem 4.21 provides an explicit form for the distance zeta function of a self-similar spray,
which can be found in Equation (4.3.12). The results obtained here are illustrated by the new
examples of the 1/2-square fractal and of the 1/3-square fractal, discussed in Example 4.24 and
in Example 4.25, respectively.

In §4.4, we describe a constructive method for generating principal complex dimensions(2)
of relative fractal drums of any prescribed multiplicity m ≥ 2, including infinite multiplicity.
(The latter case when m = ∞ corresponds to essential singularities of the associated fractal zeta
function.) In Example 4.27, we provide the construction of the m-th order a-string, while we
define the m-th order Cantor string in Equation (4.4.6). In Examples 4.29 and 4.30, we construct
Minkowski measurable RFDs which possess infinitely many principal complex dimensions of
arbitrary multiplicity m, with m ≥ 2 and even with m = ∞ (i.e., corresponding to essential
singularities).

Overview of Chapter 5. This chapter is dedicated to the discussion of the notion of
fractality (of RFDs), and its intimate relationship with the notion of the complex dimensions of
RFDs. In §5.1, fractal and subcritically fractal RFDs are discussed. These notions are illustrated
in §5.2 in the case of the Cantor graph RFD.

1.4. Notation. In the sequel, an important role is played by the definition of the upper and
lower Minkowski contents of RFDs and of the upper and lower box (or Minkowski) dimensions
of RFDs. We shall follow the definitions introduced by the third author in [Žu2], but with an
essential difference: the parameter r appearing below can be any real number, and not just a

(2) The principal complex dimensions of an RFD are the poles of the associated fractal (i.e.,
distance or tube) zeta function with maximal real part D, where D is both the abscissa of
(absolute) convergence of the zeta function and the (relative) Minkowski dimension of the RFD;
see Definition 1.6 and part (b) of Theorem 2.1 below.
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nonnegative real number. (See Remark 1.5 below.) Hence, for a given parameter r ∈ R, we define
the r-dimensional upper and lower Minkowski contents of an RFD (A,Ω) in RN as follows:(3)

M∗r(A,Ω) := lim sup
t→0+

|At ∩ Ω|
tN−r

, Mr
∗(A,Ω) := lim inf

t→0+

|At ∩ Ω|
tN−r

. (1.4.1)

We also call them the relative upper Minkowski content and lower Minkowski content of (A,Ω),
respectively. They represent a natural extension of the corresponding notions of upper and lower
Minkowski contents of bounded sets in RN , introduced by Bouligand [Bou] and Hadwiger [Had],
as well as used by Federer in [Fed2] and by many other researchers in a variety of works, including
[Sta, Tri1, BroCar, Lap1, LapPo2, Fal1–2, HeLap, Lap-vFr3, Žu2, Wi, KeKom, Kom, RatWi,
LapRaŽu1, HerLap1] and the relevant references therein.

As usual, we then define the upper box dimension of the RFD (A,Ω) by

dimB(A,Ω) := inf{r ∈ R : M∗r(A,Ω) = 0}
= sup{r ∈ R : M∗r(A,Ω) = +∞},

(1.4.2)

as well as the lower box dimension of (A,Ω) by

dimB(A,Ω) := inf{r ∈ R : Mr
∗(A,Ω) = 0}

= sup{r ∈ R : Mr
∗(A,Ω) = +∞}.

(1.4.3)

We refer to dimB(A,Ω) and dimB(A,Ω) as the relative upper and lower box (or Minkowski)
dimension of (A,Ω), respectively. The novelty here is that, contrary to the usual upper and
lower box dimensions, the relative upper and lower Minkowski dimensions can attain negative
values as well, and even the value −∞. More specifically, it is easy to see that

−∞ ≤ dimB(A,Ω) ≤ dimB(A,Ω) ≤ N.

If dimB(A,Ω) = dimB(A,Ω), then the common value is denoted by dimB(A,Ω) and we call it
the box (or Minkowski) dimension of the RFD (A,Ω), or just the relative box (i.e., Minkowski)
dimension.(4)

If there exists D ∈ R such that 0 < MD
∗ (A,Ω) ≤ M∗D(A,Ω) < ∞, then we say that the

RFD (A,Ω) is Minkowski nondegenerate. Clearly, in this case we have that D = dimB(A,Ω).

If for some r ∈ R, we have M∗r(A,Ω) = Mr
∗(A,Ω), the common value is denoted by

Mr(A,Ω). If for some D ∈ R, MD(A,Ω) exists and MD(A,Ω) ∈ (0,+∞), then we say that the
RFD (A,Ω) is Minkowski measurable. Clearly, in this case, the dimension of (A,Ω) exists and
we have D = dimB(A,Ω).

For example, if the sets A and Ω are a positive distance apart (i.e., inf{|x − y| : x ∈ A, y ∈
Ω} > 0), then it is easy to see that dimB(A,Ω) = −∞. Indeed, since |At ∩ Ω| = 0 for all
sufficiently small t > 0, we have that Mr(A,Ω) = 0 for all r ∈ R. A class of nontrivial examples
for which −∞ < dimB(A,Ω) < 0 can be found in Proposition 2.12.

In the case when Ω := Aδ, where A is a bounded subset of RN and δ is a fixed posi-
tive real number, we obtain the usual (nonrelative) values of box (or Minkowski) dimensions,
i.e., dimBA := dimB(A,Aδ), dimBA := dimB(A,Aδ), dimB A := dimB(A,Aδ), which are all
nonnegative in this case, as well as the values of the usual Minkowski contents of A; that is,
Mr∗(A) := Mr∗(A,Aδ), Mr

∗(A) := Mr
∗(A,Aδ), Mr(A) := Mr(A,Aδ), for any r ≥ 0. (It is

easy to see that these values do not depend on the choice of δ > 0.) Consequently, as was stated
in §2.1, bounded subsets of RN are special cases of RFDs in RN . More specifically, if A is a

(3) For a given measurable set E ⊂ RN , its N-dimensional Lebesgue measure is denoted by
|E| = |E|N .

(4) We caution the reader, however, that unlike in the standard case of bounded subsets of

RN , the notion of relative Minkowski dimension of an RFD has not yet been given a suitable
geometric interpretation in terms of “box counting”.
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bounded subset of RN , then the associated RFD in RN is (A,Aδ), for any given δ > 0. This
comment extends to the theory of complex dimensions of RFDs developed in this paper, which
therefore includes the theory of complex dimensions developed in [LapRaŽu2,3].

Remark 1.5. These definitions extend to a general RFD the definitions used in [Lap1] for an
ordinary fractal drum (i.e., a drum with fractal boundary) in the case of Dirichlet boundary
conditions; see also [Lap-vFr2, §12.5] and the relevant references therein, including [Brocar,
Lap2–3]). We then have (A,Ω) = (∂Ω,Ω), where Ω is a (nonempty) bounded open subset of RN ;
it follows at once thatD := D(ζ∂Ω,Ω) ≥ 0. In fact, we always have that D ∈ [N−1, N ]; see [Lap1].
The special case when N = 1 corresponds to bounded fractal strings, for which we must have
that D ∈ [0, 1]; see, for example, [Lap1–3, LapPo1–2, LapMa1–2, HeLap, LapLu-vFr1–3]. Other
references related to fractal strings include [DubSep, ElLapMacRo, Fal2, Fr, HamLap, HerLap1–
2, Kom, LalLap1–2, Lap4–6, LapLu, LapRaŽu1–8, LapRo, LapLéRo, LapRoŽu, LéMen, MorSep,
MorSepVi1–2, Ol1–2, Ra1–2, RatWi, Tep1–2].

In the sequel, we use the following notation. Given α ∈ R∪±∞, we denote, for example, the
open right half-plane {s ∈ C : Re s > α} by {Re s > α}, with the obvious convention if α = ±∞;
namely, for α = +∞, we obtain the empty set and for α = +∞, we have all of C. Moreover, if
α ∈ R, we denote the vertical line {s ∈ C : Re s = α} by {Re s = α}.

We also let N := {1, 2, 3 . . . } and N0 := N ∪ {0} = {0, 1, 2, . . . }. The logarithm of a positive
real number x with base a > 0 is denoted by loga x; i.e., y = loga x ⇔ x = ay. Furthermore,
log x := loge x is the natural logarithm of x; i.e., y = log x ⇔ x = ey.

Let f(s) :=
∫
E
ϕ(x)sdµ(x) be a tamed generalized Dirichlet-type integral (DTI), in the sense

of [LapRaŽu2, Definition 2.12]; that is, ϕ ≥ 0 |µ|-a.e. on E and ϕ is essentially |µ|-bounded
on E, where |µ| is the total variation of the local complex or positive measure on the locally
compact space E. Then, we denote by D(f) the abscissa of (absolute) convergence of f ; i.e.,
D(f) ∈ [−∞,∞]) is the infimum of all α ∈ R such that ϕα (or, equivalently, ϕ(x)Re s, with
α := Re s) is |µ|-integrable. If D(f) ∈ R, the corresponding vertical line {Re s = D(f)} in the
complex plane is called the critical line of f . Furthermore, we denote by Dmer(f) the abscissa

of meromorphic continuation of f (i.e., Dmer(f) ∈ [−∞,∞] is the infimum of all α ∈ R such
that f possesses a meromorphic extension to the open right half-plane {Re s > α}). We define
Dhol(f), the abscissa of holomorphic continuation of f , in exactly the same way as for Dmer(f),
except for “meromorphic” replaced by “holomorphic”.(5) In general, for any tamed DTI f , we
have that

−∞ ≤ Dmer(f) ≤ Dhol(f) ≤ D(f) ≤ +∞. (1.4.4)

(See [LapRaŽu1, Theorem A.2] for the next to last inequality, and [LapRaŽu1, Appendix A] for
the general theory of tamed DTIs.)

In order to be able to define the key notions of complex dimensions and of principal complex
dimensions (see Equation (2.1.4) in Chapter 2 below), we assume that the function f has the
property that it can be extended to a meromorphic function defined on G ⊆ C, where G is an
open and connected neighborhood of the window W defined by

W = {s ∈ C : Re s ≥ S(Im s)}. (1.4.5)

Here, the function S : R → (−∞,D(ζA)], called the screen, is assumed to be Lipschitz continuous.
Note that if f := ζA,Ω, then the closed set W contains the critical line {Re s = D(ζA,Ω)}; in fact,
it also contains the closed half-plane {Re s ≥ D(ζA,Ω)}. The boundary ∂W of the window is

(5) Note that Dmer(f) and Dhol(f) can be defined for any given meromorphic function f on

a domain U of C, whereas D(f) is only well defined if f is a tamed DTI. (See [LapRaŽu2] or
[LapRaŽu1, Appendix A].)
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also called the screen and is denoted by S; it is the graph of the function S, with the horizontal
and vertical axes interchanged. More specifically, we have that

S = {S(τ ) + iτ : τ ∈ R}. (1.4.6)

Definition 1.6 (Complex dimensions of an RFD). The set of poles of f located in a window W

containing the critical line {Re s = D(f)} is denoted by P(f,W ). When the windowW is known,
or when W := C, we often use the shorter notation P(f) instead. If f := ζA,Ω and ζA,Ω can
be meromorphically extended to a connected open subset containing the closed right half-plane
{Re s ≥ D(ζA,Ω)}, the multiset of poles (i.e., we also take the multiplicities of the poles into
account) is called the multiset of (visible) complex dimensions of (A,Ω). The multiset of complex
dimensions on the critical line of ζA,Ω is called the multiset of principal complex dimensions of
(A,Ω). This multiset is independent of the choice of δ, as well as of the meromorphic extension
of ζ. We note that analogous definitions will be used in the case of the relative tube zeta function
ζ̃A,Ω, introduced in Equation (2.4.1) below, instead of the relative distance zeta function ζA,Ω. As
we shall see, provided dimB(A,Ω) < N , the resulting multiset of principal complex dimensions
(resp., of complex dimensions) will be the same for either ζA,Ω or ζ̃A,Ω. This will follow from the
functional equation connecting ζA,Ω and ζ̃A,Ω.

If Ω is a given subset of RN , its closure and boundary are denoted by Ω and ∂Ω, respectively.
For two given sequences of positive numbers (ak)k≥1 and (bk)k≥1, we write ak ∼ bk as k → ∞

if limk→∞ ak/bk = 1. Analogously, if a( · ) and b( · ) are two real-valued functions defined on an
open interval (0, t0), we write a(t) ∼ b(t) as t → 0+ if limt→0+ a(t)/b(t) = 1.

We shall also need the relation ∼ between Dirichlet-type integral functions (DTIs) and
meromorphic functions (that is, f ∼ g, where f is a DTI and g is a meromorphic function) in
the sense of [LapRaŽu2, Definition 2.22], which we now briefly recall.

Definition 1.7. Let f and g be tamed Dirichlet-type integrals, both admitting a (necessarily
unique) meromorphic extension to an open connected subset U of C which contains the closed
right half-plane {Re s ≥ D(f)}. Then, the function f is said to be equivalent to g, and we
write f ∼ g, if D(f) = D(g) (and this common value is a real number) and furthermore, the
sets of poles of f and g, located on the common critical line {Re s = D(f)}, coincide. Here,
the multiplicities of the poles should be taken into account. In other words, we view the set of
principal poles Pc(f) of f as a multiset. More succinctly,

f ∼ g
def.⇐⇒ D(f) = D(g) (∈ R) and Pc(f) = Pc(g). (1.4.7)



2. Basic properties of relative distance and tube zeta functions

2.1. Holomorphicity of relative distance zeta functions. In the sequel, we denote by
D(ζA,Ω) the abscissa of (absolute) convergence of a given relative distance zeta function ζA,Ω.
It is clear that D(ζA,Ω) ∈ [−∞, N ]. Recall from the discussion in Chapter 1 that an analogous
definition can be introduced for much more general, tamed Dirichlet-type integrals, introduced
in [LapRaŽu2], as well as in the monograph [LapRaŽu1, especially in Appendix A].

Some of the basic properties of distance zeta functions of RFDs are listed in the following
theorem.

Theorem 2.1. Let (A,Ω) be a relative fractal drum in RN . Then the following properties hold:

(a) The relative distance zeta function ζA,Ω is holomorphic in the half-plane

{Re s > dimB(A,Ω)},
and for those same values of s, we have

ζ′A,Ω(s) =

∫

Ω

d(x,A)s−N log d(x,A) dx.

(b) The lower bound on the (absolute) convergence region {Re s > dimB(A,Ω)} of the relative

distance zeta function ζA,Ω is optimal. In other words,

D(ζA,Ω) = dimB(A,Ω). (2.1.1)

(c) If D := dimB(A,Ω) exists, D < N and MD
∗ (A,Ω) > 0, then ζA,Ω(s) → +∞ as s ∈ R

converges to D from the right. Hence, under these assumptions, we have that(1)

D(ζA,Ω) = Dhol(ζA,Ω) = dimB(A,Ω). (2.1.2)

We omit the proof since it follows the same steps as in the case when Ω := Aδ (that is, as in
the case of a bounded set A); see [LapRaŽu2, Theorem 2.5]. In the proof of part (a) of Theorem
2.1, we need the following result. For any relative fractal drum (A,Ω) in RN , we have that

γ < N − dimB(A,Ω) =⇒
∫

Ω

d(x,A)−γdx < ∞. (2.1.3)

In the case when Ω = Aδ, where δ is a positive real number, this implication reduces to the
Harvey–Polking result (see [HarvPo]) since in that case, dimB(A,Aδ) = dimBA. We note that
the technical condition (1.2.2) on the RFD (A,Ω) from Definition 1.1 is needed in order that
the integrals appearing during the computation of ζA,Ω are well defined for Re s large enough.

It is clear that the function ζA,Ω is a tamed generalized Dirichlet-type integral in the sense
of [LapRaŽu2, Definition 2.12]. If the RFD (A,Ω) is such that the corresponding relative zeta

(1) The abscissa of holomorphic continuation, denoted by Dhol(ζA,Ω), is defined in the dis-
cussion preceding Equation (1.4.4) above.

[10]
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function ζA,Ω can be meromorphically extended to an open, connected window W containing
the critical line {Re s = D(ζA,Ω)}, then the poles of ζA,Ω located on the critical line are called
the principal complex dimensions of the RFD (A,Ω). The corresponding multiset of complex
dimensions of the RFD (A,Ω) is denoted by dimPC(A,Ω). In other words,

dimPC(A,Ω) := P(ζA,Ω,W ) ∩ {Re s = D(ζA,Ω)}. (2.1.4)

It is easy to see that the multiset dimPC(A,Ω) does not depend on the choice of window W . If
A is a bounded subset of RN and δ a fixed positive real number, the multiset of principal complex

dimensions of A is defined by

dimPC A := dimPC(A,Aδ), (2.1.5)

and this multiset does not depend on the choice of δ > 0.

Analogously, for any bounded fractal string L for which D := dimBL > 0, we define the
multiset of principal complex dimensions of L by

dimPC L := dimPC(∂Ω,Ω), (2.1.6)

where Ω is any geometric realization of the fractal string L; see Equation (1.2.9) which connects
the standard geometric zeta function ζL with the relative distance zeta function ζ∂Ω,Ω. It is clear
that the multiset dimPC(∂Ω,Ω) does not depend on the choice of the geometric realization Ω,
because the same is true for the relative distance zeta function ζ∂Ω,Ω.

In light of [LapRaŽu2, Theorem 3.3], we have the following result.

Theorem 2.2. Assume that (A,Ω) is a Minkowski nondegenerate RFD in RN , that is, 0 <
MD

∗ (A,Ω) ≤ M∗D(A,Ω) < ∞ (in particular, dimB(A,Ω) = D), and D < N . If ζA,Ω can be

meromorphically continued to a connected open neighborhood of s = D, then D is necessarily a

simple pole of ζA,Ω, and

(N −D)MD
∗ (A,Ω) ≤ res(ζA,Ω, D) ≤ (N −D)M∗D(A,Ω). (2.1.7)

Furthermore, if (A,Ω) is Minkowski measurable, then

res(ζA,Ω, D) = (N −D)MD(A,Ω). (2.1.8)

In the following example, we compute the relative distance zeta function of an open ball in
RN with respect to its boundary.

Example 2.3. Let Ω := BR(0) be the open ball in RN of radius R and let A = ∂Ω be the
boundary of Ω, i.e., the (N − 1)-dimensional sphere of radius R. Then, introducing the new
variable ρ = R− r and letting ωN := |B1(0)|N , the N-dimensional Lebesgue measure of the unit
ball in RN , we have that

ζA,Ω(s) = NωN

∫ R

0

(R − r)s−NrN−1dr = NωN

∫ R

0

ρs−N(R − ρ)N−1dρ

= NωN

∫ R

0

ρs−N
N−1∑

k=0

(−1)k
(
N − 1

k

)
RN−1−kρkdρ

= NωNRs
N−1∑

k=0

(
N − 1

k

)
(−1)k

s− (N − k − 1)

= NωNRs
N−1∑

j=0

(
N − 1

j

)
(−1)N−j−1

s− j
,
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for all s ∈ C with Re s > N − 1. It follows that ζA,Ω can be meromorphically extended to the
whole complex plane and is given by

ζA,Ω(s) = NωNRs
N−1∑

j=0

(
N − 1

j

)
(−1)N−j−1

s− j
, (2.1.9)

for all s ∈ C.

Therefore, we have that

dimB(A,Ω) = D(ζA,Ω) = N − 1,

P(ζA,Ω) = {0, 1, . . . , N − 1} and dimPC(A,Ω) = {N − 1}.
(2.1.10)

Furthermore,

res(ζA,Ω, j) = (−1)N−j−1NωN

(
N − 1

j

)
Rj , (2.1.11)

for j = 0, 1, . . . , N − 1. As a special case of (2.1.11), for j = D := N − 1 we obtain that

res(ζA,Ω, D) = NωNRN−1 = MD(A,Ω) = (N −D)MD(A,Ω). (2.1.12)

(This is a very special case of Equation (2.1.8) appearing in Theorem 2.2 above.) The second to
last equality in (2.1.12) follows from the following direct computation (with D := N − 1):

MD(A,Ω) = lim
t→0+

|At ∩ Ω|
tN−D

= lim
t→0+

ωNRN − ωN (R− t)N

t
= NωNRN−1.

(2.1.13)

Furthermore, recall that HD(A) = HN−1(∂BR(0)) = NωNRN−1, where HN−1 is the (N − 1)-
dimensional Hausdorff measure. Hence, MD(A,Ω) = HD(A).

Remark 2.4. We note that the usual notions of distance and tube zeta functions, ζA and ζ̃A,
associated with a bounded subset A of RN , can be recovered by considering the RFD (A,Aδ),
for some δ > 0:

ζA(s) = ζA,Aδ(s) =

∫

Aδ

d(x,A)s−N dx,

ζ̃A(s) = ζ̃A,Aδ (s) =

∫ δ

0

ts−N−1|At|dt.
(2.1.14)

Here, ζ̃A,Aδ is the relative tube zeta function of the RFD (A,Aδ), as defined in Equation (2.4.1)
of §2.4 below.

2.2. Cone property of relative fractal drums. We introduce the cone property of a relative
fractal drum (A,Ω) at a prescribed point, in order to show that the abscissa of convergence
D(ζA,Ω) of the associated relative zeta function ζA,Ω be nonnegative. The main result of this
section is stated in Proposition 2.10. We also construct a class of nontrivial RFDs for which the
relative box dimension is an arbitrary negative number (see Proposition 2.12) or even equal to
−∞ (see Corollary 2.14 and Remark 2.15, along with part (a) of Proposition 2.10).

Definition 2.5. Let Br(a) be a given ball in RN , of radius r and center a. Let ∂B be the
boundary of the ball, which is an (N − 1)-dimensional sphere, and assume that G is a closed
connected subset contained in a hemisphere of ∂B. Intuitively, G is a disk-like subset (‘calotte’)
of a hemisphere contained in the sphere ∂B. We assume that G is open with respect to the
relative topology of ∂B. The cone K = Kr(a,G) with vertex at a, and of radius r, is defined as
the interior of the convex hull of the union of {a} and G.
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Definition 2.6. Let (A,Ω) be a relative fractal drum in RN such that A ∩Ω 6= ∅. We say that
the relative fractal drum (A,Ω) has the cone property at a point a ∈ A ∩ Ω if there exists r > 0
such that Ω contains a cone Kr(a,G) with vertex at a (and of radius r).

Remark 2.7. If a ∈ A ∩ Ω (hence, a is an inner point of Ω), then the cone property of the
relative fractal drum (A,Ω) is obviously satisfied at this point. So, the cone property is actually
interesting only on the boundary of Ω, that is, at a ∈ A ∩ ∂Ω.

Example 2.8. Given α > 0, let (A,Ωα) be the relative fractal drum in R2 defined by A = {(0, 0)}
and Ωα = {(x, y) ∈ R2 : 0 < y < xα, x ∈ (0, 1)}. If 0 < α ≤ 1, then the cone property of (A,Ω)
is fulfilled at a = (0, 0), whereas for α > 1 it is not satisfied (at a = (0, 0)). Using these domains,
we can construct a one-parameter family of RFDs with negative relative box dimension; see
Proposition 2.12 below.

In order to prove Proposition 2.10 below, we first need an auxiliary result.

Lemma 2.9. Assume that K = Kr(a,G) is an open cone in RN with vertex at a (and of radius

r > 0), and f ∈ L1(0, r) is a nonnegative function. Then there exists a positive integer m,

depending only on N and on the opening angle of the cone, such that
∫

Br(a)

f(|x− a|) dx ≤ m

∫

K

f(|x− a|) dx. (2.2.1)

Proof. Since the sphere ∂B is compact, there exist finitely many calottes G1, . . . , Gm contained
in the sphere, which are all congruent to G (that is, each Gi can be obtained from G by a rigid
motion, for i = 1, . . . ,m), and which cover ∂B. Let Ki = Kr(a,Gi), with i = 1, . . . ,m, be the
corresponding cones with vertex at a. It is clear that the value of

∫

Ki

f(|x− a|) dx (2.2.2)

does not depend on i. Since Br(a) = ∪m
i=1Ki, we then have

∫

Br(a)

f(|x− a|) dx ≤
m∑

i=1

∫

Ki

f(|x− a|) dx = m

∫

K

f(|x− a|) dx, (2.2.3)

as desired.

Proposition 2.10. Let (A,Ω) be a relative fractal drum in RN . Then:

(a) If the sets A and Ω are a positive distance apart (i.e., if d(A,Ω) > 0), then D(ζA,Ω) =
−∞; that is, ζA,Ω is an entire function. Furthermore, dimB(A,Ω) = −∞.

(b) Assume that there exists at least one point a ∈ A ∩ Ω at which the relative fractal drum

(A,Ω) satisfies the cone property. Then D(ζA,Ω) ≥ 0.

Proof. (a) For r > 0 small enough such that r < d(A,Ω), where d(A,Ω) is the distance between
A and Ω, we have Ar∩Ω = ∅; so that ζA,Ar∩Ω(s) = 0 for all s ∈ C. Therefore, D(ζA,Ar∩Ω) = −∞.
Since ζA,Ω(s)− ζA,Ar∩Ω(s) is an entire function, we conclude that we also have that D(ζA,Ω) =
−∞. Since |Aε ∩Ω| = 0 for all sufficiently small ε > 0, we have Mr(A,Ω) = 0 for all r ∈ R, and
therefore, dimB(A,Ω) = −∞.

(b) Let us reason by contradiction and therefore assume that D(ζA,Ω) < 0. In particular,
ζA,Ω(s) is continuous at s = 0 (because it must then be holomorphic at s = 0, according to part
(a) of Theorem 2.1 above). By hypothesis, there exists an open cone K = Kr(a,G), such that
K ⊆ Ω. Using the inequality d(x,A) ≤ |x−a| (valid for all x ∈ RN since a ∈ Ω) and Lemma 2.9,
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we deduce that for any real number s ∈ (0, N),

ζA,Ω(s) ≥ ζA,K(s) =

∫

K

d(x,A)s−Ndx ≥
∫

K

|x− a|s−Ndx

≥ 1

m

∫

Br(a)

|x− a|s−Ndx =
NωN

m
rss−1,

where m is the positive constant appearing in Equation (2.2.1) of Lemma 2.9. This implies
that ζA,Ω(s) → +∞ as s → 0+, s ∈ R, which contradicts the holomorphicity (or simply, the
continuity) of ζA,Ω(s) at s = 0.

The cone condition can be replaced by a much weaker condition, as we will now explain in
the following proposition.

Proposition 2.11. Let (rk)k≥0 be a decreasing sequence of positive real numbers, converging to

zero. We define a subset of the cone Kr(a,G), as follows:

Kr(a,G, (rk)k≥0) =
{
x ∈ Kr(a,G) : |x− a| ∈

∞⋃

k=0

(r2k, r2k+1)
}
. (2.2.4)

If we assume that the sequence (rk)k≥1 is such that

∞∑

k=0

(−1)krsk → L > 0 as s → 0+, s ∈ R, (2.2.5)

then the conclusion of Proposition 2.10(b) still holds, with the cone condition involving K :=
K(a,G) replaced by the above modified cone condition, involving the set K′ := Kr(a,G, (rk)k≥0)
contained in K.

Proof. In order to establish this claim, it suffices to use a procedure analogous to the one used
in the proof of Proposition 2.10:

ζA,Ω(s) ≥
∫

K′
|x− a|s−Ndx ≥ 1

m

∞∑

k=0

∫

Br2k
(a)\Br2k+1

(s)

|x− a|s−Ndx

=
NωN

m
s−1

∞∑

k=0

(rs2k − rs2k+1) =
NωN

m
s−1

∞∑

k=0

(−1)krsk.

For example, if rk = 2−k, then condition (2.2.5) is fulfilled since
∞∑

k=0

(−1)krsk =
∞∑

k=0

(−1)k2−ks =
1

1 + 2−s
→ 1

2
as s → 0+, s ∈ R.

This concludes the proof of the proposition.

The following proposition (building on Example 2.8 above) shows that the box dimension
of a relative fractal drum can be negative, and even take on any prescribed negative value; see
Figure 1.

Proposition 2.12. Let A = {(0, 0)} and

Ω = {(x, y) ∈ R
2 : 0 < y < xα, x ∈ (0, 1)}, (2.2.6)

where α > 1. (See Figure 1.) Then the relative fractal drum (A,Ω) has a negative box dimension.

More specifically, dimB(A,Ω) exists, the relative fractal drum (A,Ω) is Minkowski measurable

and
dimB(A,Ω) = D(ζA,Ω) = 1− α < 0,

M1−α(A,Ω) =
1

1 + α
,

Dmer(ζA,Ω) ≤ 3(1− α).

(2.2.7)
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✲

✻

r

A

y = xα

Ω

dimB(A,Ω) < 0

Fig. 1. A relative fractal drum (A,Ω) with negative box dimension dimB(A,Ω) = 1 − α < 0
(here α > 1), due to the ‘flatness’ of the open set Ω at A; see Proposition 2.12. This provides a
further illustration of the drop in dimension phenomenon (for relative box dimensions).

Furthermore, s = 1− α is a simple pole of ζA,Ω.

Proof. First note that Aε = Bε((0, 0)). Therefore, for every ε > 0, we have

|Aε ∩ Ω| ≤
∫ ε

0

xαdx =
εα+1

α+ 1
.

If we choose a point (x(ε), y(ε)) such that

(x(ε), y(ε)) ∈ ∂(Aε) ∩ {(x, y) : y = xα, x ∈ (0, 1)},
then the following equation holds:

x(ε)2 + x(ε)2α = ε2. (2.2.8)

It is clear that

|Aε ∩ Ω| ≥
∫ x(ε)

0

xαdx =
x(ε)α+1

α+ 1
.

Letting D := 1− α, we conclude that

1

α+ 1

(x(ε)
ε

)α+1

≤ |Aε ∩ Ω|
ε2−D

≤ 1

α+ 1
, for all ε > 0. (2.2.9)

We deduce from (2.2.8) that x(ε) ∼ ε as ε → 0+, since

x(ε)

ε
= (1 + x(ε)2(α−1))−1/2 → 1 as ε → 0+; (2.2.10)

therefore, (2.2.9) implies that dimB(A,Ω) = D and MD(A,Ω) = 1/(α+ 1).
Using (2.2.9) again, we have that

0 ≤ f(ε) :=
1

α+ 1
− |Aε ∩ Ω|

ε2−D
≤ 1

α+ 1

(
1−

(x(ε)
ε

)α+1)
. (2.2.11)

Using (2.2.10) and the binomial expansion, we conclude that
(x(ε)

ε

)α+1

= 1− α+ 1

2
x(ε)2α−2 + o(x(ε)2α−2) as ε → 0+.

Hence, we deduce from (2.2.11) that

f(ε) = O(x(ε2α−2)) = O(ε2α−2) as ε → 0+.

Since |Aε ∩ Ω| = ε2−D((α+ 1)−1 + f(ε)), we conclude that

Dmer(ζA,Ω) ≤ D − (2α− 2) = 3(1− α).
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Furthermore, s = D is a simple pole.
Finally, we note that the equality D(ζA,Ω) = D follows from (2.1.1).

In the following lemma, we show that for any δ > 0, the sets of principal complex dimensions
of the RFDs (A,Ω) and (A,Aδ ∩ Ω) coincide.

Lemma 2.13. Assume that (A,Ω) is a relative fractal drum in RN . Then, for any δ > 0, we have

ζA,Ω ∼ ζA,Aδ∩Ω, (2.2.12)

where the equivalence relation ∼ is given in Definition 1.7. In particular,

dimPC(A,Ω) = dimPC(A,Aδ ∩ Ω) (2.2.13)

and therefore,

dimB(A,Ω) = dimB(A,Aδ ∩ Ω). (2.2.14)

Here, Aδ, the δ-neighborhood of A, can be taken with respect to any norm on RN . (This extra

freedom will be used in Corollary 2.14 just below.)

Proof. Recall that according to the definition of a relative fractal drum (A,Ω), there exists
δ1 > 0 such that d(x,A) < δ1 for all x ∈ Ω; see Definition 1.1. On the other hand, we have that
d(x,A) > δ for all x ∈ Ω \ Aδ. Therefore, we conclude that the difference

ζA,Ω(s)− ζA,Aδ∩Ω(s) =

∫

Ω\Aδ

d(x,A)s−Ndx

defines an entire function. This proves the desired equivalence in (2.2.12). The remaining claims
of the lemma follow immediately from this equivalence. Finally, the fact that any norm on RN

can be chosen to define Aδ follows from the equivalence of all the norms on RN .

The following result provides an example of a nontrivial relative fractal drum (A,Ω) such
that dimB(A,Ω) = −∞. It suffices to construct a domain Ω of R2 which is flat in a neighborhood
of one of its boundary points.

Corollary 2.14 (A maximally flat RFD). Let A = {(0, 0)} and

Ω′ = {(x, y) ∈ R
2 : 0 < y < e−1/x, 0 < x < 1}. (2.2.15)

Then dimB(A,Ω′) exists and

dimB(A,Ω′) = D(ζA,Ω′) = −∞. (2.2.16)

Proof. Let us fix α > 1. Then, by l’Hospital’s rule, we have that

lim
x→0+

e−1/x

xα
= lim

t→+∞
tα

et
= 0.

Hence, there exists δ = δ(α) > 0 such that 0 < e−1/x < xα for all x ∈ (0, δ); that is,

Ω′
δ(α) ⊂ Ωδ(α),

where
Ω′

δ(α) := {(x, y) ∈ R
2 : 0 < y < e−1/x, 0 < x < δ(α) }

and
Ωδ(α) := {(x, y) ∈ R

2 : 0 < y < xα, 0 < x < δ(α) }.
Using Lemma 2.13, with Ω′ instead of Ω and with the ℓ∞-norm on R2 instead of the usual
Euclidean norm (note that Ω′

δ(α) = Ω′ ∩ Bδ(α)(0), where Bδ(0) := {(x, y) ∈ R2 : |(x, y)|∞ < δ}
and |(x, y)|∞ := max{|x|, |y|}), along with Proposition 2.12, we see that

dimB(A,Ω′) = dimB(A,Ω′
δ(α)) ≤ dimB(A,Ωδ(α)) = 1− α.

The claim follows by letting α → +∞, since then, we have that

−∞ ≤ dimB(A,Ω′) ≤ dimB(A,Ω′) = −∞.
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Fig. 2. A relative fractal drum (A,Ω) with infinite flatness, as described in Remark 2.15. In other
words, Ω has infinite flatness near A; equivalently, dimB(A,Ω) = −∞, which provides an even
more dramatic illustration of the drop in dimension phenomenon (for relative box dimensions).

We conclude, as desired, that dimB(A,Ω) exists and is equal to −∞.

Remark 2.15. (Flatness and ‘infinitely sharp blade’). It is easy to see that Corollary 2.14 can be
significantly generalized. For example, it suffices to assume that a is a point on the boundary of
Ω such that the flatness property of A (at a) relative to Ω holds. This can even be formulated
in terms of subsets A of the boundary of Ω. We can imagine a bounded open set Ω ⊂ R3 with a
Lipschitz boundary ∂Ω, except on a subset A ⊂ ∂Ω, which may be a line segment, near which Ω
is flat; see Figure 2. A simple construction of such a set is Ω = Ω′ × (0, 1), where Ω′ is given as
in Corollary 2.14, and A = {(0, 0)} × (0, 1); see Equation (2.2.15). Note that this domain is not
Lipschitz near the points of A, and not even Hölderian. The flatness of a relative fractal drum

(A,Ω) can be defined by

fl(A,Ω) =
(
dimB(A,Ω)

)−
,

where (r)− := max{0,−r} is the negative part of a real number r. We say that the flatness of

(A,Ω) is nontrivial if fl(A,Ω) > 0, that is, if dimB(A,Ω) < 0. In the example mentioned just
above, we have a relative fractal drum (A,Ω) with infinite flatness, i.e., with fl(A,Ω) = +∞.
Intuitively, it can be viewed as an ‘ax’ with an ‘infinitely sharp’ blade.

2.3. Scaling property of relative distance zeta functions. We start this section with the
following result, which shows that if (A,Ω) is a given relative fractal drum, then for any λ > 0,
the zeta function ζλA,λΩ(s) of the scaled relative fractal drum λ(A,Ω) := (λA,λΩ) is equal to
the zeta function ζA,Ω(s) of (A,Ω) multiplied by λs.

Theorem 2.16 (Scaling property of relative distance zeta functions). Let ζA,Ω(s) be the relative

distance zeta function of an RFD (A,Ω). Then, for any positive real number λ, we have that

D(ζλA,λΩ)) = D(ζA,Ω) = dimB(A,Ω) and

ζλA,λΩ(s) = λsζA,Ω(s), (2.3.1)

for all s ∈ C with Re s > dimB(A,Ω) and any λ > 0. (See also Corollary 2.17 below for a more

general statement.)

Proof. The claim is established by introducing a new variable y = x/λ, and by noting that
d(λy, λA) = λd(y,A), for any y ∈ RN (which is an easy consequence of the homogeneity of
the Euclidean norm). Indeed, in light of part (b) of Theorem 2.1, for any s ∈ C with Re s >
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dimB(A,Ω) = D(ζA,Ω), we have successively:

ζλA,λΩ(s) =

∫

λΩ

d(x, λA)s−Ndx

=

∫

Ω

d(λy, λA)s−NλNdy

= λs

∫

Ω

d(y,A)s−Ndy = λsζA,Ω(s).

It follows that (2.3.1) holds and ζλA,λΩ is holomorphic for Re s > dimB(A,Ω). Since D(ζA,Ω) =
dimB(A,Ω) (by part (b) of Theorem 2.1), we deduce that D(ζλA,λΩ) ≤ D(ζA,Ω), for every
λ > 0. But then, replacing λ by its reciprocal λ−1 in this last inequality, we obtain the reverse
inequality (more specifically, we replace (A,Ω) by (λ−1A,λ−1Ω) to deduce that for every λ > 0,
D(ζA,Ω) ≤ D(ζλ−1A,λ−1Ω); we then substitute λ−1 for λ in this last inequality in order to obtain
the desired reversed inequality: for every λ > 0, D(ζA,Ω) ≤ D(ζλA,λΩ)), and hence, we conclude
that

dimB(A,Ω) = D(ζA,Ω) = D(ζλA,λΩ),

for all λ > 0, as desired.

We note that if L = (ℓj)j≥1 is a fractal string, and λ is a positive constant, then for the scaled
string λL := (λℓj)j≥1, the corresponding claim in Theorem 2.16 is trivial: ζλL(s) = λsζL(s), for
every λ > 0. Indeed, by definition of the geometric zeta function of a fractal string (see Equation
(1.2.8)), we have

ζλL(s) =
∞∑

j=1

(λℓj)
s = λs

∞∑

j=1

ℓsj = λsζL(s),

for Re s > D(ζL). (The same argument as above then shows that D(ζL) = D(ζλL).) Then, by
analytic (i.e., meromorphic) continuation, the same identity continues to hold in any domain to
which ζL can be meromorphically extended to the left of the critical line {Re s = D(ζL)}.

The following result supplements Theorem 2.16 in several different and significant ways.

Corollary 2.17. Fix λ > 0. Assume that ζA,Ω admits a meromorphic continuation to some

open connected neighborhood U of the open half-plane {Re s > dimB(A,Ω)}. Then, so does

ζλA,λΩ and the identity (2.3.1) continues to hold for every s ∈ U which is not a pole of ζA,Ω

(and hence, of ζλA,λΩ as well).
Moreover, if we assume, for simplicity, that ω is a simple pole of ζA,Ω (and hence also, of

ζλA,λΩ), then the following identity holds:

res(ζλ(A,Ω), ω) = λω res(ζA,Ω, ω). (2.3.2)

If s is a multiple pole, then an analogous statement can be made about the principal parts (instead
of the residues) of the zeta functions involved, as the reader can easily verify.

Proof. The fact that ζλA,λΩ is holomorphic at a given point s ∈ U if ζA,Ω is holomorphic at s (for
example, if Re s > dimB(A,Ω)), follows from (2.3.1) and the equality D(ζλA,λΩ) = D(ζA,Ω) =
dimB(A,Ω). An analogous statement is true if “holomorphic” is replaced with “meromorphic”.
More specifically, by analytic continuation of (2.3.1), ζλA,λΩ is meromorphic in an open connected
set U (containing the critical line {Re s = dimB(A,Ω)}) if and only if ζA,Ω is meromorphic in U ,
and then, clearly, identity (2.3.1) continues to hold for every s ∈ U which is not a pole of ζA,Ω

(and hence also, of ζλA,λΩ). Therefore, the first part of the corollary is established.
Next, assume that ω is a simple pole of ζA,Ω. Then, in light of (2.3.1) and the discussion in

the previous paragraph, we have that for all s in a punctured neighborhood of ω (contained in
U but not containing any other pole of ζA,Ω),

(s− ω)ζλ(A,Ω)(s) = λs ((s− ω)ζA,Ω(s)) . (2.3.3)



2.3. Scaling property of relative distance zeta functions 19

The fact that (2.3.2) holds now follows by letting s → ω, s 6= ω in (2.3.3). Indeed, we then have

res(ζA,Ω, ω) = lim
s→ω

(s− ω)ζA,Ω(s),

and similarly for res(ζλ(A,Ω), ω).

The scaling property of relative zeta functions (established in Theorem 2.16 and Corol-
lary 2.17) motivates us to introduce the notion of relative fractal spray, which is very close to
(but not identical with) the usual notion of fractal spray introduced by the first author and
Carl Pomerance in [LapPo3] (see [Lap-vFr3] and the references therein, including [LapPe2–3,
LapPeWi1–2, Pe, PeWi, DemDenKoÜ, DemKoÖÜ]). First, we define the operation of union of
(disjoint) families of RFDs (Definition 2.18).

Definition 2.18. Let (Aj ,Ωj)j≥1 be a countable family of relative fractal drums in RN , such
that the corresponding family of open sets (Ωj)j≥1 is disjoint (i.e., Ωj ∩ Ωk = ∅ for j 6= k),
Aj ⊆ Ωj for each j ∈ N, and the set Ω := ∪∞

j=1Ωj is of finite N-dimensional Lebesgue measure
(but may be unbounded). Then, the union of the (finite or countable) family of relative fractal

drums (Aj ,Ωj) (j ≥ 1) is the relative fractal drum (A,Ω), where A := ∪∞
j=1Aj and Ω := ∪∞

j=1Ωj .
We write

(A,Ω) =
∞⊔

j=1

(Aj ,Ωj). (2.3.4)

It is easy to derive the following countable additivity property of the distance zeta functions.

Theorem 2.19. Assume that (Aj ,Ωj)j≥1 is a finite or countable family of RFDs satisfying

the conditions of Definition 2.18, and let (A,Ω) be its union (in the sense of Equation (2.3.4)
appearing in Definition 2.18). Furthermore, assume that the following condition is fulfilled:

For any j ∈ N and x ∈ Ωj , we have that d(x,A) = d(x,Aj). (2.3.5)

Then, for Re s > dimB(A,Ω),

ζA,Ω(s) =
∞∑

j=1

ζAj ,Ωj (s). (2.3.6)

Condition (2.3.5) is satisfied, for example, if for every j ∈ N, Aj is equal to the boundary of Ωj

in RN (that is, Aj := ∂Ωj).

Proof. The claim follows from the following computation, which is valid for Re s > dimB(A,Ω):

ζA,Ω(s) =

∫

Ω

d(x,A)s−Ndx =

∞∑

j=1

∫

Ωj

d(x,A)s−Ndx

=

∞∑

j=1

∫

Ωj

d(x,Aj)
s−Ndx =

∞∑

j=1

ζAj,Ωj (s).

(2.3.7)

More specifically, clearly, (2.3.7) holds for every real number s such that s > dimB(A,Ω) ≥
D(ζA,Ω). Therefore, for such a value of s,

ζA,Ωj (s) =

∫

Ωj

d(x,A)s−Ndx ≤
∫

Ω

d(x,A)s−Ndx = ζA,Ω(s) < ∞,

for every j ≥ 1. Hence,

sup
j≥1

{D(ζA,Ωj )} ≤ D(ζA,Ω) ≤ dimB(A,Ω), (2.3.8)

from which (2.3.7) now follows for all s ∈ C with Re s > dimB(A,Ω), in light of the countable
additivity of the local complex Borel measure (and hence, locally bounded measure) on Ω, given
by dγ(x) := d(x,A)s−Ndx. (Note that according to the hypothesis of Definition 2.18, we have
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|Ω| < ∞, so that dγ is indeed a local complex Borel measure; see, e.g., [Foll] or [Ru], along with
[DolFri], [JohLap], [JohLapNi] and [LapRaŽu1, Appendix A] for the notion of a local measure.)

Remark 2.20. In the statement of Theorem 2.19, the numerical series on the right-hand side
of (2.3.6) converges absolutely (and hence, converges also in C) for all s ∈ C such that Re s >
dimB(A,Ω). In particular, for every real number s such that s > dimB(A,Ω), it is a convergent
series of positive terms (i.e., it has a finite sum). It remains to be investigated whether (and
under which hypotheses) Equation (2.3.6) continues to hold for all s ∈ C in a common domain
of meromorphicity of the zeta functions ζA,Ω and ζA,Ωj for j ≥ 1 (away from the poles). At
the poles, an analogous question could be raised for the corresponding residues (assuming, for
simplicity, that the poles are simple).

2.4. Relative tube zeta functions. We begin this section by introducing the relative tube

zeta function associated with the relative fractal drum (A,Ω) in RN . It is defined by

ζ̃A,Ω(s) :=

∫ δ

0

ts−N−1|At ∩ Ω| dt, (2.4.1)

for all s ∈ C with Re s sufficiently large, where δ > 0 is fixed. As we see, ζ̃A,Ω involves the relative
tube function t 7→ |At ∩ Ω|. As was noted in Remark 2.4, if Ω := Aδ with A ⊂ RN bounded, we

recover the tube zeta function of the set A; that is, ζ̃A(s) :=
∫ δ

0
ts−N−1|At|dt, for all s ∈ C with

Re s sufficiently large.

The abscissa of convergence of the relative tube zeta function ζ̃A,Ω is given by D(ζ̃A,Ω) =
dimB(A,Ω). This follows from the following fundamental identity (or functional equation), which
connects the relative tube zeta function ζ̃A,Ω and the relative distance zeta function ζA,Ω, defined
by (1.2.7):

ζA,Aδ∩Ω(s) = δs−N |Aδ ∩ Ω|+ (N − s)ζ̃A,Ω(s), (2.4.2)

for all s ∈ C such that Re s > dimB(A,Ω). Its proof is based on the the known identity
∫

Aδ∩Ω

d(x,A)−γ dx = δ−γ |Aδ ∩ Ω|+ γ

∫ δ

0

t−γ−1|At ∩ Ω|dt, (2.4.3)

where γ > 0; see [Žu1, Theorem 2.9(a)], or a more general form provided in [Žu2, Lemma 3.1].
As a special case, when Ω := Aδ with A ⊂ RN bounded, Equation (2.4.2) reduces to

ζA(s) = δs−N |Aδ|+ (N − s)ζ̃A(s), (2.4.4)

for all s ∈ C such that Re s > dimBA, which has been obtained in [LapRaŽu2].

The following proposition connects the residues of the relative tube and distance functions.

Proposition 2.21. Assume that (A,Ω) is an RFD in RN . Let U be a connected open subset of

C to which the relative distance zeta function ζA,Ω can be meromorphically extended, and such

that it contains the critical line {Re s = D(ζA,Ω)}. Then the relative tube function ζ̃A,Ω can be

meromorphically extended to U as well. Furthermore, if ω ∈ U is a simple pole of ζA,Ω, then it

is also a simple pole of ζ̃A,Ω and we have that

res(ζA,Ω, ω) = (N − ω) · res(ζ̃A,Ω, ω). (2.4.5)

Moreover, the functional equation (2.4.2) continues to hold for all s ∈ U .

The proposition also holds if we interchange the relative distance function and relative tube

function in the above statement.

Proof. Since the difference ζA,Ω(s)− ζA,Aδ∩Ω(s) = ζA,Ω\Aδ∩Ω(s) is an entire function (note that
δ < d(x,A) < c, where c := supx∈A d(x,A) < ∞; see property (1.2.2) in Definition 1.1 of an
RFD), it suffices to prove the proposition in the case of the RFD (A,Aδ ∩ Ω) instead of (A,Ω).
The claim now follows from the functional equation (2.4.2). This concludes the proof.
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Example 2.22 (Torus relative fractal drum). Let Ω be an open solid torus in R3 defined by two
radii r and R, where 0 < r < R < ∞, and let A := ∂Ω be its topological boundary. In order
to compute the tube zeta function of the torus RFD (A,Ω), we first compute its tube function.
Let δ ∈ (0, r) be fixed. Using Cavalieri’s principle, we have that

|At ∩ Ω|3 = 2πR
(
r2 − (r − t)2

)
= 2πR(2rt− t2), (2.4.6)

for all t ∈ (0, δ), from which it follows that

ζ̃A,Ω(s) :=

∫ δ

0

ts−4|At ∩ Ω|3 dt = 2πR
(
2r

δs−2

s− 2
− δs−1

s− 1

)
, (2.4.7)

for all s ∈ C such that Re s > 2. The right-hand side defines a meromorphic function on the
entire complex plane, so that, using the principle of analytic continuation, ζ̃A,Ω can be (uniquely)
meromorphically extended to the whole of C. In particular, we see that the multiset of complex
dimensions of the torus RFD (A,Ω) is given by P(A,Ω) = {1, 2}. Each of the complex dimensions
1 and 2 is simple. In particular, we have that

dimPC(A,Ω) = {2} and res(ζ̃A,Ω, 2) = 4πRr. (2.4.8)

Also, dimB(A,Ω) = D(ζ̃A) = 2. From Equation (2.5.8) appearing in Theorem 2.24 below, we
conclude that the 2-dimensional Minkowski content of the torus RFD (A,Ω) is given by

M2(A,Ω) = 4πRr. (2.4.9)

Since |At|3 = 2πR
(
(r + t)2 − (r − t)2

)
, we can also easily compute the ‘ordinary’ tube zeta

function ζ̃A of the torus surface A in R3:

ζ̃A(s) = 8πRr
δs−2

s− 2
, (2.4.10)

for all s ∈ C. In particular, res(ζ̃A, 2) = 8πRr. Using Equations (2.4.2) and (2.4.4), we deduce
from (2.4.10) the corresponding expressions for the distance zeta functions, which are valid for
all s ∈ C:

ζA,Ω(s) = 2πR
(
2r

δs−1

s− 2
− 2

s− 1

)
, ζA(s) = 8πRr

δs−2

s− 2
. (2.4.11)

Also,
P(ζA,Ω) = P(ζ̃A,Ω) = {1, 2}

and
Pc(ζA,Ω) = Pc(ζ̃A,Ω) = {2}

(with each pole 1 and 2 being simple) and

dimB(A,Ω) = D(ζA,Ω) = D(ζ̃A,Ω) = 2.

Furthermore, we see that res(ζA,Ω, 2) = 4πRr and res(ζA, 2) = 8πRr, in agreement with (2.4.5)
in Proposition 2.21 above.

One can easily extend the example of the 2-torus to any (smooth) closed submanifold of RN

(and, in particular, of course, to the n-torus, with n ≥ 2). This can be done by using Federer’s
tube formula [Fed1] for sets of positive reach, which extends and unifies Weyl’s tube formula
[Wey] for (proper) smooth submanifolds of RN and Steiner’s formula (obtained by Steiner [Stein]
and his successors) for compact convex subsets of RN . The global form of Federer’s tube formula
expresses the volume of t-neighborhoods of a (compact) set of positive reach(2) A ⊂ RN as a

(2) A closed subset C of RN is said to be of positive reach if there exists δ0 > 0 such that

every point x ∈ RN within a distance less than δ0 from C has a unique metric projection onto C;
see [Fed1]. The reach of C is defined as the supremum of all such positive numbers δ0. Clearly,
every closed convex subset of RN is of infinite (and hence, positive) reach.
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polynomial of degree at most N in t, whose coefficients are (essentially) the so-called Federer’s

curvatures and which generalize Weyl’s curvatures in [Wey] (see [BergGos] for an exposition)
and Steiner’s curvatures in [Stein] (see [Schn1, Chapter 4] for a detailed exposition) in the
case of submanifolds and compact convex sets, respectively. We also draw the attention of the
reader to the related notions of ‘fractal curvatures’ and ‘fractal curvature measures’ for fractal
sets, introduced by Winter in [Wi] and Winter and Zahle in [WiZä1–3]; for information on
closely related topics in integral geometry and on tube formulas, see also, for example, [Stein],
[Mink], [Wey], [Bla], [Fed1], [KlRot], [Zä1–3], [Schn1–2], [HugLasWeil], [LapPe3], [LapPeWi1],
[LapRaŽu1] and [LapRaŽu4–6], along with the many relevant references therein.

In the present context, for a compact set of positive reach C ⊂ RN , it is easy to deduce from
the tube formula in [Fed1] an explicit expression for ζ̃A(s), as follows (with A := ∂C).(3)

Proposition 2.23. Let A = ∂C be the boundary of a (nonempty) compact set C of positive

reach in RN . Then, for any δ > 0 sufficiently small (and less than the reach of A, in particular),
we have that

ζ̃A(s) := ζ̃A(s; δ) =
N−1∑

k=0

ck
δs−k

s− k
, (2.4.12)

where |At| =
∑N−1

k=0 ckt
N−k for all t ∈ (0, δ) and the coefficients ck are the (normalized) Federer

curvatures. (From the functional equation (2.4.2) above, one then deduces at once a corresponding

explicit expression for the distance zeta function ζA(s) := ζA(s; δ).)

Hence, dimB A exists and

D := D(ζ̃A) = D(ζA) = dimB A = max{k ∈ {0, 1, . . . , N − 1} : ck 6= 0} (2.4.13)

and (since D ≤ N − 1 < N),

P := P(ζ̃A) = P(ζA) ⊆ {0, 1, . . . , N − 1}. (2.4.14)

In fact,

P =
{
k ∈ {0, 1, . . . , N − 1} : ck 6= 0

}
⊆ {k0, . . . , D}, (2.4.15)

where k0 := min
{
k ∈ {0, 1, . . . , D} : ck 6= 0

}
. Furthermore, each of the complex dimensions of

A is simple.

Finally, if C is such that its affine hull is all of RN (which is the case when the interior

of C is nonempty and, in particular, if C is a convex body), then D = N − 1, while if C is

a (smooth) submanifold with boundary the closed d-dimensional smooth submanifold A := ∂C
(with 0 ≤ d ≤ N − 1), then D = d.(4)

For the 2-torus A, we have N = 3, D = 2 (since the Euler characteristic of A is equal to
zero), c2 6= 0,(5) c1 6= 0, and hence, c0 = 0, k0 = 1 and P = {1, 2}, as was found in Example
2.22 via a direct computation.

We note that much more general tube formulas called “fractal tube formulas” are obtained
in [LapRaŽu5] (as well as in [LapRaŽu1, Chapter 5], see also [LapRaŽu4]) for arbitrary bounded

(3) Relative versions are also possible, for example for the RFD (A,
◦
C), where

◦
C is the interior

of C, assumed to be nonempty. Under appropriate assumptions, the associated expression for
ζ̃A may take a slightly different form (because the corresponding tube formula would be of
pluriphase type in the sense of [LapPe2–3,LapPeWi1], that is, piecewise polynomial of degree
≤ N − 1) but Equation (2.4.14) would remain valid in this case.

(4) One could also work with a closed (i.e., boundaryless) d-dimensional submanifold of RN ,
with 0 ≤ d ≤ N − 1.

(5) Note that c2 is just proportional to the area of the 2-torus, with the proportionality
constant being a standard positive constant.
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sets (and even more generally, RFDs) in RN , under mild growth assumptions on the associated
fractal zeta functions.

2.5. Meromorphic extensions of relative zeta functions. We shall use the following as-
sumption on the asymptotics of the relative tube function t 7→ |At ∩ Ω|:

|At ∩ Ω| = tN−Dh(t)(M+O(tα)) as t → 0+, (2.5.1)

where M > 0, α > 0 and D ≤ N are given in advance. Here, we assume that the function h(t)
is positive and has a sufficiently slow growth near the origin, in the sense that for any c > 0,
h(t) = O(tc) as t → 0+. Typical examples of such functions are h(t) = (log t−1)m, m ≥ 1, or
more generally,

h(t) =
(
log . . . log︸ ︷︷ ︸

n

(t−1)
)m

(the m-th power of the n-th iterated logarithm of t−1, for n ≥ 1), and in these cases we obviously
have MD(A,Ω) = +∞. For this and other examples, see [HeLap]. The function t 7→ tDh(t)−1

is usually called a gauge function, but for the sake of simplicity, we shall instead use this name
only for the function h(t).

Assuming that a relative fractal drum (A,Ω) in RN is such that D = dimB(A,Ω) exists, and
MD

∗ (A,Ω) = 0 or +∞ (or M∗D(A,Ω) = 0 or +∞), it makes sense to define as follows a new
class of relative lower and upper Minkowski contents of (A,Ω), associated with a suitably chosen
gauge function h(t):

MD
∗ (A,Ω, h) = lim inf

t→0+

|At ∩ Ω|
tN−Dh(t)

,

M∗D(A,Ω, h) = lim sup
t→0+

|At ∩ Ω|
tN−Dh(t)

.

(2.5.2)

The aim is to find an explicit gauge function so that these two contents are in (0,+∞), and
the functions r 7→ Mr

∗(A,Ω, h) and r 7→ M∗r(A,Ω, h), r ∈ R, defined exactly as in (2.5.2),
except for D replaced with r, have a jump from +∞ to 0 when r crosses the value of D. In this
generality, the above contents are called gauge relative Minkowski contents (with respect to h).

If for some gauge function h, say, we have that MD(A,Ω, h) ∈ (0,+∞) (which means, as
usual, that MD

∗ (A,Ω, h) = M∗D(A,Ω, h) and that this common value, denoted by MD(A,Ω, h),
lies in (0,+∞)), we say (as in [HeLap]) that the fractal drum (A,Ω) is h-Minkowski measurable.

In what follows, we denote the Laurent expansion of a meromorphic extension (assumed to
exist) of the relative tube zeta function ζ̃A,Ω to an open, connected neighborhood of s = D (more
specifically, an open punctured disk centered at s = D) by

ζ̃A,Ω(s) =
∞∑

j=−∞
cj(s−D)j , (2.5.3)

where, of course, cj = 0 for all j ≪ 0 (that is, there exists j0 ∈ Z such that cj = 0 for all j < j0).

Let us first introduce some notation. Given a T -periodic function G : R → R, we denote by
G0 its truncation to [0, T ]; that is

G0(τ ) =

{
G(t) if τ ∈ [0, T ]

0 if τ /∈ [0, T ],
(2.5.4)

while the Fourier transform of G0 is denoted by Ĝ0:

Ĝ0(t) =

∫ +∞

−∞
e−2πi tτG0(τ ) dτ =

∫ T

0

e−2πi tτG(τ ) dτ, (2.5.5)

where i :=
√
−1 is the imaginary unit.



24 2. Basic properties of relative distance and tube zeta functions

The following theorem shows that, in order to obtain a meromorphic extension of the zeta
function to the left of the abscissa of convergence, it is important to have some information about
the second term in the asymptotic expansion of the relative tube function t 7→ |Aδ ∩ Ω| near
t = 0. We stress that the presence (in Theorem 2.24) of the gauge function h(t) := (log t−1)m is
closely related to the multiplicity of the principal complex dimension D, which is equal to m+1.
Theorem 2.24 extends [LapRaŽu3, Theorem 4.24] to the general setting of RFDs.

Observe that since the case when m = 0 is allowed in Theorem 2.24 just below, that theorem
enables us to deal, in particular, with the usual class of Minkowski measurable RFDs (for which
the gauge function h is trivial, i.e., satisfies h(t) ≡ 1).

Theorem 2.24 (Minkowski measurable RFDs). Let (A,Ω) be a relative fractal drum in RN

such that (2.5.1) holds for some D ≤ N , M > 0, α > 0 and with h(t) := (log t−1)m for

all t ∈ (0, 1), where m is a nonnegative integer. Then the relative fractal drum (A,Ω) is h-
Minkowski measurable, dimB(A,Ω) = D, and MD(A,Ω, h) = M. Furthermore, the relative tube

zeta function ζ̃A,Ω has for abscissa of convergence D(ζ̃A,Ω) = D, and it possesses a (necessarily
unique) meromorphic extension (at least) to the open right half-plane {Re s > D − α}; that is,
the abscissa of meromorphic continuation Dmer(ζ̃A,Ω) of ζ̃A,Ω can be estimated as follows:

Dmer(ζ̃A,Ω) ≤ D − α. (2.5.6)

Moreover, s = D is the unique pole in this half-plane, and it is of order m+ 1. In addition, the

coefficients of the Laurent series expansion (2.5.3) corresponding to the principal part of ζ̃A,Ω at

s = D are given by

c−m−1 = m!M,

c−m = · · · = c−1 = 0 (provided m ≥ 1.)
(2.5.7)

If m = 0, then D is a simple pole of ζ̃A,Ω and we have that

res(ζ̃A,Ω, D) = M. (2.5.8)

Proof. Let us set

ζ1(s) = Mzm(s), zm(s) =

∫ δ

0

ts−D−1(log t−1)mdt,

ζ2(s) =

∫ δ

0

ts−N−1(log t−1)m O(tN−D+α) dt.

(2.5.9)

Since ζ̃A,Ω(s) = ζ1(s)+ ζ2(s), we can proceed as follows. It is easy to see that for each ε > 0, we
have (log t−1)m = O(t−ε) as t → 0+; hence,

|ζ2(s)| ≤
∫ δ

0

O(tRe s−1−D+(α−ε)) dt.

Then, since the integral is well defined for all s ∈ C with Re s > D − (α − ε), we deduce that
D(ζ2) ≤ D − (α− ε). Letting ε → 0+, we obtain the desired inequality: D(ζ2) ≤ D − α.

By means of the change of variable τ = log t−1 (for 0 < t ≤ δ), it is easy to see that

zm(s) =

∫ ∞

log δ−1

e−τ(s−D)τmdτ. (2.5.10)

Integration by parts yields the following recursion relation, where we have to assume (at first)
that Re s > D:

zm(s) =
1

s−D

(
(log δ−1)mδs−D +mzm−1(s)

)
, for m ≥ 1, (2.5.11)

and z0(s) = (s −D)−1δs−D. Since D(ζ2) ≤ D − α, it is clear that the coefficients cj , j < 0, of
the Laurent series expansion (2.5.3) of ζ̃A,Ω(s) = ζ1(s)+ζ2(s) in a connected open neighborhood
of s = D do not depend on δ > 0. Indeed, changing the value of δ > 0 to δ1 > 0 in (2.4.1) is
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equivalent to adding
∫ δ1
δ

ts−N−1|At ∩ Ω| dt, which is an entire function of s. Therefore, without
loss of generality, we may take δ = 1 in (2.5.11):

zm(s) =
m

s−D
zm−1(s) = · · · = m!

(s−D)m
z0(s) =

m!

(s−D)m+1
. (2.5.12)

In this way, we obtain that

ζ1(s) =
m!

(s−D)m+1
M, (2.5.13)

and we can meromorphically continue ζ1 from the half-plane {Re s > D} to the entire complex
plane. The claim then follows from the equality ζ̃A,Ω(s) = ζ1(s) + ζ2(s).

A large class of examples of RFDs satisfying condition (2.5.1), involving power logarithmic
gauge functions, can be found in Example 4.27 of §4.4 below, based on [LapRaŽu6, Theorem
5.4]. (In fact, [LapRaŽu6, Theorem 5.4] can be understood as a partial converse of the above
result, Theorem 2.24.) These RFDs are constructed by using consecutive tensor products of a
suitable bounded fractal string L, i.e., by an iterated spraying of L; see [LapRaŽu5] for details.
A nontrivial class of examples is already obtained when L is the ternary Cantor string. A similar
comment can be made about the analogous condition (2.5.14) appearing in the folowing theorem.

Theorem 2.25 (Minkowski nonmeasurable RFDs). Let (A,Ω) be a relative fractal drum in RN

such that there exist D ≤ N , a nonconstant periodic function G : R → R with minimal period

T > 0, and a nonnegative integer m, satisfying

|At ∩ Ω| = tN−D(log t−1)m
(
G(log t−1) +O(tα)

)
as t → 0+. (2.5.14)

Then dimB(A,Ω) exists and dimB(A,Ω) = D, G is continuous, and

MD
∗ (A,Ω, h) = minG, M∗D(A,Ω, h) = maxG,

where h(t) := (log t−1)m for all t ∈ (0, 1). Furthermore, the tube zeta function ζ̃A,Ω has for

abscissa of convergence D(ζ̃A,Ω) = D, and it possesses a (necessarily unique) meromorphic

extension (at least) to the open right half-plane {Re s > D − α}; that is,
Dmer(ζ̃A,Ω) ≤ D − α. (2.5.15)

Moreover, all of its poles located in this half-plane are of order m+1, and the set of poles P(ζ̃A,Ω)
is contained in the vertical line {Re s = D}. More precisely,

P(ζ̃A,Ω)) = Pc(ζ̃A,Ω)

=

{
sk = D +

2π

T
ki ∈ C : Ĝ0

(
k

T

)
6= 0, k ∈ Z

}
,

(2.5.16)

where s0 = D ∈ P(ζ̃A,Ω) and Ĝ0 is the Fourier transform of G0 (as given by (2.5.5)). The

nonreal poles come in complex conjugate pairs; that is, for each k ≥ 1, if sk is a pole, then s−k

is a pole as well.

In addition, for any given k ∈ Z, if ζ̃A,Ω(s) =
∑∞

j=−∞ c
(k)
j (s− sk)

j is the Laurent expansion

of the tube zeta function in a connected open neighborhood of s = sk, then

c
(k)
j = 0 for j < 0, j 6= −m− 1,

c
(k)
−m−1 =

m!

T
Ĝ0

(
k

T

)
,

(2.5.17)

where G0 is the restriction of G to the interval [0, T ], and Ĝ0 is given by (2.5.5), as above. Also,

|c(k)−m−1| ≤
m!

T

∫ T

0

G(τ ) dτ, lim
k→∞

c
(k)
−m−1 = 0. (2.5.18)
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In particular, for k = 0, that is, for s0 = D, we have

c
(0)
−m−1 =

m!

T

∫ T

0

G(τ ) dτ,

m!MD
∗ (A,Ω, h) < c

(0)
−m−1 < m!M∗D(A,Ω, h).

(2.5.19)

If m = 0 (i.e., h(t) = 1 for all t ∈ (0, 1)), then D is a simple pole of ζ̃A,Ω and we have that

res(ζ̃A,Ω, D) =
1

T

∫ T

0

G(τ ) dτ = M̃ (2.5.20)

and

MD
∗ (A,Ω) < res(ζ̃A,Ω, D) < M∗D(A,Ω), (2.5.21)

where M̃ = M̃D(A,Ω) denotes the average Minkowski content of (A,Ω). (See Remark 2.26

below.)

Proof. For m ∈ N0, let us define zm by

zm(s) =

∫ δ

0

ts−D−1(log t−1)mG(log t−1) dt.

The function z0(s) is the exact counterpart of ζ1(s) from the proof of [LapRaŽu3, Theorem
4.24], with |At| changed to |At ∩ Ω| and where, much as in that proof, ζ̃A,Ω = ζ1 + ζ2 and ζ2 is

an entire function. It is easy to see that zm(s) = (−1)mz
(m)
0 (s); therefore, the functions zm(s)

and z0(s) have the same meromorphic extension, and the same sets of poles. This proves that
ζ̃A,Ω(s) can be meromorphically extended from {Re s > D} to the half-plane {Re s > D − α}.
The set of poles (complex dimensions) of the relative zeta function, belonging to this half-plane,
is given by

P(ζ̃A,Ω) = P(zm) = P(z0)

=

{
sk = D +

2π

T
ki ∈ C : Ĝ0

(
k

T

)
6= 0, k ∈ Z

}
.

Each of these poles is simple. Furthermore, if

z0(s) =

∞∑

j=−1

a
(k)
j (s− sk)

j

is the Laurent series of z0(s) in a neighborhood of s = sk, then

z
(m)
0 (s) = (−1)mm!a

(k)
−1(s− sk)

−m−1 +
∞∑

j=0

(m+ j)!

j!
a
(k)
m+j(s− sk)

j .

Hence,

c
(k)
−m−1 = m!a

(k)
−1 = m!

1

T
Ĝ0

(
k

T

)
,

where, in the last equality, we have used [LapRaŽu3, Eq. (4.32)]. The remaining claims are
proved much as the corresponding ones made in [LapRaŽu3, Theorem 4.24].

Remark 2.26. In Equation (2.5.20), M̃ = M̃D(A,Ω), the average Minkowski content of (A,Ω),
is defined as the multiplicative Cesàro average of t−(N−D)|At ∩ Ω|:

M̃D(A,Ω) := lim
τ→+∞

1

log τ

∫ 1

1/τ

|At ∩ Ω|
tN−D

dt

t
, (2.5.22)

provided the limit exists in [0,+∞]. (See Equation (2.5.1) and compare with [Lap-vFr3, Defini-
tion 8.29, Eq. (8.55)].)
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Remark 2.27. In light of the functional equation (2.4.2) connecting ζA,Ω and ζ̃A,Ω, Theorems 2.24
and 2.25 also hold for relative distance zeta functions (instead of relative tube zeta functions),
provided D < N , and in that case, all of the expressions for the residues and the Laurent
coefficients must be multiplied by N −D

2.6. Construction of ∞-quasiperiodic relative fractal drums. Our construction of quasi-
periodic RFDs (see Definition 2.37 below) given in this section is based on a certain two-
parameter family of generalized Cantor sets, which we now describe.

Definition 2.28. The generalized Cantor sets C(m,a) are determined by an integer m ≥ 2 and a
positive real number a such that ma < 1. In the first step of the analog of Cantor’s construction
of the standard ternary Cantor set, we start with m equidistant, closed intervals in [0, 1] of
length a, with m− 1 ‘holes’, each of length (1−ma)/(m− 1). In the second step, we continue
by scaling by the factor a each of the m intervals of length a; and so on, ad infinitum. The
(two-parameter) generalized Cantor set C(m,a) is defined as the intersection of the decreasing
sequence of compact sets constructed in this way. It is easy to check that C(m,a) is a perfect,
uncountable compact subset of R. (Recall that a perfect set is a closed set without any isolated
points.) Furthermore, C(m,a) is also self-similar.

In order to avoid any possible confusion, we note that the generalized Cantor sets introduced
here are different from the generalized Cantor strings introduced and studied in [Lap-vFr3,
Chapter 10]. With our present notation, the classic ternary Cantor set is obtained as C(2,1/3).

We note that the box dimension of C(m,a) exists and is equal to its Hausdorff dimension, as
well as its similarity dimension (here, log1/a m). The proof of this fact in the case of the classic
Cantor set can be found in [Fal1] and is due to Moran [Mora] (in the present case when N = 1);
see also [Hut]. For any pair (m,a) as above, this follows from a general result in [Hut] (described
in [Fal1, Theorem 9.3]) because C(m,a) is a self-similar set satisfying the open set condition. (See
also [Mora].)

It can be shown that the generalized Cantor sets C(m,a) have the following properties. Apart
from the proof of (2.6.5), the proof of the next proposition is similar to that for the standard
Cantor set (see [Lap-vFr3, Eq. (1.11)]).

Proposition 2.29. If C(m,a) ⊂ R is the generalized Cantor set introduced in Definition 2.28,

where m is an integer, m ≥ 2, and a ∈ (0, 1/m), then

D := dimB C(m,a) = D(ζA) = log1/a m. (2.6.1)

Furthermore, the tube formula associated with C(m,a) is given by

|C(m,a)
t | = t1−DG(log t−1) (2.6.2)

for all t ∈ (0, 1−ma
2(m−1)

), where G = G(τ ) is a nonconstant periodic function, with minimal period

T = log(1/a), and is defined by

G(τ ) = cD−1(ma)g(
τ−c
T ) + 2 cDmg( τ−c

T ). (2.6.3)

Here, c = 1−ma
2(m−1)

, and g : R → [0,+∞) is the 1-periodic function defined by g(x) = 1 − x for

x ∈ (0, 1].

Moreover,

MD
∗ (C(m,a)) = minG =

1

D

(
2D

1−D

)1−D

,

M∗D(C(m,a)) = maxG =

(
1−ma

2(m− 1)

)D−1
m(1− a)

m− 1
.

(2.6.4)
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Finally, if we assume that δ ≥ 1−ma
2(m−1)

, then the distance zeta function of A := C(m,a) is

given by

ζA(s) :=

∫ 1+δ

−δ

d(x,A)s−2dx =

(
1−ma

2(m− 1)

)s−1
1−ma

s(1−mas)
+

2δs

s
. (2.6.5)

As a result, ζA(s) admits a meromorphic continuation to all of C, given by the last expression

in (2.6.5). In particular, the set of poles of ζA(s) (in C) and the residue of ζA(s) at s = D are

respectively given by

P(ζA) = (D + piZ) ∪ {0} and

res(ζA, D) =
1−ma

DT

(
1−ma

2(m− 1)

)D−1

,
(2.6.6)

where p = 2π/T is the oscillatory period (in the sense of [Lap-vFr3]). Furthermore,

D =
logm

2π
p,

and both p → 0+ and D → 0+ as a → 0+. In particular, P(ζA) converges to the imaginary axis

in the Hausdorff metric, as a → 0+. Finally, each pole in P(ζA) is simple.

In the sequel, we shall need the following important theorem from transcendental number
theory, due to Baker [Ba, Theorem 2.1].

Theorem 2.30 (Baker, [Ba, Theorem 2.1]). Let n ∈ N with n ≥ 2. If m1, . . . ,mn are positive

algebraic numbers such that logm1, . . . , logmn are linearly independent over the rationals, then

1, logm1, . . . , logmn

are linearly independent over the field of all algebraic numbers (or algebraically independent, in

short). In particular, the numbers logm1, . . . , logmn are transcendental, as well as their pairwise

quotients.

Here, we describe a general construction of quasiperiodic fractal drums possessing infinitely
many algebraically incommensurable periods. It is based on properties of generalized Cantor
sets, as well as on Baker’s theorem (Theorem 2.30 just above).

Let m ≥ 2 be a given integer and D ∈ (0, 1) a given real number. Then, for a > 0 defined
by a = m−1/D, we have am = m1−1/D < 1, and hence, the generalized Cantor set A = C(m,a)

is well defined and dimB A = log1/a m = D.

Definition 2.31. A finite set of real numbers is said to be rationally (resp., algebraically) linearly
independent or simply, rationally (resp., algebraically) independent, if it is linearly independent
over the field of rational (resp., algebraic) real numbers.

Definition 2.32. A sequence (Ti)i≥1 of real numbers is said to be rationally (resp., algebraically)
linearly independent if any of its finite subsets is rationally (resp., algebraically) independent.
We then say that (Ti)i≥1 is rationally (resp., algebraically) independent, for short.

Definition 2.33. Let m ≥ 2 be a positive integer. Let p = (pi)i≥1 be the sequence of all prime
numbers, arranged in increasing order; that is,

p = (2, 3, 5, 7, 11, . . . ).

We then define the exponent sequence e = e(m) := (αi)i≥1 associated with m, where αi ≥ 0 is
the multiplicity of pi in the factorization of m. We also let

p
e :=

∏

{i≥1:αi>0}
pαi
i . (2.6.7)

The set of all sequences e with components in N0 = N ∪ {0}, such that all but at most finitely
many components are equal to zero, is denoted by (N0)

∞
c .
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With this definition, for any integer m ≥ 2, we obviously have m = p e(m). Conversely, any
e ∈ (N0)

∞
c defines a unique integer m ≥ 2 such that m = p e.

Definition 2.34. Given an exponent vector e = (αi)i≥1 ∈ (N0)
∞
c , we define the support of e as

the set of all indices i ∈ N for which αi > 0, and we write

S(e) = supp(e) := {i ≥ 1 : αi > 0}. (2.6.8)

The support of an integer m ≥ 2 is denoted by suppm and defined by suppm := supp e(m).

The following definition will be useful in the sequel.

Definition 2.35. We say that a set {ei : i ≥ 1} of exponent vectors is rationally linearly

independent if any of its finite subsets is linearly independent over Q. We then say for short that
the exponent vectors are rationally independent.

The following two definitions, Definition 2.36 and Definition 2.37, refine and extend the
definition of n-quasiperiodic functions and sets introduced in [LapRaŽu2].

Definition 2.36. We say that a function G : R → R is ∞-quasiperiodic if it is of the form

G(τ ) = H(τ, τ, . . . ),

where H : ℓ∞(R) → R,(6) H = H(τ1, τ2, . . . ) is a function which is Tj-periodic in its j-th
component, for each j ∈ N, with Tj > 0 as minimal periods, and such that the set of periods

{Tj : j ≥ 1} (2.6.9)

is rationally independent. We say that the order of quasiperiodicity of the function G is equal to
infinity (or that the function G is ∞-quasiperiodic).

In addition, we say that G is

(a) transcendentally quasiperiodic of infinite order (or transcendentally ∞-quasiperiodic) if
the periods in (2.6.9) are algebraically independent;

(b) algebraically quasiperiodic of infinite order (or algebraically ∞-quasiperiodic) of infinite
order if the periods in (2.6.9) are rationally independent and algebraically dependent.

We say that a sequence (Ti)i≥1 of real numbers is algebraically dependent of infinite order if
there exists a finite subset J of N such that (Ti)i∈J is algebraically dependent (that is, linearly de-
pendent over the field of algebraic numbers). Recall that a finite set of real numbers {T1, . . . , Tk}
is said to be algebraically dependent if there exist k algebraic real numbers λ1, . . . , λk, not all of
which are equal to zero, such that λ1T1 + · · ·+ λkTk = 0.

The notion of quasiperiodic function provided in Definition 2.36 above has been motivated by
[Vin]. However, while in [Vin], it is assumed that the reciprocals of the quasiperiods T1, . . . , Tn

are rationally independent, we assume in Definition 2.36 that the quasiperiods T1, . . . , Tn them-
selves are rationally independent. The distinction between algebraically n-quasiperiodic and
transcendentally n-quasiperiodic functions seems to be new.

Definition 2.37. Let (A,Ω) be a relative fractal drum in RN having the following tube formula:

|At ∩ Ω| = tN−D(G(log t−1) + o(1)) as t → 0+, (2.6.10)

where D ∈ (−∞,N ], and G is a nonnegative function such that

0 < lim inf
τ→+∞

G(τ ) ≤ lim sup
τ→+∞

G(τ ) < ∞.

(Note that it then follows that dimB(A,Ω) exists and is equal to D. Moreover, MD
∗ (A,Ω) =

lim infτ→+∞ G(τ ) and M∗D(A,Ω) = lim supτ→+∞ G(τ ).)

(6) Here, ℓ∞(R) stands for the usual Banach space of bounded sequences (τj)j≥1 of real
numbers, endowed with the norm ‖(τj)j≥1‖∞ := supj≥1 |τj |.
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We then say that the relative fractal drum (A,Ω) in RN is quasiperiodic and of infinite order

of quasiperiodicity (or, in short, ∞-quasiperiodic) if the function G = G(τ ) is ∞-quasiperiodic;
see Definition 2.36.

In addition, (A,Ω) is said to be

(a) a transcendentally ∞-quasiperiodic relative fractal drum if the corresponding function G
is transcendentally ∞-quasiperiodic;

(b) an algebraically ∞-quasiperiodic relative fractal drum if the corresponding function G is
algebraically ∞-quasiperiodic.

The following definition is closely related to the the notion of fractality (given in [Lap-vFr3],
§12.1.1 and §12.1.2, including Figures 12.1–12.3, along with §13.4.3).
Definition 2.38. Let A be a bounded subset of RN and let D := dimBA. Then:

(i) The set A is a hyperfractal (or is hyperfractal) if there is a screen S along which the
associated tube (or equivalently, if D < N , distance) zeta function is a natural boundary. This
means that the zeta function cannot be meromorphically continued to an open neighborhood of
S (or, equivalently, of the associated window W ).

(ii) The setA is a strong hyperfractal (or is strongly hyperfractal) if the critical line {Re s = D}
is a (meromorphic) natural boundary of the associated zeta function; that is, if we can choose
S = {Re s = D} in (i).

(iii) Finally, the set A is maximally hyperfractal if it is strongly hyperfractal and every point
of the critical line {Re s = D} is a nonremovable singularity of the zeta function.

An analogous definition can be provided (in the obvious manner) where instead of A, we
have a fractal string L = (ℓj)j≥1 in R or, more generally, a relative fractal drum (A,Ω) in RN .

Remark 2.39. Following [Lap-vFr3], but now using the higher-dimensional theory of complex
dimensions developed here and in [LapRŽu1–8], we say that a bounded set A ⊂ RN (or, more
generally, an RFD (A,Ω) in RN ) is “fractal” if it has at least one nonreal visible complex
dimension(7) (i.e., if the associated fractal zeta function has a nonreal visible pole) or if it is
hyperfractal (in the sense of part (i) of Definition 2.38 just above).

The following result can be considered as a fractal set-theoretic interpretation of Baker’s
theorem [Ba, Theorem 2.1] (i.e., of Theorem 2.30 above) from transcendental number theory. It
provides a construction of a transcendentally ∞-quasiperiodic relative fractal drum. In particu-
lar, this drum possesses infinitely many algebraically incommensurable quasiperiods Ti. In our
construction, we use the two-parameter family of generalized Cantor sets C(m,a) introduced in
Definition 2.28 and whose basic properties are described in Proposition 2.29.

Theorem 2.40. Let D ∈ (0, 1) be a given real number, and let (mi)i≥1 be a sequence of integers

such that mi ≥ 2 for each i ≥ 1. For any i ≥ 1, define ai = m
−1/D
i and let C(mi,ai) be the

corresponding generalized Cantor set (see Definition 2.28). Assume that (Ωi)i≥1 is a family of

disjoint open intervals on the real line such that |Ωi| ≤ C1m
1−1/D
i c

1/D
i for each i ≥ 1, where the

sequence (ci)i≥1 of positive real numbers is summable, and C1 > 0. Let

(A,Ω) :=
⋃

i≥1

(Ai,Ωi), where Ai := |Ωi|C(mi,ai) + inf Ωi, for all i ≥ 1.

Assume that the sequence of real numbers

{logm1, . . . , logmn, . . . } is rationally independent. (2.6.11)

(7) Then, it clearly has at least two complex conjugate nonreal complex dimensions.
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Then the sequence of real numbers { 1

D
,T1, T2, . . .

}
(2.6.12)

is algebraically independent. In other words, the relative fractal drum (A,Ω) is transcenden-

tally quasiperiodic with infinite order of quasiperiodicity and associated sequence of quasiperiods

(Ti)i≥1, where Ti := log(1/ai) = (logmi)/D for each i ≥ 1. Furthermore,

D(ζA,Ω) = Dmer(ζA,Ω), (2.6.13)

and moreover, all the points on the critical line {Re s = D} are nonremovable singularities of

ζA,Ω; in other words, the relative fractal drum (A,Ω) is also maximally hyperfractal (in the sense

of Definition 2.38(iii) above).
Finally, the relative fractal drum (A,Ω) is Minkowski nondegenerate, in the sense that

0 < MD
∗ (A,Ω) ≤ M∗D(A,Ω) < ∞.

Theorem 2.40 admits a partial extension. If instead of condition (2.6.11) we assume that
mi → ∞ as i → ∞, then (2.6.13) still holds, and, moreover, all of the points of the critical
line are nonremovable singularities of ζA, and hence, the RFD (A,Ω) is maximally hyperfractal.
Furthermore, the fractal drum (A,Ω) is Minkowski nondegenerate.

We shall need the following lemma, which states a simple scaling property of the tube
functions and Minkowski contents of RFDs. We note that the identity (2.6.15) below yields
a partial extension of [Žu2, Proposition 4.4.]. Compare also with the scaling property of the
corresponding distance zeta function ζA,Ω, obtained in Theorem 2.16.

Lemma 2.41. (a) Let (A,Ω) be a relative fractal drum in RN . Then, for any fixed λ > 0 and for

all t > 0, we have that

(λA)t ∩ λΩ = λ(At/λ ∩ Ω), |(λA)t ∩ λΩ| = λN |At/λ ∩ Ω|. (2.6.14)

Furthermore, for any real parameter r ∈ R, we have the following scaling (or homogeneity)
properties of the relative upper and lower Minkowski contents:

M∗r(λA, λΩ) = λrM∗r(A,Ω), Mr
∗(λA, λΩ) = λrMr

∗(A,Ω). (2.6.15)

(b) If A is a generalized Cantor set C(m,a) (as in Definition 2.28), then

|(λC(m,a))t ∩ (0, λ)| = t1−D(Gλ(log t
−1)− 2tD),

where

Gλ(τ ) := λDG(τ + log λ)

and G is the T -periodic function defined in Equation (2.6.3) of Proposition 2.29.

Proof. We shall establish parts (a) and (b) separately.

(a) Scaling the set At∩Ω by the factor λ, we obtain λ(At∩Ω). On the other hand, the same
result is then obtained as the intersection of the scaled sets (λA)λt and λΩ; that is,

λ(At ∩ Ω) = (λA)λt ∩ λΩ.

The first equality in (2.6.14) now follows by replacing t with t/λ. The second one is an immediate
consequence of the first one. We also have

M∗r(λA, λΩ) = lim sup
t→0+

|(λA)t ∩ λΩ|
tN−r

= λN lim sup
t→0+

|(A)t/λ ∩ Ω|
tN−r

= λN lim sup
τ→0+

|(A)τ ∩ Ω|
(λτ )N−r

= λrM∗r(A,Ω).

The second equality in (2.6.15) is proved in the same way, but by now using the lower limit
instead of the upper limit.
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(b) In the case of the generalized Cantor set, we use (2.6.14) with N = 1 together with
Proposition 2.29:

|(λC(m,a))t ∩ (0, λ) = λ|C(m,a)
t/λ ∩ (0, 1)| = λ

( t

λ

)1−D(
G
(
log

λ

t

)
− 2(t/λ)D

)

= t1−D
(
λDG(log λ+ log t−1)− 2tD

)
.

This completes the proof of the lemma.

Relative tube zeta functions have a scaling property which is analogous to that obtained
for the tube zeta functions of bounded sets; see [LapRaŽu1, Proposition 2.2.22]. We omit the
corresponding simple direct proof.(8)

Proposition 2.42 (Scaling property of relative tube zeta functions). Let (A,Ω) be a relative

fractal drum and let δ > 0. Let us denote by ζ̃A,Ω;δ(s) the associated relative fractal zeta func-

tion defined by Equation (2.4.1). Then, for any λ > 0, we have D(ζ̃λA,λΩ;λδ) = D(ζ̃A,Ω;δ) =
dimB(A,Ω) and

ζ̃λA,λΩ;λδ(s) = λsζ̃A,Ω;δ(s), (2.6.16)

for all s ∈ C such that Re s > dimB(A,Ω). Furthermore, if ω ∈ C is a simple pole of ζ̃A,Ω;δ,

where ζ̃A,Ω;δ is meromophically extended to an open connected neighborhood of the critical line

{Re s = dimB(A,Ω)} (as usual, we keep the same notation for the extended function), then

res(ζ̃λA,λΩ;λδ , ω) = λω res(ζ̃A,Ω;δ , ω). (2.6.17)

In the proof of Theorem 2.40, we shall use the following simple fact. If a function G(τ ) :=
H(τ, τ, . . . ) is transcendentally quasiperiodic with respect to a sequence of quasiperiods (Ti)i≥1,
it is clear that for any fixed sequence of real numbers d = (di)i≥1, the corresponding function

Gd(τ ) := H(d1 + τ, d2 + τ, . . . )

is quasiperiodic with respect to the same sequence of quasiperiods (Ti)i≥1.

Proof of Theorem 2.40. The proof of the theorem is divided into three steps.

Step 1: First of all, note that the generalized Cantor sets C(mi,ai) are well defined, since
miai = m

1−1/D
i < 1. Furthermore,

|Ω| =
∞∑

i=1

|Ωi| ≤ C1

∞∑

i=1

m
1−1/D
i c

1/D
i ≤ C1

∞∑

i=1

c
1/D
i ≤ C1

∞∑

i=1

ci < ∞,

where we have assumed without loss of generality that ci ≤ 1 for all i ≥ 1. Using Lemma 2.41,
we have

|At ∩ Ω| =
∞∑

i=1

|(Ai)t ∩ Ωi| = t1−D
∞∑

i=1

|Ωi|D
(
Gi

(
log |Ωi|+ log

1

t

)
− 2tD

)

= t1−D
(
G
(
log

1

t

)
− 2|Ω| tD

)
,

where

G(τ ) :=
∞∑

i=1

|Ωi|DGi(log |Ωi|+ τ ),

and the functions Gi = Gi(τ ) are Ti-periodic, with Ti := log(1/ai), for all i ≥ 1. This shows
that G(τ ) = H(τ, τ, . . . ), where

H((τi)i≥1) :=

∞∑

i=1

|Ωi|D Gi(log |Ωi|+ τi).

(8) An alternative proof of Proposition 2.42 would rely on the functional equation (2.4.2)
combined with Theorem 2.16, the scaling property for distance zeta functions.
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Note that the last series is well defined, and that so is the series defining G(τ ). Indeed, letting
Mi = M∗D(C(mi,ai)) and using Proposition 2.29, we see that

0 < Gi(τ ) ≤ Mi =

(
2(mi − 1)

1−miai

)1−D
mi

mi − 1
(1− ai) ≤ Cm1−D

i , (2.6.18)

where C is a positive constant independent of i, since mi → ∞ and miai → 0 as i → ∞.
Therefore,

∞∑

i=1

|Ωi|DGi(τi) ≤
∞∑

i=1

(CD
1 mD−1

i ci) (Cm1−D
i ) = CCD

1

∞∑

i=1

ci < ∞.

In particular,

M∗D(A,Ω) ≤ CCD
1

∞∑

i=1

ci < ∞.

On the other hand, since (A1,Ω1) ⊃ (A,Ω), we can use Lemma 2.41(a) (with r := D) and
Proposition 2.29 to obtain that

MD
∗ (A,Ω) ≥ MD

∗ (A1,Ω1) = |Ω1|DMD
∗ (‘C(m1,a1))

= |Ω1|D 1

D

(
2D

1−D

)1−D

> 0.

Step 2: Let n be any fixed positive integer. Since the set of real numbers

{logm1, . . . , logmn}
is rationally independent, we conclude from Baker’s theorem (see Theorem 2.30 above or [Ba,
Theorem 2.1]) that the set of numbers {1, logm1, . . . , logmn} is algebraically independent. Di-
viding all of these numbers by D, and using D = (logmi)/Ti, where Ti = log(1/ai) for all i ≥ 1
(see Proposition 2.29), we deduce that

{ 1

D
,
logm1

D
, . . . ,

logmn

D

}
=
{ 1

D
,T1, . . . , Tn

}

is algebraically independent as well. Since n is arbitrary, this proves that the relative fractal
drum (A,Ω) is transcendentally ∞-quasiperiodic, in the sense of Definition 2.37.

Step 3: To prove the last claim, note that the critical line {Re s = D} contains the union of
the set of poles Pi := P(ζ̃Ai,Ωi ,C) = D + piiZ of the tube zeta functions ζ̃Ai,Ωi , i ≥ 1. Since
the integers mi are all distinct, we have that mi → ∞ as i → ∞, and therefore, pi = 2π/Ti =
2πD/ logmi → 0. This proves that the union ∪i≥1Pi, as a set of nonisolated singularities of
ζ̃A,Ω =

∑
i≥1 ζ̃Ai,Ωi , is dense in the critical line {Re s = D}. (Indeed, it is easy to deduce

from the definitions that the subset of nonremovable singularities of ζA,Ω along the critical line
L := {Re s = D} is closed in L and, hence, must coincide with L since it is also dense in L; see
the proof of [LapRŽu2, Theorem 5.3].) It follows, in particular, that (2.6.13) holds, as desired.

It is noteworthy that the sequence M∗D(C(mi,ai), (0, 1)) appearing in Theorem 2.40 is di-
vergent. More precisely, it is easy to deduce from the equality in (2.6.18) that

M∗D(C(mi,ai), (0, 1)) ∼ (2mi)
1−D as i → ∞.

The conditions of Theorem 2.40 are satisfied if, for example, mi := pi for all i ≥ 1 (that is,
(mi)i≥1 is the sequence of prime numbers (pi)i≥1, written in increasing order), and if C1 := 1
and ci := 2−i for every i ≥ 1.
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In this chapter, we obtain useful results concerning relative fractal drums and bounded sub-
sets of RN embedded into higher-dimensional spaces. In particular, we show that the complex
dimensions (and their multiplicities) of a bounded set (or, more generally, of a relative fractal
drum) are independent of the dimension of the ambient space. (See Theorem 3.3 and Theo-
rem 3.10, respectively.) In addition, we apply some of these results in order to calculate the
complex dimensions of the Cantor dust. (See Example 3.15.)

3.1. Embeddings of bounded sets. We begin this section by stating a result which (along
with the subsequent result, Theorem 3.2) will be key to the developments in this chapter.

Proposition 3.1. Let A ⊂ RN be a bounded set and let D := dimBA. Then, for the tube zeta

functions of A and A× {0} ⊂ RN+1, the following equality holds:

ζ̃A×{0}(s; δ) = 2

∫ π/2

0

ζ̃A(s; δ sin τ )

sins−N−1 τ
dτ, (3.1.1)

for all s ∈ C such that Re s > D.

Proof. First of all, it is well known and easy to check that dimB(A×{0}) = dimBA, from which
we conclude that the tube zeta functions of A and A × {0} are both holomorphic in the right
half-plane {Re s > D}. Furthermore, we use the fact (see [Res, Proposition 6]) that for every
t > 0, we have

|(A× {0})t|N+1 = 2

∫ t

0

|A√
t2−u2

|N du, (3.1.2)

where, as before, | · |N denotes the N-dimensional Lebesgue measure. (See also the proof of
Lemma 3.5 in §3.2 below.) After having made the change of variable u := t cos v, this yields

|(A× {0})t|N+1 = 2t

∫ π/2

0

|At sin v|N sin v dv. (3.1.3)

Finally, for the tube zeta function of A× {0}, we can write successively:

ζ̃A×{0}(s; δ) =

∫ δ

0

ts−N−2|(A× {0})t|N+1 dt

= 2

∫ δ

0

ts−N−1dt

∫ π/2

0

|At sin v|N sin v dv

= 2

∫ π/2

0

sin v dv

∫ δ

0

ts−N−1|At sin v|N dt

= 2

∫ π/2

0

sinN+1−s v dv

∫ δ sin v

0

τ s−N−1|Aτ |N dτ

= 2

∫ π/2

0

ζ̃A(s; δ sin v)

sins−N−1 v
dv,

[34]
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where we have used the Fubini–Tonelli theorem in order to justify the interchange of integrals (in
the third equality), as well as made another change of variable (in the fourth equality), namely,
τ := t sin v. This completes the proof of the proposition.

In the following theorem, Γ(t) :=
∫ +∞
0

xt−1e−x dx, initially defined by this integral for t > 0,
is the usual gamma function, meromorphically extended to all of C.

Theorem 3.2. Let A ⊂ RN be a bounded set and let D := dimBA. Then, we have the following

equality between ζ̃A, the tube zeta function of A, and ζ̃AM , the tube zeta function of AM :=
A× {0} · · · × {0}× ⊂ RN+M , with M ∈ N arbitrary:

ζ̃AM (s; δ) =
(
√
π)

M
Γ
(
N−s

2
+ 1
)

Γ
(
N+M−s

2
+ 1
) ζ̃A(s; δ) + E(s; δ), (3.1.4)

initially valid for all s ∈ C such that Re s > D. Here, the error function E(s) := E(s; δ) (initially
defined in the case when M = 1 by the integral on the right-hand side of Equation (3.1.7) below)
admits a meromorphic extension to all of C. The possible poles (in C) of E(s; δ) are located at

sk := N +2+2k for every k ∈ N0, and all of them are simple. (It follows that ζ̃A is well defined

at each sk.) Moreover, we have that for each k ∈ N0,

res(E( · ; δ), sk) = (−1)k+1 (
√
π)

M

k! Γ
(
M
2
− k
) ζ̃A(sk; δ). (3.1.5)

(We refer to Theorem 3.3 below for more precise information about the domain of validity of

the approximate functional equation (3.1.4), and to Corollary 3.4 for information about the

relationship between the visible poles of ζ̃A and ζ̃AM .) More specifically, if M is even, then all of

the poles sk of E(s; δ) are canceled for k ≥ M/2; i.e., the corresponding residues in (3.1.5) are

equal to zero. On the other hand, if M is odd, then there are no such cancellations and all of the

residues in (3.1.5) are nonzero; so that all the sk’s are (simple) poles of E(s; δ) in that case.

Proof. We will prove the theorem in the case when M = 1. The general case then follows
immediately by induction. From Proposition 3.1, we have that formula (3.1.1) holds for all s ∈ C

such that Re s > dimBA. In turn, this latter identity can be written as follows:

ζ̃A×{0}(s; δ) = 2ζ̃A(s; δ)

∫ π/2

0

dτ

sins−N−1 τ

− 2

∫ π/2

0

dv

sins−N−1 v

∫ δ

δ sin v

τ s−N−1|Aτ |N dτ

= ζ̃A(s; δ) · B
(
N − s

2
+ 1,

1

2

)
+ E(s; δ),

(3.1.6)

where B denotes the Euler beta function and

E(s; δ) := −2

∫ π/2

0

dv

sins−N−1 v

∫ δ

δ sin v

τ s−N−1|Aτ |N dτ . (3.1.7)

By using the functional equation which links the beta function with the gamma function (namely,
B(x, y) = Γ(x)Γ(y)/Γ(x+ y) for all x, y > 0 and hence, upon meromorphic continuation, for all
x, y ∈ C), we obtain that (3.1.4) holds (with M = 1) for all s ∈ C such that Re s > dimBA.

By looking at E(s; δ), we see that the integrand is holomorphic for every v ∈ (0, π/2) since

the integral
∫ δ

δ sin v
τ s−N−1|Aτ |Ndτ is equal to ζ̃A(s; δ)− ζ̃A(s; δ sin v), which is an entire function.

Furthermore, if we assume that Re s < N + 1, then since τ 7→ τRe s−N−1 is decreasing, we have
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the following estimate:

|E(s; δ)| ≤ 2

∫ π/2

0

sinN+1−Re s v dv

∫ δ

δ sin v

τRe s−N−1|Aτ |N dτ

≤ 2|Aδ|N
∫ π/2

0

sinN+1−Re s v dv

∫ δ

δ sin v

τRe s−N−1 dτ

≤ 2δRe s−N−1|Aδ|N
∫ π/2

0

sinN+1−Re s v sinRe s−N−1 v

∫ δ

δ sin v

dτ

= 2δRe s−N |Aδ|N
∫ π/2

0

(1− sin v) dv

= 2δRe s−N |Aδ|N
(π
2
− 1
)
.

(3.1.8)

From this we conclude that for s0 ∈ {Re s < N+1}, the condition (3′) of Remark 1.4 is satisfied,
which implies, in light of Theorem 1.3, that E(s; δ) is holomorphic on the open left half-plane
{Re s < N + 1}.

On the other hand, we know that both of the tube zeta functions ζ̃A and ζ̃AM are holomorphic
on {Re s > dimBA} ⊇ {Re s > N}. The fact that E(s; δ) is meromorphic on C, as well as the
statement about its poles, now follows from Equation (3.1.4) (with M = 1) and the fact that
the gamma function is nowhere vanishing in C. (In fact, 1/Γ(s) is an entire function with zeros
at the nonpositive integers.) More specifically, the locations of the poles of E(s; δ) must coincide
with the locations of the poles sk = N+2+2k, for k ∈ N0, of Γ((N−s)/2+1) since the left-hand
side of (3.1.4) is holomorphic on {Re s > dimBA} and because ζ̃A(sk) > 0 (since it is defined as
the integral of a positive function). (Note that since N ≥ D, we have sk > D, and hence, ζ̃A is
well defined at sk, for each k ∈ N0.)

Finally, by multiplying (3.1.4) by (s − sk), taking the limit as s → sk and then using the
fact that the residue of the gamma function at −k is equal to (−1)k/k!, we deduce that (3.1.5)
holds, as desired. Furthermore, if M is odd, there are no cancellations between the poles of the
numerator and of the denominator in (3.1.4) since an integer cannot be both even and odd; i.e.,
the residues are nonzero for each k ∈ N0. On the other hand, if M is even, then it is clear that
all of the residues at sk for k ≥ M/2 are equal to zero; i.e., the corresponding poles at sk cancel
out with the poles of the denominator in (3.1.4). This concludes the proof of the theorem.

Theorem 3.2 has as an important consequence, namely, the fact that the notion of complex
dimensions does not depend on the dimension of the ambient space.

Theorem 3.3. Let A ⊂ RN be a bounded set and AM be its embedding into RN+M , with M ∈ N

arbitrary. Then, the tube zeta function ζ̃A of A has a meromorphic extension to a given connected

open neighborhood U of the critical line {Re s = dimBA} if and only if the analogous statement is

true for the tube zeta function ζ̃AM of AM . Furthermore, in that case, the approximate functional

equation (3.1.4) remains valid for all s ∈ U . In addition, the multisets of the poles of ζ̃A and

ζ̃AM located in U coincide; i.e., P(ζ̃A, U) = P(ζ̃AM , U).(1) Consequently, neither the values nor

the multiplicities of the complex dimensions of A depend on the dimension of the ambient space.

Proof. This is a direct consequence of Theorem 3.2 and the principle of analytic continuation.
More specifically, identity (3.1.4) is valid for all s ∈ C such that Re s > dimBA and the function
E(s; δ) is meromorphic on C. Furthermore, according to Theorem 3.2, the poles of E(s; δ) belong
to {Re s ≥ N+2}, which implies that the function s 7→ E(s; δ) is holomorphic on {Re s < N+2}.
Identity (3.1.4) then remains valid if any of the two zeta functions involved (namely, ζ̃A or

(1) Recall that the bounded sets A and AM have the same upper Minkowski dimension,

dimBA = dimBAM , and hence, the same critical line {Re s = dimBA}.



3.2. Embeddings of relative fractal drums 37

ζ̃AM ) has a meromorphic continuation to some connected open neighborhood of the critical line
{Re s = dimBA}. This completes the proof of the theorem.

Corollary 3.4. Let A ⊂ RN be a bounded set (with D := dimBA) such that its tube zeta

function ζ̃A has a meromorphic continuation to a connected open neighborhood U of the critical

line {Re s = dimBA}. Furthermore, suppose that s = D is a simple pole of ζ̃A. Let AM ⊂ RN+M

be the embedding of A into RN+M , as in Theorem 3.2. Then

res(ζ̃AM , D) =
(
√
π)

M
Γ
(

N−D
2

+ 1
)

Γ
(

N+M−D
2

+ 1
) res(ζ̃A, D). (3.1.9)

We point out here that the above corollary is compatible with the dimensional invariance
of the normalized Minkowski content, established by M. Kneser in [Kne] and later recovered
independently in [Res]. More specifically, if in the above corollary, we assume, in addition, that
D is the only pole of the tube zeta function of A on the critical line {Re s = D} (i.e., D is the
only complex dimension of A with real part D), then, according to [LapRaŽu5, Theorem 5.2],
A and A × {0} are Minkowski measurable, with Minkowski dimension D := D and Minkowski
contents satisfying the following identity:

MD(A)

π
D−N

2 Γ
(
N−D

2
+ 1
) =

MD(A× {0})
π

D−N−1
2 Γ

(
N+1−D

2
+ 1
) . (3.1.10)

3.2. Embeddings of relative fractal drums. The results obtained in the previous section
in the context of bounded subsets of RN can also be obtained in the more general context of
relative fractal drums (RFDs) in RN . More specifically, let (A,Ω) be a relative fractal drum in
RN and let

(A× {0},Ω× (−1, 1))

be its natural embedding into RN+1. We want to connect the relative tube zeta functions of
these two RFDs; the following lemma will be needed for this purpose.

Lemma 3.5. Let (A,Ω) be a relative fractal drum in RN and fix δ ∈ (0, 1). Then we have

∣∣(A× {0})δ ∩ (Ω× (−1, 1))
∣∣
N+1

= 2

∫ δ

0

|A√
δ2−u2

∩ Ω|N du. (3.2.1)

Proof. We proceed much as in the proof of [Res, Proposition 6]. Namely, we let (x, y) ∈ RN×R ≡
RN+1 and define

V := {(x, y) : dN+1((x, y), A× {0}) ≤ δ} ∩ {(x, y) : x ∈ Ω, |y| < 1} , (3.2.2)

where for any k ∈ N, dk denotes the Euclidean distance in Rk. It is clear that the following
equality holds: dN+1((x, y), A×{0}) =

√
dN(x,A)2 + y2. This implies that for a fixed y ∈ [−δ, δ],

we have

Vy : =
{
x ∈ R

N : dN+1((x, y),A× {0}) ≤ δ
}

=
{
x : dN (x,A) ≤

√
δ2 − y2

}
.

(3.2.3)

(Note that if |y| > δ, then Vy is empty.) Finally, Fubini’s theorem implies that

∣∣(A× {0})δ ∩ (Ω× (−1, 1))
∣∣
N+1

=

∫

V

dxdy

=

∫ δ

−δ

dy

∫

Vy∩{x∈RN : x∈Ω}
dx

= 2

∫ δ

0

|A√
δ2−y2

∩ Ω|N dy,
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which completes the proof of the lemma.

The above lemma will eventually yield (in Theorem 3.10 below) an RFD analog of Propo-
sition 3.1 from §3.1 above. First, however, we will show that the upper and lower relative box
dimensions of an RFD are independent of the ambient space dimension.

Proposition 3.6. Let (A,Ω) be an RFD in RN and let

(A,Ω)M := (AM ,Ω× (−1, 1)M ) (3.2.4)

be its embedding into RN+M , for some arbitrary M ∈ N. Then we have that

dimB(A,Ω) = dimB(A,Ω)M (3.2.5)

and

dimB(A,Ω) = dimB(A,Ω)M . (3.2.6)

Proof. We only prove the proposition in the case when M = 1, from which the general result
then easily follows by induction. It is clear that for 0 < δ < 1, we have

(A× {0})δ ∩ (Ω× (−1, 1)) ⊆ (A× {0})δ ∩ (Ω× (−δ, δ))

⊆ (Aδ ∩ Ω)× (−δ, δ);

so that

|(A× {0})δ ∩ (Ω× (−1, 1))|N+1 ≤ 2δ|Aδ ∩ Ω|N . (3.2.7)

This observation, in turn, implies that for every r ∈ R, we have

|(A× {0})δ ∩ (Ω× (−1, 1))|N+1

δN+1−r
≤ 2|Aδ ∩ Ω|N

δN−r
. (3.2.8)

Furthermore, by successively taking the upper and lower limits as δ → 0+ in Equation (3.2.8)
just above, we obtain the following inequalities, involving the r-dimensional upper and lower
relative Minkowski contents of the RFDs (A,Ω)1 and (A,Ω), respectively:

M∗r(A,Ω)1 ≤ 2M∗r(A,Ω) and Mr
∗(A,Ω)1 ≤ 2Mr

∗(A,Ω). (3.2.9)

In light of the definition of the relative upper and lower box (or Minkowski) dimensions (see
Equations (1.4.2) and (1.4.3) and the text surrounding them), we deduce that

dimB(A,Ω)1 ≤ dimB(A,Ω) and dimB(A,Ω)1 ≤ dimB(A,Ω). (3.2.10)

On the other hand, for geometric reasons, we have that

(Aδ/2 ∩ Ω) ×
(
− δ

√
3

2
,
δ
√
3

2

)
⊆ (A× {0})δ ∩ (Ω× (−1, 1));

so that

δ
√
3|Aδ/2 ∩ Ω|N ≤ |(A× {0})δ ∩ (Ω× (−1, 1))|N+1 . (3.2.11)

Much as before, this inequality implies that for every r ∈ R, we have
√
3|Aδ/2 ∩ Ω|N

2N−r(δ/2)N−r
≤

|(A× {0})δ ∩ (Ω× (−1, 1))|N+1

δN+1−r
(3.2.12)

and by successively taking the upper and lower limits as δ → 0+, we obtain that
√
3M∗r(A,Ω)

2N−r
≤ M∗r(A,Ω)1 and

√
3Mr

∗(A,Ω)

2N−r
≤ Mr

∗(A,Ω)1. (3.2.13)

Finally, this completes the proof because (again in light of Equations (1.4.2) and (1.4.3) and the
text surrounding them) (3.2.13) implies the reverse inequalities for the upper and lower relative
box dimensions in (3.2.10).
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Remark 3.7. Observe that it follows from Proposition 3.6 (combined with part (b) of The-
orem 2.1) that the RFDs (A,Ω) and (A,Ω)M have the same upper Minkowski dimension,
dimB(A,Ω) = dimB(A,Ω)M , and hence, the same critical line {Re s = dimB(A,Ω)}. This
fact will be used implicitly in the statement of Proposition 3.8 as well as in the statements
of Theorems 3.9 and 3.10 just below.

We can now state the desired results for embedded RFDs and their relative zeta functions. In
light of Lemma 3.5 and Proposition 3.6, the proofs follow the same steps as in the corresponding
results established in §3.1 about bounded subsets of RN (namely, Proposition 3.1 and Theorem
3.2, respectively), and for this reason, we will omit them.

Proposition 3.8. Fix δ ∈ (0, 1) and let (A,Ω) be an RFD in RN , with D := dimB(A,Ω). Then,
for the relative tube zeta functions of (A,Ω) and (A,Ω)1 := (A×{0},Ω× (−1, 1)), the following

equality holds:

ζ̃A×{0},Ω×(−1,1);δ(s) = 2

∫ π/2

0

ζ̃A,Ω;δ sin τ (s)

sins−N−1 τ
dτ, (3.2.14)

for all s ∈ C such that Re s > D.

Theorem 3.9. Fix δ ∈ (0, 1) and let (A,Ω) be an RFD in RN , with D := dimB(A,Ω). Then, we
have the following equality between ζ̃A,Ω, the tube zeta function of (A,Ω), and ζ̃AM ,Ω×(−1,1)M ,

the tube zeta function of the relative fractal drum (A,Ω)M := (AM ,Ω× (−1, 1)M ) in RN+M , for

some arbitrary M ∈ N:

ζ̃AM ,Ω×(−1,1)M ;δ(s) =
(
√
π)

M
Γ
(
N−s

2
+ 1
)

Γ
(
N+M−s

2
+ 1
) ζ̃A,Ω;δ(s) +E(s; δ), (3.2.15)

initially valid for all s ∈ C such that Re s > D. (See Theorem 3.10 for more precise information

about the domain of validity of the approximate functional equation (3.2.15).) Here, the error

function E(s) := E(s; δ) is meromorphic on all of C. Furthermore, the possible poles (in C) of

E(s; δ) are located at sk := N + 2 + 2k for every k ∈ N0, and all of them are simple. (It follows
that ζ̃A is well defined at each sk.) Moreover, we have that for each k ∈ N0,

res(E( · ; δ), sk) =
(−1)k+1 (

√
π)

M

k! Γ
(
M
2
− k
) ζ̃A,Ω;δ(sk). (3.2.16)

More specifically, if M is even, then all of the poles sk of E(s; δ) are canceled for k ≥ M/2; i.e.,
the corresponding residues in (3.2.16) are equal to zero. On the other hand, if M is odd, then

there are no such cancellations and all of the residues in (3.2.16) are nonzero; so that all of the

sk’s are (simple) poles of E(s; δ) in that case.

We deduce at once from Theorem 3.9 the following key result about the invariance of the
complex dimensions of a relative fractal drum with respect to the dimension of the ambient
space. This result extends Theorem 3.3 to general RFDs.

Theorem 3.10. Let (A,Ω) be an RFD in RN and let the RFD (A,Ω)M := (AM ,Ω× (−1, 1)M )
be its embedding into RN+M , for some arbitrary M ∈ N. Then, the tube zeta function ζ̃A,Ω :=
ζ̃A,Ω of (A,Ω) has a meromorphic extension to a given open connected neighborhood U of the

critical line {Re s = dimB(A,Ω)} if and only if the analogous statement is true for the tube zeta

function ζ̃(A,Ω)M := ζ̃AM ,Ω×(−1,1)M of (A,Ω)M . (See Remark 3.7 just above.) Furthermore, in

that case, the approximate functional equation (3.2.15) remains valid for all s ∈ U . In addition,

the multisets of the poles of ζ̃A,Ω and ζ̃(A,Ω)M belonging to U coincide; i.e.,

P(ζ̃A,Ω, U) = P(ζ̃(A,Ω)M , U). (3.2.17)

Consequently, neither the values nor the multiplicities of the complex dimensions of the RFD

(A,Ω) depend on the dimension of the ambient space.
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Remark 3.11. In the above discussion about embedding RFDs into higher-dimensional spaces,
we can also make similar observations if we embed (A,Ω) as a ‘one-sided’ RFD, for example of
the form (A×{0},Ω×(0, 1)), a fact which can be more useful when decomposing a relative fractal
drum into a union of relative fractal subdrums in order to compute its distance (or tube) zeta
function. This observation follows immediately from the above results for ‘two-sided’ embeddings
of RFDs since, by symmetry, we have

ζ̃A×{0},Ω×(−1,1)(s) = 2 ζ̃A×{0},Ω×(0,1)(s). (3.2.18)

We note that when using the above formulas, one only has to be careful to take into account
the factor 2. Furthermore, we can also embed (A,Ω) as

(A× {0},Ω× (−α, α)) or (A× {0},Ω× (0, α)),

for some α > 0, but in that case, the corresponding formulas will only be valid for all δ ∈ (0, α).

We could now use the functional equation (2.4.2) connecting the tube and distance zeta
functions, in order to translate the above results in terms of ζA,Ω, the (relative) distance zeta
function of the RFD (A,Ω). However, we will instead use another approach because it gives
some additional information about the resulting error function. More specifically, consider the
Mellin zeta function of a relative fractal drum (A,Ω) defined by

ζMA,Ω(s) :=

∫ +∞

0

ts−N−1|At ∩ Ω|dt, (3.2.19)

for all s ∈ C located in a suitable vertical strip. In fact, in light of [LapRaŽu5, Theorem 5.7]
(see also [LapRaŽu1, Theorem 5.4.7]), the above Lebesgue integral is absolutely convergent
(and hence, convergent) for all s ∈ C such that Re s ∈ (dimB(A,Ω), N). Moreover, the relative
distance and Mellin zeta functions of (A,Ω) are connected by the functional equation

ζA,Ω(s) = (N − s)ζMA,Ω(s), (3.2.20)

on every open connected set U ⊆ C to which any of the two zeta functions has a meromorphic
continuation. Observe that in (3.2.20), the parameter δ is absent. Indeed, this means implicitly
that the functional equation (3.2.20) is valid only for the parameters δ > 0 for which the inclusion
Ω ⊆ Aδ is satisfied; that is, when the equality ζA,Ω;δ(s) =

∫
Ω
d(x,A)s−Ndx is satisfied.

We will now embed the relative fractal drum (A,Ω) of RN into RN+1 as

(A× {0},Ω× R).

Strictly speaking, this is not a relative fractal drum in RN+1 since there does not exist a δ > 0
such that Ω×R ⊆ (A×{0})δ. On the other hand, observe that Lemma 3.5 is now valid for every
δ > 0; that is,

∣∣(A× {0})δ ∩ (Ω× R)
∣∣
N+1

= 2

∫ δ

0

|A√
δ2−u2

∩ Ω|Ndu. (3.2.21)

Proposition 3.12. Let (A,Ω) be an RFD in RN such that dimB(A,Ω) < N . Then the function

F = F (s), defined by the integral

F (s) :=

∫ +∞

0

ts−N−2
∣∣(A× {0})t ∩ (Ω× R)

∣∣
N+1

dt, (3.2.22)

is holomorphic inside the vertical strip {dimB(A,Ω) < Re s < N}.
Proof. We split the integral into two integrals: F (s) =

∫ 1

0
+
∫ +∞
1

. According to Proposition 3.6,
the first integral ∫ 1

0

ts−N−2
∣∣(A× {0})t ∩ (Ω× R)

∣∣
N+1

dt

=

∫ 1

0

ts−N−2
∣∣(A× {0})t ∩ (Ω× (−1, 1))

∣∣
N+1

dt
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defines a holomorphic function on the right half-plane {Re s > dimB(A,Ω)}.
In order to deal with the second integral, we observe that

∣∣(A× {0})t ∩ (Ω× R)
∣∣
N+1

≤ 2t|Ω|N ,

and, consequently,
∣∣∣∣
∫ +∞

1

ts−N−2
∣∣(A× {0})t ∩ (Ω× R)

∣∣
N+1

dt

∣∣∣∣ ≤ 2|Ω|N
∫ +∞

1

tRe s−N−1 dt

=
2|Ω|N

N −Re s
,

for all s ∈ C such that Re s < N . In light of Theorem 1.3 and Remark 1.4, the latter inequality
implies that the integral over (1,+∞) defines a holomorphic function on the left half-plane
{Re s < N}. Therefore, it follows that F (s) is holomorphic in the vertical strip {dimB(A,Ω) <
Re s < N} and the proof of the proposition is complete.

In light of the above proposition, we continue to use the convenient notation ζMA×{0},,Ω×R
for

the integral on the right-hand side of (3.2.22) although, as was noted earlier, (A× {0},Ω × R)
is not technically a relative fractal drum in RN+1; see Remark 3.11 above. The following result
is the counterpart of Theorem 3.2 in the present, more general context.

Theorem 3.13. Let (A,Ω) be a relative fractal drum in RN such that D := dimB(A,Ω) < N .

Then, for every a > 0, the following approximate functional equation holds:

ζA×{0},Ω×(−a,a)(s) =

√
πΓ
(
N−s

2

)

Γ
(
N+1−s

2

) ζA,Ω(s) + E(s; a), (3.2.23)

initially valid for all s ∈ C such that Re s > D. Here, the error function E(s) := E(s;a) is

initially given (for all s ∈ C such that Re s < N) by

E(s;a) := (s−N−1)

∫ +∞

a

ts−N−2|(A× {0})t ∩ Ω× (R \ (−a, a))|N+1 dt, (3.2.24)

and admits a meromorphic extension to all of C, with a set of simple poles equal to {N + 2k :
k ∈ N0}.

Moreover, Equation (3.2.23) remains valid on any connected open neighborhood of the crit-

ical line {Re s = D} to which ζA,Ω (or, equivalently, ζA×{0},Ω×(−a,a)) can be meromorphically

continued.

Proof. In a completely analogous way as in the proof of Theorem 3.2, we obtain that

ζ̃A×{0},Ω×R;δ(s) =

√
πΓ
(
N−s

2
+ 1
)

Γ
(
N+1−s

2
+ 1
) ζ̃A,,Ω;δ(s) + Ẽ(s; δ), (3.2.25)

now valid for all δ > 0 (see Equation (3.2.21) above and the discussion preceding it). Furthermore,
the error function Ẽ(s) := Ẽ(s; δ) is holomorphic on {Re s < N + 1} and

|Ẽ(s, δ)| ≤ 2δRe s−N |Aδ ∩ Ω|N
(π
2
− 1
)

(3.2.26)

for all s ∈ C such that Re s < N + 1. See the proof of Theorem 3.2 and Equation (3.1.8) for
the derivation of the above estimate. The estimate (3.2.26) now implies that the sequence of
holomorphic functions Ẽ( · ;n) tends to 0 as n → ∞, uniformly on every compact subset of
{Re s < N}, since |An ∩ Ω| = |Ω| for all n sufficiently large. Furthermore, we also have that
ζ̃A,Ω;n → ζMA,Ω and

ζ̃A×{0},Ω×R(s;n) → ζMA×{0},Ω×R as n → ∞, (3.2.27)
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uniformly on every compact subset of {D < Re s < N}. This implies that by taking the limit in
(3.2.25) as δ → +∞, we obtain the following functional equality between holomorphic functions:

ζMA×{0},Ω×R(s) =

√
πΓ
(
N−s

2
+ 1
)

Γ
(
N+1−s

2
+ 1
) ζMA,Ω(s), (3.2.28)

valid in the vertical strip {D < Re s < N}. (We can obtain this equality even more directly by
applying Lebesgue’s dominated convergence theorem to a counterpart of (3.2.14).)

Moreover, according to (3.2.20) and (3.2.28), we have the functional equation

ζMA×{0},Ω×R(s) =
2
√
πΓ
(
N−s

2

)

Γ
(
N+1−s

2
+ 1
) ζA,Ω(s), (3.2.29)

from which we deduce that the right-hand side admits a meromorphic extension to the right
half-plane {Re s > D}, with simple poles located at the simple poles of Γ((N − s)/2); that is,
at sk := N + 2k for all k ∈ N0. (Observe that in the above ratio of gamma functions, there
are no cancellations between the poles of the numerator and of the denominator; indeed, an
integer cannot be both even and odd.) From this we conclude that by the principle of analytic
continuation, the same property also holds for the left-hand side of (3.2.29) and, furthermore,
the left-hand side has a meromorphic extension to any domain U ⊆ C to which the right-hand
side can be meromorphically extended.

In order to complete the proof of the theorem, we now observe that for any a > 0, since
∣∣(A× {0})t ∩ (Ω× R)

∣∣ =
∣∣(A× {0})t ∩ (Ω× (−a, a))

∣∣
+
∣∣(A× {0})t ∩ (Ω× (R \ (−a, a)))

∣∣,

the left-hand side of (3.2.29) can be split into two parts:

ζMA×{0},Ω×R(s) = ζMA×{0},Ω×(−a,a)(s)

+

∫ +∞

a

ts−N−2
∣∣(A× {0})t ∩ (Ω× (R \ [−a, a]))

∣∣dt

=
ζA×{0},Ω×(−a,a)(s)

N + 1− s
− E(s; a)

N + 1− s
.

We then combine this observation with (3.2.29) to obtain (3.2.23). In light of part (a) of Theo-
rem 2.1, we know that ζA×{0},Ω×(−a,a)(s) is holomorphic on the open right half-plane {Re s > D}.
Furthermore, much as in the proof of Proposition 3.12, we can show that E(s) := E(s;a) defines
a holomorphic function on the open left half-plane {Re s < N}. This fact, together with the
functional equation (3.2.23), now ensures that E(s; a) admits a meromorphic continuation to
all of C, with a set of simple poles equal to {N + 2k : k ∈ N0}. (Note that ζA,Ω(s) > 0 for all
s ∈ [N,+∞), which implies that there are no zero-pole cancellations on the right-hand side of
(3.2.23).) This completes the proof of Theorem 3.13.

We note that in Example 3.15 below, we actually want to embed (A,Ω) into RN+1, as
(A× {0},Ω× (0, a)) for some a > 0. By looking at the proof of the above theorem and using a
suitable symmetry argument, we can obtain the following result, which deals with this type of
embedding.

Theorem 3.14. Let (A,Ω) be a relative fractal drum in RN such that D := dimB(A,Ω) < N .

Then, the following approximate functional equation holds:

ζA×{0},Ω×(0,a)(s) =

√
πΓ
(
N−s

2

)

2Γ
(
N+1−s

2

) ζA,Ω(s) + E(s; a), (3.2.30)

initially valid for all s ∈ C such that Re s > D. Here, the error function E(s) := E(s; a) is
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initially given (for all s ∈ C such that Re s < N) by

E(s; a) := (s−N−1)

∫ +∞

a

ts−N−2|(A× {0})t ∩ Ω× (R \ (0, a))|N+1dt, (3.2.31)

and admits a meromorphic continuation to all of C, with a set of simple poles equal to {N +2k :
k ∈ N0}.

Moreover, Equation (3.2.30) remains valid on any connected open neighborhood of the crit-

ical line {Re s = D} to which ζA,Ω (or, equivalently, ζA×{0},Ω×(0,a)) can be meromorphically

continued.

Example 3.15. (Complex dimensions of the Cantor dust RFD). In this example, we will consider
the relative fractal drum consisting of the Cantor dust contained in [0, 1]2 and compute its
distance zeta function. More precisely, let A := C(1/3) × C(1/3) be the Cantor dust (i.e., the
Cartesian product of the ternary Cantor set C := C1/3 by itself) and let Ω := (0, 1)2. We will not
obtain for ζA an explicit formula in a closed form but we will instead use Theorem 3.14 in order
to deduce that the distance zeta function of the Cantor dust has a meromorphic continuation to
all of C.

More interestingly, we will also show that the set of complex dimensions of the Cantor dust
is the union of (a nontrivial subset of) a periodic set contained in the critical line {Re s = log3 4}
and the set of complex dimensions of the Cantor set (which is a periodic set contained in the
critical line {Re s = log3 2}). This fact is significant because it shows that in this case, the distance

(or tube) zeta function also detects the ‘lower-dimensional’ fractal nature of the Cantor dust.

Note that, as is well known, the Minkowski dimension of the RFD (or Cantor string)
(C, (0, 1)) is given by dimB(C, (0, 1)) = log3 2 (see, e.g., [Lap-vFr1, §1.2.2]). Furthermore, it will
follow from the discussion below that, as might be expected since (A,Ω) = (C, (0, 1))×(C, (0, 1))),

dimB(A,Ω) = 2dimB(C, (0, 1)) = log3 4. (3.2.32)

Consequently, the critical line of the RFD (C, (0, 1)) in R (the Cantor string RFD) is the vertical
line {Re s = log3 2}, while the critical line of the Cantor dust, viewed as the RFD (A,Ω) in R2,
is the vertical line {Re s = log3 4}, as was stated in the previous paragraph.

The construction of the RFD (A,Ω) can be carried out by beginning with the unit square
and removing the open middle-third ‘cross’, and then iterating this procedure ad infinitum. This
procedure implies that we can subdivide the Cantor dust into a countable union of RFDs which
are scaled down versions of two base (or generating) RFDs, (A1,Ω1) and (A2,Ω2). The first one
of these base RFDs, (A1,Ω1), is defined by Ω1 := (0, 1/3)2 and by A1 being the union of the
four vertices of the closure of Ω1 (namely, of the square [0, 1/3]2). Furthermore, the second base
RFD is defined by Ω2 := (0, 1/3) × (0, 1/6) and by A2 being the ternary Cantor set contained
in [0, 1/3]× {0}.

At the n-th step of the iteration, we have exactly 4n−1 RFDs of the type (anA1, anΩ1) and
8 · 4n−1 RFDs of the type (anA2, anΩ2), where an := 3−n for each n ∈ N. This observation,
together with the scaling property of the relative distance zeta function (see Theorem 2.16),
yields successively (for all s ∈ C with Re s sufficiently large):

ζA,Ω(s) =

∞∑

n=1

4n−1ζanA1,anΩ1(s) + 8

∞∑

n=1

4n−1ζanA2,anΩ2(s)

= (ζA1,Ω1(s) + 8ζA2,Ω2(s))

∞∑

n=1

4n−1 · 3−ns

=
1

3s − 4
(ζA1,Ω1(s) + 8ζA2,Ω2(s)) .

(3.2.33)
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Moreover, for the relative distance zeta function of (A1,Ω1), we have

ζA1,Ω1(s) = 8

∫ 1/6

0

dx

∫ x

0

(√
x2 + y2

)s−2

dy

= 8

∫ π/4

0

dϕ

∫ 1/6 cosϕ

0

rs−1 dr

=
8

6ss

∫ π/4

0

cos−s ϕ dϕ =
8I(s)

6ss
,

(3.2.34)

where I(s) :=
∫ π/4

0
cos−s ϕ dϕ and is easily seen to be an entire function. (In fact, I(s) =

2−1B1/2 (1/2, (1− s)/2), where Bx(a, b) :=
∫ x

0
ta−1(1− t)b−1dt is the incomplete beta function.)

Consequently, ζA,Ω admits a meromorphic continuation to all of C and we have

ζA,Ω(s) =
8

3s − 4

(
I(s)

6ss
+ ζA2,Ω2(s)

)
, (3.2.35)

for all s ∈ C. Furthermore, let ζC,,(0,1) be the relative distance zeta function of the Cantor
middle-third set constructed inside [0, 1]; see [LapRaŽu5, Example 6.3]. Alternatively, use the
relation ζC,(0,1)(s) = ζLCS (s)(2

1−s/s), where LCS is the Cantor string and (by [Lap-vFr3, Eq.
(1.29), p. 22]) ζLCS (s) = 1/(3s − 2), for all s ∈ C. From Theorem 3.14 and the scaling property
of the relative distance zeta function (Theorem 2.16), we now deduce that

ζA2,Ω2(s) =

√
πΓ
(
1−s
2

)

2Γ
(
2−s
2

) ζ3−1C,3−1(0,1)(s) + E(s; 6−1)

=
Γ
(
1−s
2

)

Γ
(
2−s
2

)
√
π

6ss(3s − 2)
+ E(s; 6−1),

(3.2.36)

where E(s; 6−1) is meromorphic on all of C with a set of simple poles equal to {2k+1 : k ∈ N0};
so that for all s ∈ C, we have

ζA,Ω(s) =
8

s(3s − 4)

(
I(s)

6s
+

Γ
(
1−s
2

)

Γ
(
2−s
2

)
√
π

6ss(3s − 2)
+ E(s; 6−1)

)
. (3.2.37)

Formula (3.2.37) implies that P(ζA,Ω, the set of all complex dimensions (in C) of the ‘relative’
Cantor dust, is a subset of

(
log3 4 +

2π

log 3
iZ

)
∪
(
log3 2 +

2π

log 3
iZ

)
∪ {0} (3.2.38)

and consists of simple poles of ζA,Ω. Of course, we know that log3 4 ∈ P(ζA,Ω), but we can
only conjecture that the other poles on the critical line {Re s = log3 4} are in P(ζA,Ω) since it
may happen that there are some zero-pole cancellations in (3.2.37). On the other hand, since it
is known that the Cantor dust is not Minkowski measurable (see [FaZe]), we can deduce from
[LapRaŽu6, Theorem 4.2] that there must exist at least two other (necessarily nonreal) poles
s±k0

= log3 4± 2k0πi

log 3
of ζA,Ω, for some k0 ∈ N. (Indeed, according to the Minkowski measurability

criterion established in [LapRaŽu6, Theorem 4.2] (see also [LapRaŽu1, Theorem 5.4.20]), D :=
log3 4 cannot be the only complex dimension of (A,Ω) on the critical line {Re s = D} since
otherwise, the Cantor dust would be Minkowski measurable, which is a contradiction.) Based
on (3.2.37), we cannot even claim that 0 ∈ P(ζA,Ω) for sure, but we can see that all of the
principal complex dimensions of the Cantor set are elements of P(ζA,Ω); i.e., log3 2 + 2π

log 3
iZ ⊆

P(ζA,Ω)). We conjecture that we also have log3 4+
2π

log 3
iZ ⊆ P(ζA,Ω); that is, we conjecture that

Pc(ζA,Ω) = log3 4 +
2π

log 3
iZ.

The above example can be easily generalized to the case of Cartesian products of any finite
number of generalized Cantor sets (as given by Definition 2.28), in which case we conjecture that
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the set of complex dimensions of the product is contained in the union of the sets of complex
dimensions of each of the factors, modulo any zero-pole cancellations which may occur. In light
of this and other similar examples, it would be interesting to obtain some results about zero-
free regions for fractal zeta functions. We leave this problem as a possible subject for future
investigations.



4. Relative fractal sprays and principal complex dimensions of

any multiplicity

In this chapter, we consider a special type of RFDs, called relative fractal sprays, and study
their distance zeta functions. We then illustrate our results by computing the corresponding
complex dimensions of relative Sierpiński sprays. More specifically, we determine the complex
dimensions (as well as the associated residues) of the relative Sierpiński gasket (Example 4.12)
and of the relative Sierpiński carpet (Example 4.15); we also consider higher-dimensional analogs
of these examples, namely, the inhomogeneous Sierpiński N-gasket RFD (Example 4.14) and the
Sierpiński N-carpet RFD (Example 4.17).

4.1. Relative fractal sprays in RN . We now introduce the definition of relative fractal spray,
which is very similar to (but more general than) the notion of fractal spray (see [LapPo3],
[Lap-vFr3, Definition 13.2], [LapPe1–2] and [LapPeWi1–2]), itself a generalization of the notion
of (ordinary) fractal string [LapPo1–2, Lap1–3, Lap-vFr3].

Definition 4.1. Let (∂Ω0,Ω0) be a fixed relative fractal drum in RN (which we call the base rel-

ative fractal drum, or generating relative fractal drum), (λj)j≥0 a decreasing sequence of positive
numbers (scaling factors), converging to zero, and (bj)j≥0 a given sequence of positive integers
(multiplicities). The associated relative fractal spray is a relative fractal drum (A,Ω) obtained
as the disjoint union of a sequence of RFDs, F := {(∂Ωi,Ωi) : i ∈ N0}, where N0 := N ∪ {0},
such that each Ωi can be obtained from λjΩ0 by a rigid motion in RN , and for each j ∈ N0 there
are precisely bj RFDs in the family F that can be obtained from λjΩ0 by a rigid motion. Any
relative fractal spray (A,Ω), generated by the base relative fractal drum (or ‘basic shape’) Ω0

and the sequences of ‘scales’ (λj)j≥0 with associated ‘multiplicities’ (bj)≥0, is denoted by

(A,Ω) := Spray(Ω0, (λj)j≥0, (bj)≥0). (4.1.1)

The family F is called the skeleton of the spray. The distance zeta function ζA,Ω of the relative
fractal spray (A,Ω) is computed in Theorem 4.6 below.

If there exist λ ∈ (0, 1) and an integer b ≥ 2 such that λj = λj and bj = bj , for all j ∈ N0,
then we simply write

(A,Ω) = Spray(Ω0, λ, b).

Definition 4.2. The relative fractal spray (A,Ω) = Spray(Ω0, (λj)j≥0, (bj)j≥0) can be viewed
as a relative fractal drum generated by (∂Ω0,Ω0) and a fractal string L = (ℓj)j≥0, consisting
of the decreasing sequence (λj)j≥0 of positive real numbers, in which each λj has multiplicity
bj for every j ≥ 0. Thus, we can write (A,Ω) = Spray(Ω0,L). It is also convenient to view the
construction of (A,Ω) in Definition 4.1 as the tensor product of the base relative fractal drum
(A0,Ω0) and the fractal string L:

(A,Ω) = (∂Ω0,Ω0)⊗L. (4.1.2)

We can also define the tensor product of two (possibly unbounded) fractal strings L1 = (ℓ1j)j≥1

and L2 = (ℓ2k)k≥1 as the following fractal string (note that here, L1 and L2 are viewed as

[46]
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nonincreasing sequences of positive numbers tending to zero, but that we may have
∑∞

j=1 ℓ1j =
+∞ or

∑∞
k=1 ℓ2k = +∞):

L1 ⊗ L2 := (ℓ1jℓ2k)j,k≥1. (4.1.3)

By construction, the multiplicity of any l ∈ L1 ⊗ L2 is equal to the number of ordered pairs of
(ℓ1j , ℓ2k) in the Cartesian product L1 ×L2 of multisets such that l = ℓ1jℓ2k.

Example 4.3. Let Ω0 := B1(0) be the open unit disk in the Euclidean plane R2 and A0 := ∂Ω0

the unit circle. Let L := (ℓj)j≥0 be the Cantor string. In other words, L is the multiset consisting
of lk = 3−k−1 with multiplicity 2k for each k ≥ 0. As in Definition 4.2, we define the RFD (A,Ω)
as the tensor product

(A,Ω) := (A0,Ω0)⊗ L. (4.1.4)

Then,

ζA,Ω(s) =
∞∑

k=0

2kζ3−k−1(A0,Ω0)
(s)

= 3−s
∞∑

k=0

2k3−skζA0,Ω0(s) =
3−sζA0,Ω0(s)

1− 2 · 3−s

=
2π(s− 2)3−s

s(s− 1)(1− 2 · 3−s)
,

(4.1.5)

where in the last equality we have used Equation (2.1.9) with N = 2. It follows that ζA,Ω has
a meromorphic continuation to all of C given by the last expression of (4.1.5). Therefore, we
deduce that

P(ζA,Ω) = {0} ∪
(
log3 2 +

2π

log 3
iZ
)
∪ {1}, dimPC(Ã, Ω̃) = {1}, (4.1.6)

and all the complex dimensions are simple. The RFD (A,Ω) has a vertical sequence of equidistant
complex dimensions (namely, {log3 2 + 2π

log 3
ik}k∈Z), while there is only one principal complex

dimension (namely, s = 1), and it is simple. Using the Minkowski measurability criterion obtained
in [LapRaŽu6, Theorem 4.2] (see also [LapRaŽu1, Theorem 5.4.20]), we conclude that the RFD
(A,Ω) is Minkowski measurable.

We point out, however, that one can also show (by using the results and techniques of
[LapRaŽu5] and [LapRaŽu1, Chapter 5]) that the RFD (A,Ω) is (strictly) subcritically Minkowski

nonmeasurable in dimension d := log3 2, in a sense specified in the just mentioned references.
Heuristically, this means that it has geometric oscillations of lower order d = log3 2, but none
of leading order D = 1.

We can easily modify the notion of relative fractal spray in Definition 4.1 in order to deal
with a finite collection of K basic RFDs (or generating RFDs) (∂Ω01,Ω01),. . . ,(∂Ω0K ,Ω0K),
where K is and integer ≥ 1, similarly as in [LapPo3], [Lap-vFr3, Definition 13.2] (and [LapPe1–
2, LapPeWi1–2]). A slightly more general notion would consist in replacing (∂Ω0,Ω0) by any
relative fractal drum (A0,Ω0); see [LapRaŽu1].

It is important to stress that, from our point of view, the sets Ωi in the definition of a
relative fractal spray (Definition 4.1) do not have to be ‘densely packed’. In fact, in general,
they cannot be ‘densely packed’, as indicated by Example 4.5(c) below. They can just be viewed
as the union of the disjoint family {(∂Ωi,Ωi)}i≥0 of RFDs in RN . The corresponding disjoint
family of open sets {Ωi}i≥0 can even be unbounded in RN , since its union does not have to be
of finite N-dimensional Lebesgue measure.

The following simple lemma provides necessary and sufficient conditions for a relative fractal
spray (A,Ω) to be such that |Ω| < ∞.
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Lemma 4.4. Assume that (A,Ω) := Spray(Ω0, (λj)j≥0, (bj)≥0) in RN is a relative fractal spray.

Then |Ω| < ∞ if and only if |Ω0| < ∞ and

∞∑

j=0

bjλ
N
j < ∞. (4.1.7)

In that case, we have

|Ω| = |Ω0|
∞∑

j=0

bjλ
N
j . (4.1.8)

In particular, the relative fractal drum (A,Ω) is well defined and dimB(A,Ω) ≤ N .

Proof. Let us prove the sufficiency part. For Ωj = λjΩ0 we have |Ωj | = |λjΩ0| = λN
j |Ω0|, and

therefore,

|Ω| =
∞∑

j=0

|Ωj | =
∞∑

j=0

bj |λjΩ0| = |Ω0|
∞∑

j=0

bjλ
N
j .

The proof of the necessity part is also easy and is therefore omitted.

Example 4.5. Here, we provide a few simple examples of relative fractal sprays:

(a) The ternary Cantor set can be viewed as a relative fractal drum

(A,Ω) = Spray(Ω0, 1/3, 2)

(called the Cantor relative fractal drum, or the relative Cantor fractal spray), generated by

(∂Ω0,Ω0) = ({1/3, 2/3} , (1/3, 2/3))
as the base relative fractal drum, λ = 1/3 and b = 2. Its relative box dimension exists and is
given by D = log3 2. Of course, this is just an example of ordinary fractal string, namely, the
well-known Cantor string; see [Lap-vFr3, §1.1.2].

(b) The Sierpiński gasket can be viewed as a relative fractal drum (called the Sierpiński

relative fractal drum, or Sierpiński relative fractal spray), generated by (∂Ω0,Ω0) as the basic
relative fractal drum, where Ω0 is an open equilateral triangle of sides of length 1/2, λ = 1/2
and b = 3. (See the left part of Figure 1.) Its relative box dimension exists and is given by
D = log2 3.

(c) If Ω0 is any bounded open set in R2 (say, an open disk), λ = 1/2 and b = 3, we obtain a
fractal spray (A,Ω) = Spray(Ω0, 1/2, 3), in the sense of Definition 4.1. In Theorem 4.6, we shall
see that if Ω0 has a Lipschitz boundary, then the set of poles of the relative zeta function of
this fractal spray (which is a relative fractal drum), as well as the multiplicities of the poles, do
not depend on the choice of Ω0. In this sense, examples (b) and (c) are equivalent. In particular,
the box dimension of the generalized Sierpiński relative fractal drum is constant, and equal to
D = log2 3.

In other words, the Sierpiński gasket (A,Ω) = Spray(Ω0, 1/2, 3), appearing in Example 4.5(b),
can be viewed as any countable disjoint collection of open triangles in the plane (which can even
be an unbounded collection) and their bounding triangles, of sizes λj = 2−j−1 and multiplicities
bj = 3j , j ∈ N0, and not just as the standard disjoint collection of open triangles, densely packed
inside the unit open triangle; see the right part of Figure 1.

By using the scaling property stated in Theorem 2.16, it is easy to explicitly compute the
distance zeta function of relative fractal sprays. Note that the zeta function involves the Dirichlet
series f(s) =

∑∞
j=0 bjλ

s
j . Theorem 4.6 just below can be considered as an extension of Theo-

rem 2.16.
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Fig. 1. Left: The Sierpiński gasket A, viewed as a relative fractal drum (A,Ω), with Ω being the
countable disjoint union of open triangles contained in the unit triangle Ω0. Right: An equivalent
interpretation of the Sierpiński gasket drum (A,Ω). Here, Ω is a countable disjoint union of open
equilateral triangles, and A = ∂Ω. (There are 3j triangles with sides 2−j−1 in the union, j ∈ N0.)
Both pictures depict the first three iterations of the construction. We can also view the standard
Sierpiński gasket A as a relative fractal drum (A,Ω), in which Ω is just the open unit triangle
in the left picture.

Theorem 4.6 (Distance zeta function of relative fractal sprays). Let

(A,Ω) = Spray(Ω0, (λj)j≥0, (bj)j≥0)

be a relative fractal spray in RN , in the sense of Definition 4.1, and such that |Ω0| < ∞. As-

sume that condition (4.1.7) of Lemma 4.4 is satisfied; that is, |Ω| < ∞. Let Ω be the (countable,
disjoint) union of all the open sets appearing in the skeleton, corresponding to the fractal spray.

(In other words, Ω is the disjoint union of the open sets Ωj , each repeated with the multi-

plicity bj for j ∈ N0.) Let f(s) :=
∑∞

j=0 bjλ
s
j . (Note that according to (4.1.7), this Dirich-

let series converges absolutely for Re s ≥ N ; hence, D(f) ≤ N .) Then, for all s ∈ C with

Re s > max{dimB(A,Ω), D(f)}, the distance zeta function of the relative fractal spray (A,Ω) is

given by the factorization formula

ζA,Ω(s) = f(s) · ζ∂Ω0,Ω0
(s), (4.1.9)

and

dimB(A,Ω) = max{dimB(∂Ω0,Ω0), D(f)}. (4.1.10)

Proof. Clearly, it follows from (4.1.7) that f(N) < ∞. Hence, D(f) ≤ N ; so that dimB(A,Ω) ≤
N . Each open set of the skeleton of the relative fractal spray is obtained by a rigid motion of
sets of the form λjΩ0, and for any fixed j ∈ N0, there are precisely bj such sets. Identity (4.1.9)
then follows immediately from Theorems 2.16 and 2.19. The remaining claims are easily derived
by using this identity.

It follows from Definition 4.2 and relation (4.1.9) that the distance zeta function of the tensor
product is equal to the product of the zeta functions of its components:

ζ(∂Ω0,Ω0)⊗L(s) = ζL(s) · ζ∂Ω0,Ω0
(s). (4.1.11)

Equation (4.1.10) can therefore be written as follows:

dimB((∂Ω0,Ω0)⊗ L) = max{dim(∂Ω0,Ω0),dimBL}. (4.1.12)

Definition 4.7. The Dirichlet series f(s) :=
∑∞

j=1 bjλ
s
j (or, more generally, its meromorphic

extension to a connected open subset U of C, when it exists), is called the scaling zeta function
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of the relative fractal spray (A,Ω) and is denoted by ζS(s); hence, the factorization formula
(4.1.9) can also be rewritten as follows:

ζA,Ω(s) = ζS(s) · ζ∂Ω0,Ω0
(s). (4.1.13)

Theorem 4.8. Assume that a relative fractal spray (A,Ω) = Spray(Ω0, λ, b), as introduced at

the end of Definition 4.1, is such that |Ω0| < ∞, λ ∈ (0, 1), b ≥ 2 is an integer, and bλN < 1.
Then, for Re s > max{dimB(∂Ω0,Ω0), log1/λ b}), we have

ζA,Ω(s) =
ζ∂Ω0,Ω0

(s)

1− bλs
, (4.1.14)

and the lower bound for Re s is optimal. In particular, it is equal to D(ζA,Ω), and hence,

dimB(A,Ω) = D(ζA,Ω) = max{dimB(∂Ω0,Ω0), log1/λ b}.

If, in addition, Ω0 is bounded and has a Lipschitz boundary ∂Ω0 that can be described by

finitely many Lipschitz charts, then dimB(A,Ω) exists and

dimB(A,Ω) = max{N − 1, log1/λ b}. (4.1.15)

Therefore, if we assume that log1/λ b ∈ (N − 1, N), then the set dimPC(A,Ω) = Pc(ζA,Ω) of

principal complex dimensions of the relative fractal spray (A,Ω) is given by

dimPC(A,Ω) = log1/λ b+
2π

log(1/λ)
iZ. (4.1.16)

Proof. If λj := λ and bj := bj for all j ∈ N0, with bλN < 1, then
∑∞

j=0 b
jλjN = 1

1−bλN < ∞; so

that |Ω| < ∞, as desired. Identity (4.1.14) follows immediately from (4.1.9), using the fact that
for Ω0 with a Lipschitz boundary satisfying the stated assumption, we have dimB(∂Ω0,Ω0) =
dimB ∂Ω0 = N −1 (this follows, for example, from [ŽuŽup, Lemma 3]; see also [Lap1]), together
with the property of finite stability of the upper box dimension; see, e.g., [Fal1, p. 44].

Example 4.9. Here, we construct a relative fractal spray

(A,Ω) = Spray(Ω0, (λj)j≥1, (bj)≥1)

in R2 such that |Ω0| < ∞, bj ≡ 1,
∑∞

j=1 λ
2
j < ∞ (hence, |Ω| < ∞ by Lemma 4.4), and such that

the base set Ω0 is unbounded, as well as its boundary ∂Ω0. Let Ω0 be any unbounded Borel set
of finite 2-dimensional Lebesgue measure, such that both Ω0 and ∂Ω0 are unbounded, and Ω0

is contained in the horizontal strip

V1 := {(x, y) ∈ R
2 : 0 < y < 1}.

We can explicitly construct such a set as follows:

Ω0 := {(x, y) ∈ R
2 : 0 < y < x−α, x > 1},

where α > 1, so that |Ω0| < ∞.

Furthermore, let (Vj)j≥1 be a countable, disjoint sequence of horizontal strips in the plane,
defined for each j ∈ N by Vj = V1 + (0, j), the Minkowski sum of Vj and (0, j). Let (λj)j≥1 be
a sequence of real numbers in (0, 1) such that

∑∞
j=1 λ

2
j < ∞. It is clear that for any λj , j ≥ 2,

the set λjΩ0 is congruent (up to a rigid motion) to the subset Ωj := λjΩ0 + (0, j) of Vj . Then,
the fractal spray

(A,Ω) =
∞⋃

j=1

(∂Ωj ,Ωj)

has the desired properties.
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Fig. 2. On the left is depicted the base relative fractal drum (∂Ω0,Ω0) of the relative Sierpiński
gasket, where Ω0 is the associated (open) equilateral triangle with sides 1/2. It can be viewed as
the (disjoint) union of six RFDs, all of which are congruent to the relative fractal drum (A′,Ω′)
on the right. This figure explains Equation (4.2.4) appearing in Example 4.12; see Lemma 4.11.

4.2. Relative Sierpiński sprays and their complex dimensions. We provide two examples
of relative fractal sprays, dealing with the relative Sierpiński gasket and the relative Sierpiński

carpet, respectively. In the sequel, it will be useful to introduce the following definition.

Definition 4.10. We say that two given relative fractal drums (A1,Ω1) and (A2,Ω2) in RN are

congruent if there exists an isometry f : RN → RN such that A2 = f(A1) and Ω2 = f(Ω1).

It is easy to see that the congruence of RFDs is an equivalence relation.
The following lemma states, in particular, that any two congruent RFDs have equal distance

zeta functions. We leave its proof as a simple exercise for the interested reader.

Lemma 4.11. Let (A1,Ω1) and (A2,Ω2) be two congruent RFDs in RN . Then, for any r ∈ R,

we have

Mr
∗(A1,Ω1) = Mr

∗(A2,Ω2), M∗r(A1,Ω1) = M∗r(A2,Ω2) (4.2.1)

and

dimB(A1,Ω1) = dimB(A2,Ω2), dimB(A1,Ω1) = dimB(A2,Ω2) =: D. (4.2.2)

Furthermore,

ζA1,Ω1(s) = ζA2,Ω2(s) (4.2.3)

for any s ∈ C with Re s > dimB(A1,Ω1).

It follows from (4.2.3) that under the hypotheses of Lemma 4.11 and given a connected open
set U ⊆ C (containing the critical line {Re s = D} of the RFDs (A1,Ω1) and (A2,Ω2); see
Equation (4.2.2) above), ζA1,Ω1 and ζA2,Ω2 have the exact same mermomorphic continuation
to U , and therefore the same poles in U and associated residues (or more generally, principal
parts in the case of multiple poles). In particular, two congruent RFDs have the same (visible)
complex dimensions.

Example 4.12. (Relative Sierpiński gasket). Let A be the Sierpiński gasket in R2, the outer
boundary of which is an equilateral triangle with unit sides. Consider the countable family of all
open triangles in the standard construction of the gasket. (Namely, these are the open triangles
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which are deleted at each stage of the construction.) If Ω is the largest open triangle (with unit
sides), then the relative Sierpiński gasket is defined as the ordered pair (A,Ω). The distance
zeta function ζA,Ω of the relative Sierpiński gasket (A,Ω) can be computed as the distance zeta
function of the following relative fractal spray (see the end of Definition 4.1):

Spray(Ω0, λ = 1/2, b = 3),

where Ω0 is the first deleted open triangle with sides 1/2. It suffices to apply Equation (4.1.14)
from Theorem 4.8. Decomposing Ω0 into the union of six congruent right triangles (determined
by the heights of the triangle Ω0, see Figure 2) with disjoint interiors, we have that

ζ∂Ω0,Ω0
(s) = 6 ζA′,Ω′(s) = 6

∫

Ω′
d((x, y),A′)s−2dxdy

= 6

∫ 1/4

0

dx

∫ x/
√

3

0

ys−2dy = 6
(
√
3)1−s2−s

s(s− 1)
,

(4.2.4)

for all s ∈ C with Re s > 1. Using Equation (4.1.14) and appealing to Lemma 4.11, we deduce
that the distance zeta function of the relative Sierpiński gasket (A,Ω) satisfies

ζA,Ω(s) =
6(
√
3)1−s2−s

s(s− 1)(1− 3 · 2−s)
∼ 1

1− 3 · 2−s
, (4.2.5)

where the equality holds for all s ∈ C with Re s > log2 3 and the equivalence ∼ holds in the
sense of Definition 1.7. Therefore, by the principle of analytic continuation, it follows that ζA,Ω

has a meromorphic extension to the entire complex plane, given by the same closed form as in
Equation (4.2.5). More specifically,

ζA,Ω(s) =
6(
√
3)1−s2−s

s(s− 1)(1− 3 · 2−s)
, for all s ∈ C. (4.2.6)

Hence, the set of all of the complex dimensions (in C) of the relative Sierpiński gasket is given
by

P(ζA,Ω) =
(
log2 3 +

2π

log 2
iZ

)
∪ {0, 1}. (4.2.7)

Each of these complex dimensions in (4.2.7) is simple (i.e., is a simple pole of ζA,Ω). Note that
here, {0, 1} can be interpreted as the set of integer dimensions of A, in the sense of [LapPe2–
3] and [LapPeWi1]. In particular, we deduce from (4.2.7) that D(ζA,Ω) = log2 3, and we thus
recover a well-known result. Namely, the set dimPC(A,Ω) := Pc(ζA,Ω) of principal complex
dimensions of the relative Sierpiński gasket (A,Ω) is given by

dimPC(A,Ω) = log2 3 + piZ, (4.2.8)

where p = 2π/log 2 is the oscillatory period of the Sierpiński gasket; see [Lap-vFr3, §6.6.1].

Note, however, that in [Lap-vFr1–3], the complex dimensions are obtained in a completely
different manner (via an associated spectral zeta function) and not geometrically. In addition,
all of the complex dimensions of the Sierpiński gasket A are shown to be principal (that is, to
be located on the vertical line Re s = log2 3 = dimB A), a conclusion which is slightly different
from (4.2.7) above.(1) We also refer to [ChrIvLap] and [LapSar], as well as to [LapPe2–3] and
[LapPeWi1–2], for different approaches (via a spectral zeta function associated to a suitable
geometric Dirac operator and via a self-similar tiling associated with A, respectively) leading to
the same conclusion.

(1) Analogously, for a fractal string RFD (A,Ω), we have P(ζA,Ω) = P(ζL) ∪ {0}; here, of
course, N = 1 instead of N = 2.
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In light of (4.2.6), the residue of the distance zeta function ζA,Ω of the relative Sierpiński
gasket computed at any principal pole sk := log2 3 + pki, k ∈ Z, is given by

res(ζA,Ω, sk) =
6(
√
3)1−sk

2sk (log 2)sk(sk − 1)
.

In particular,

| res(ζA,Ω, sk)| ∼
6(
√
3)1−D

D 2D log 2
k−2 as k → ±∞,

where D := log2 3.

The following proposition shows that the relative Sierpiński gasket can be viewed as the
relative fractal spray generated by the relative fractal drum (A′,Ω′) appearing on the right-hand
side of Figure 2.

Proposition 4.13 (Relative Sierpiński gasket). Let (A′,Ω′) be the relative fractal drum defined

on the right part of Figure 2. Let (A,Ω) be the relative fractal spray generated by the base relative

fractal drum (A′,Ω′), with scaling ratio λ = 1/2 and with multiplicities mk = 6 · 3k−1, for any

positive integer k:

(A,Ω) = Spray((A′,Ω′), λ = 1/2, mk = 6 · 3k−1 for k ∈ N). (4.2.9)

(Note that we assume here that the base relative fractal drum (A′,Ω′) has a multiplicity equal

to 8.) Then, the relative distance zeta function of the relative fractal spray (A,Ω) coincides with

the relative distance zeta function of the relative Sierpiński gasket; see Equation (4.2.6).

Example 4.14. (Inhomogeneous Sierpiński N-gasket RFD). The usual Sierpiński gasket is con-
tained in the unit triangle in the plane. Its analog in R3, which we call the inhomogeneous

Sierpiński 3-gasket or inhomogeneous tetrahedral gasket, and denote by A3, is obtained by delet-
ing the middle open octahedron (from the initial compact, convex unit tetrahedron), defined as
the interior of the convex hull of the midpoints of each of the six edges of the initial tetrahedron
(thus, four sub-tetrahedrons are left after the first step), and so on. Such sets, along with their
higher-dimensional counterparts, are analogous to, but not identical with, the (homogeneous)
self-similar N-gaskets discussed, for example, in [KiLap].

More generally, for any integer N ≥ 2, the inhomogeneous Sierpiński N-gasket AN , contained
in RN , can be defined as follows. Let VN := {P1, P2, . . . , PN+1} be a set of N points in RN such
that the mutual distance of any two points from the set is equal to 1.

The set VN , where N ≥ 2, with the indicated property, can be constructed inductively as
follows. For N = 2, we take V2 to be the set of vertices of any unit triangle in R2. We then
reason by induction. Given N ≥ 2, we assume that the set VN of N + 1 points in RN has been
constructed. Note that the set VN is contained in a sphere, whose center is denoted by O. Let us
consider the line of RN+1 = RN × R through the point O and perpendicular to the hyperplane
RN = RN × {0} in RN+1. There exists a unique point PN+2 in the half-plane {xN+1 > 0} of
RN+1, which is a unit distance from all of the N vertices of VN . (Here, we identify VN with
VN × {0} ⊂ RN+1.) We then define VN+1 by VN+1 := VN ∪ {PN+2}.

Let us define ΩN as the convex hull of the set VN . As usual, we call it the N-simplex. Let
ΩN,0, called the N-plex, be the open set defined as the interior of the convex hull of the set
of midpoints of all of the

(
N+1

2

)
edges of the N-simplex ΩN . [For example, for N = 2, the set

Ω2,0 (that is, the 2-plex) is an open equilateral triangle in R2 of side lengths equal to 1/2, while
for N = 3, the set Ω3,0 (that is, the 3-plex) is an open octahedron in R3 of side lengths equal
to 1/2.] The set ΩN \ ΩN,0 is equal to the union of N + 1 congruent N-simplices with disjoint
interiors, having all of their side lengths equal to 1/2. This is the first step of the construction.
We proceed analogously with each of the N + 1 compact N-simplices. The compact set AN

obtained in this way is called the inhomogeneous Sierpiński N-gasket. It can be identified with
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Fig. 3. The open octahedron Ω3,0 inscribed into the largest (compact) tetrahedron Ω3, sur-
rounded with 4 smaller (compact) tetrahedra scaled by the factor 1/2. Each of them contains
analogous scaled open octahedra, etc. The countable family of all open octahedra (viewed jointly
with their boundaries) constitutes the tetrahedral gasket RFD or the Sierpiński 3-gasket RFD.
The complement of the union of all open octahedra, with respect to the initial tetrahedron Ω3,
is called the inhomogeneous Sierpiński 3-gasket.

Unlike the classic Sierpiński 3-gasket (also known as the Sierpiński pyramid or tetrahedron)
S3, which is a (homogeneous or standard) self-similar set in R3 and satisfies the usual fixed point
equation, S = ∪4

j=1Φj(S), where {Φj}4j=1 are suitable contractive similitudes of R3 with respec-
tive fixed points {Pj}4j=1 and scaling ratios {rj}4j=1 of common value 1/2, the inhomogeneous
Sierpiński 3-gasket A3 is not a self-similar set. Instead, it is an inhomogeneous self-similar set

(in the sense of [BarDem], see also Equation (4.2.37) below and the discussion surrounding it).
More specifically, A := A3 satisfies the following inhomogeneous fixed point equation (of which it
is the unique solution in the class of all nonempty compact subsets of R3), A =

⋃4
j=1 Φj(A)∪B,

where B is the boundary of the first octahedron Ω3,0 (in fact, B can simply be taken as the
union of four middle triangles on the boundary of the outer tetrahedron Ω3).

the relative fractal spray (AN ,ΩN ) in RN , called the inhomogeneous Sierpiński N-gasket RFD

(and, in short, the inhomogeneous N-gasket RFD), defined by

(AN ,ΩN ) = Spray ((∂ΩN,0,ΩN,0), λ = 1/2, b = N + 1). (4.2.10)

(See the end of Definition 4.1.) According to Theorem 4.8, we have

ζAN ,ΩN (s) = ζS(s) · ζ∂ΩN,0,ΩN,0(s), (4.2.11)

where the scaling zeta function ζS(s) of the N-gasket RFD is given for all s ∈ C such that
Re s > log2(N + 1) by

ζS(s) =
∞∑

k=0

(N + 1)k(2−k)s =
1

1− (N + 1)2−s
. (4.2.12)

Upon analytic continuation, it follows that ζS can be meromorphically continued to the whole
of C and is given by

ζS(s) =
1

1− (N + 1)2−s
, for all s ∈ C. (4.2.13)
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Since (by (4.2.13)) the set of poles of ζS is given by

P(ζS) = log2(N + 1) +
2π

log 2
iZ (4.2.14)

and the set of poles of the distance zeta function of the relative N-plex (∂ΩN,0,ΩN,0) is given by

P(ζ∂ΩN,0,ΩN,0) = {0, 1, . . . , N − 1}, (4.2.15)

and ζ∂ΩN,0,ΩN,0(s) 6= 0 for all s ∈ C \P(ζ∂ΩN,0,ΩN,0), we conclude that the set of poles (complex
dimensions) of the relative Sierpiński N-gasket (AN ,ΩN ) is given by

P(ζAN ,ΩN ) = {0, 1, . . . , N − 1} ∪
{
log2(N + 1) +

2π

log 2
iZ

}
, (4.2.16)

where each complex dimension is simple. In particular, the set of principal complex dimensions
of the RFD (AN ,ΩN ) is given by(2)

dimPC(AN ,ΩN ) =





log2 3 +
2π

log 2
iZ for N = 2,

2 + 2π
log 2

iZ for N = 3,

{N − 1} for N ≥ 4,

(4.2.17)

and

dimB(AN ,ΩN ) =

{
log2 3 for N = 2,

N − 1 for N ≥ 3,
(4.2.18)

which extends the well-known results for N = 2 and 3, corresponding to the usual Sierpiński
gasket in R2 and the tetrahedral gasket in R3, respectively. (Namely, their respective relative
box dimensions are equal to log2 3 and 2).

It can be shown that in this case, dimB(AN ,ΩN ) and dimB AN exist and

dimB(AN ,ΩN ) = dimB AN = dimH AN , (4.2.19)

as given by the right-hand side of (4.2.18), where (as before) dimH( · ) denotes the Hausdorff
dimension. Furthermore, it is easy to see that dimPC(AN ,ΩN ) = dimPC AN .

The relative distance zeta function ζ∂ΩN,0,ΩN,0 of the N-plex RFD can be explicitly com-
puted as follows, in the case when N = 3. It is easy to see that the octahedral RFD (∂Ω3,0,Ω3,0)
can be identified with sixteen copies of disjoint RFDs, each of which is congruent to the pyra-
midal RFD (T,Ω′) in R3, where Ω′ is the open (irregular) pyramid with vertices at O(0, 0, 0),
A(1/4, 0, 0), B(1/4, 1/4, 0) and C(0, 0, 1/(2

√
2)), while the triangle T = conv (A,B,C) is a face

of the pyramid. Since for any (x, y, z) ∈ Ω′ we have

d((x, y, z), T ) =
1√
3

(
1

2
√
2
−

√
2x− z

)
, (4.2.20)

we deduce that

ζ∂Ω3,0,Ω3,0(s) = 16ζT,Ω′(s)

= 16

∫∫∫

Ω′
d((x, y, z), T )s−3dxdy dz

= 16

∫ 1/4

0

dx

∫ x

0

dy

∫ 1

2
√

2
−
√

2 x

0

(
1

2
√

2
−

√
2x− z

√
3

)s−3

dz.

(4.2.21)

(2) Recall that, by definition, dimPC(AN ,ΩN ) = Pc(ζAN ,ΩN ).



56 4. Relative fractal sprays and principal complex dimensions of any multiplicity

Evaluating the last integral in (4.2.21), we obtain by a direct computation that

ζ∂Ω3,0,Ω3,0(s) = 16
(
√
3)3−s

s− 2

∫ 1/4

0

( 1

2
√
2
−

√
2x
)s−2

x dx

= 8
(
√
3)3−s

s− 2

∫ 1/(2
√

2)

0

us−2
( 1

2
√
2
− u
)
du

=
8(
√
3)3−s(2

√
2)−s

s(s− 1)(s− 2)
,

(4.2.22)

for any complex number s such that Re s > 2. Therefore, we deduce from (4.2.11) that the
distance zeta function of the thetrahedral RFD in R3 can be meromorphically extended to the
whole complex plane and is given for all s ∈ C by

ζA3,Ω3(s) =
8(
√
3)3−s(2

√
2)−s

s(s− 1)(s− 2)(1− 4 · 2−s)
. (4.2.23)

It is worth noting that s = 2 is the only pole of order 2, since s = 2 is the simple pole of both
(s− 2)−1 and (1− 4 · 2−s)−1. More specifically, since the derivative of 1− 4 · 2−s computed at
s = 2 is nonzero (and, in fact, is equal to 4 log 2), then s = 2 is a simple zero of 1− 4 · 2−s; that
is, it is a simple pole of 1/(1− 4 · 2−s).

Moreover, it immediately follows from Equation (4.2.23) that

ζA3,Ω3(s) ∼
1

(s− 2)(1− 4 · 2−s)
. (4.2.24)

In particular, as we have already seen in Equation (4.2.17) (recall that N := 3 here), we have

dimPC(A3,Ω3) = 2 +
2π

log 2
iZ. (4.2.25)

Since D = 2 is a simple pole of both 1/(s− 2) and 1/(1− 4 · 2−s), we conclude that D = 2 is the
only complex dimension of order two of the RFD (A3,Ω3). Consequently, the case of the relative
Sierpiński 3-gasket (A3,Ω3) reveals a new phenomenon: its relative box dimension D = 2 is a
complex dimension of order (i.e., multiplicity) two, while all the other complex dimensions of
the relative Sierpiński 3-gasket (including the double sequence of nonreal complex dimensions
on the critical line of convergence {Re s = 2}) are simple.

By using arguments similar to those used when N = 3, one can show that for any N ≥ 3,
the distance zeta function of the relative N-plex (∂ΩN,0,ΩN,0) is of the form

ζ∂ΩN,0,ΩN,0(s) =
g(s)

s(s− 1) . . . (s− (N − 1))
, (4.2.26)

where g(s) is a nonvanishing entire function. In the special case when N = 3, this is in accordance
with Equation (4.2.22) above. Therefore, from Equations (4.2.11) and (4.2.13) above, we conclude
that

ζAN ,ΩN (s) =
g(s)

s(s− 1) . . . (s− (N − 1))(1− (N + 1)2−s)
. (4.2.27)

This extends Equation (4.2.23) to any N ≥ 3.

In the case when N ≥ 4, D = N − 1 is the only principal complex dimension of the relative
Sierpiński N-gasket. (Indeed, for N ≥ 4 we have that log2(N +1) < N − 1 (i.e., N +1 < 2N−1),
which can be easily proved, for example, by using mathematical induction on N .) Also, all
the other complex dimensions are simple. Furthermore, we immediately deduce from Equation
(4.2.27) that

ζAN ,ΩN (s) ∼ 1

s− (N − 1)
. (4.2.28)
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Moreover, if N ≥ 4 is of the form N = 2k −1 for some integer k ≥ 3, then s = k (note that it
is smaller than D = N − 1) is the only complex dimension of order two (since it is a simple pole
of both (s− k)−1 and (1− (N + 1)2−s)−1), while all the other complex dimensions are simple.

On the other hand, if N ≥ 4 is not of the form N = 2k − 1 for any integer k ≥ 3, then all of
the complex dimensions of the relative Sierpiński N-gasket are simple.

Roughly speaking, in the case when N = 3, the fact that s = 2 has multiplicity two can be
explained geometrically as follows: firstly, s = 2 is a simple pole arising from the self-similarity
of the RFD (A3,Ω3),(

3) while at the same time, s = 2 is a simple pole arising from the geometry
of the boundary of the first (deleted) octahedron, which is also 2-dimensional.

In the case of the ordinary Sierpiński gasket, i.e, of the relative Sierpiński 2-gasket, the value
of s = log2 3 (which is the simple pole arising from the self-similarity of (A2,Ω2)) is strictly
larger than the dimension s = 1 of the boundary of the deleted triangle (i.e., of the 2-plex Ω2,0).
Moreover, the relative Sierpiński 2-gasket is Minkowski nondegenerate and Minkowski nonmea-
surable, while the relative Sierpiński 3-gasket is Minkowski degenerate, with its 2-dimensional
Minkowski content being equal to +∞.

On the other hand, when N ≥ 4, the dimension N −1 of the boundary of the N-plex ΩN,0 is
larger than the similarity dimension log2(N+1) arising from “fractality”. Since D = log2(N+1)
is the only complex dimension on the critical line (and it is simple), we conclude that for N ≥ 4,
the RFD (AN ,ΩN ) is Minkowski measurable (see [LapRaŽu5]). Thus, the case when N = 3 is
indeed very special among all relative Sierpiński N-gaskets.

We refer the interested reader to [LapRaŽu5] and [LapRaŽu6] (as well as to the relevant
part of [LapRaŽu1, §5.5]) for a detailed discussion of the property of Minkowski measurability
(or of Minkowski nonmeasurability) of the N-gasket RFD (AN ,ΩN ), for any N ≥ 2 and for
the corresponding fractal tube formulas. Let us simply mention here that for N = 3, a suitable
gauge function can be found with respect to which A3 is not only Minkowski nondegenerate
but is also Minkowki measurable. (Note that for N 6= 3, AN is Minkowski nondegenerate in the
usual sense, that is, relative to the trivial gauge function obeying the standard power law.)

Let σ0 be the common similarity dimension of the inhomogneous Sierpiński N-gasket AN , the
relative Sierpiński N-gasket (AN ,ΩN ) (where the latter is viewed as a self-similar fractal spray
or RFD) and the classic Sierpiński N-gasket SN (to be discussed below). Since the corresponding
scaling ratios {rj}N+1

j=1 satisfy r1 = · · · = rN+1 = 1/2, the similarity dimension σ0, defined as

being the unique real solution s of the Moran equation
∑N+1

j=1 rsj = 1 (i.e., here, 2s = N + 1,
s ∈ R), is given by

σ0 = log2(N + 1). (4.2.29)

In light of Equation (4.1.10) and since dimB(AN,0,ΩN,0) = N −1 (by Equation (4.2.15)), we see
that dimB(AN ,ΩN ) = σ0 for N = 2 or N = 3, that

σ0 = dimB(AN ,ΩN ) > dimB(AN,0,ΩN,0) (4.2.30)

for N = 2,

σ0 = dimB(AN ,ΩN ) = dimB(AN,0,ΩN,0) (= 2) (4.2.31)

for N = 3, whereas for every N ≥ 4, we have that

σ0 = log2(N + 1) < dimB(AN ,ΩN ) = dimB(AN,0,ΩN,0) = N − 1. (4.2.32)

(Recall from (4.2.19) that dimB AN = dimB(AN ,ΩN ).) On the other hand, if SN denotes the
classic Sierpiński N-gasket in RN (to be further discussed below), then for every N ≥ 2, we have
that

dimB SN (= dimH SN ) = σ0 = log2(N + 1). (4.2.33)

(3) Indeed, the similarity dimension of the 3-gasket A3 is equal to 2.
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The latter statement follows from a classic result of Hutchinson in [Hut] for self-similar sets
satisfying the open set condition (which is the case of SN for every N ≥ 2) and extending to
higher dimensions the basic result of Moran [Mora] for one-dimensional self-similar sets.(4) (See
[Fal1, Theorem 9.3] for the statement and a detailed proof of this theorem.)

We close this discussion of the N-gasket RFD (AN ,ΩN ) by explaining the discrepancy be-
tween the results obtained in (4.2.30), (4.2.31) and, especially, (4.2.32) for the self-similar spray
(AN ,ΩN ) and the usual result (4.2.33) for the self-similar set SN , the classic Sierpiński N-gasket.

First of all, note that in light of (4.2.11) and (4.2.13) (see also Theorem 4.6), we must have

dimB(AN ,ΩN ) (= dimBAN)

= max{σ0,dimB(AN,0,ΩN,0)}
= max{log2(N + 1), N − 1},

(4.2.34)

and that, in the present case, the upper Minkowski dimensions can be replaced by the Minkowski
dimensions in Equation (4.2.34).

Indeed, by (4.2.11), we have

D(ζAN ,ΩN ) = max{D(ζS), D(ζAN,0,ΩN,)} (4.2.35)

and by part (b) of Theorem 2.1, we have

D(ζAN ,ΩN ) = dimBD(AN ,ΩN )

and

D(ζAN,0,ΩN,0) = dimBD(AN,0,ΩN,0),

from which (4.2.34) follows since σ0 = log2(N + 1). (See Theorem 4.6.)
Identity (4.2.34) explains why (4.2.30), (4.2.31) and (4.2.32) hold. Indeed, if we let DG :=

dimB(AN,0,ΩN,0) (the Minkowski dimension of the base RFD (AN,0,ΩN,0) generating the self-
similar RFD (AN ,ΩN )) and D := dimB(AN ,ΩN ), we deduce from (4.2.34) and an elementary
computation that D = σ0 if N = 2, D = σ0 = DG if N = 3, whereas D = DG if N ≥ 4, in
agreement with (4.2.30), (4.2.31) and (4.2.32), respectively.

From the geometric point of view, the difference between AN and SN can be explained as
follows. As is well known (see, e.g., [KiLap] and the relevant references therein), the (homoge-
neous) Sierpiński N-gasket SN is a self-similar set (satisfying the open set condition), associated
with the iterated function system (IFS) {Φj}N+1

j=1 , where (for j = 1, . . . , N + 1) each Φj is a

contractive similitude of RN with fixed point Pj and scaling ratio rj = 1/2; i.e., the associated
scaling ratio list {rj}N+1

j=1 of {Φj}N+1
j=1 is given by r1 = · · · = rN+1 = 1/2. More specifically, SN

is the unique (nonempty) compact subset K of RN which is the solution of the (homogeneous)
fixed point equation

K = Φ(K) :=

N+1⋃

j=1

Φj(K). (4.2.36)

On the other hand, unless N = 2, the inhomogeneous Sierpiński N-gasket AN is not a self-
similar set in the classic sense of [Hut] (see also [Fal1, Chapter 9]). (For N = 2, A2 coincides with
the usual Sierpiński gasket S2.) However, interestingly, it is an inhomogeneous self-similar set, in
the sense of Barnsley and Demko [BarDem] (see also [BarDem, Fra] and the relevant references
therein for further results about such sets). More specifically, AN is the unique (nonempty)
solution K of the inhomogeneous fixed point equation

K = Φ(K) ∪B, (4.2.37)

(4) Note that S1 ⊂ R is just the unit interval, viewed as a self-similar set with scaling ratios
r1 = r2 = 1/2. However, in the present discussion, we consider the more interesting case when
N ≥ 2.
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Fig. 4. On the left is the base relative fractal drum (∂Ω0,Ω0) of the relative Sierpiński carpet
(A,Ω) described in Example 4.15, where Ω0 is the associated (open) square with sides 1/3. The
base relative fractal drum (∂Ω0,Ω0) can be viewed as the (disjoint) union of eight RFDs, all
of which are congruent to the relative fractal drum (A′,Ω′) on the right. This figure explains
Equation (4.2.39); see Lemma 4.11.

where Φ is defined as in Equation (4.2.36) above and B is a suitable compact subset of RN . For
N = 2, the set A2 = S2 is both homogeneous and inhomogeneous, since it satisfies Equation
(4.2.37) both for B = ∅ and B = ∂A2,0 (the boundary of the unit triangle). By contrast, when
N ≥ 3, the compact set B is nonempty and hence, AN is not self-similar for this IFS {Φj}N+1

j=1 .
For N = 3, a description of several possible choices for B can be found in the caption of Figure 3.
When N ≥ 3, let us simply state that we can choose B to be the boundary of ΩN,0: B = ∂ΩN,0.
(Other choices are possible, however.)

Example 4.15. (Relative Sierpiński carpet). Let A be the Sierpiński carpet contained in the
unit square Ω. Let (A,Ω) be the corresponding relative Sierpiński carpet, with Ω being the unit
square. Its distance zeta function ζA,Ω coincides with the distance zeta function of the following
relative fractal spray (see the end of Definition 4.1):

Spray(Ω0, λ = 1/3, b = 8),

where Ω0 is the first deleted open square with sides 1/3. Similarly as in Example 4.12, using
Theorem 4.8 and Lemma 4.11, we obtain that ζA,Ω, the relative distance zeta functions of (A,Ω),
has a meromorphic continuation to the entire complex plane given for all s ∈ C by

ζA,Ω(s) =
8 · 6−s

s(s− 1)(1− 8 · 3−s)
. (4.2.38)

Indeed, clearly, the base relative fractal drum (∂Ω0,Ω0) is the (disjoint) union of eight relative
fractal drums, each of which is congruent to a relative fractal drum (A′,Ω′), where Ω′ is an
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appropriate isosceles right triangle; see Figure 4. We then deduce from Lemma 4.11 that

ζ∂Ω0,Ω0
(s) = 8 ζA′,Ω′(s) = 8

∫

Ω′
d((x, y), A′)s−2dxdy

= 8

∫ 1/6

0

dx

∫ x

0

ys−2dy =
8 · 6−s

s(s− 1)

(4.2.39)

for all s ∈ C with Re s > 1, and hence, in light of Theorem 4.8, that ζA,Ω(s) is given by (4.2.38).
Note that, after analytic continuation, we also have

ζ∂Ω0,Ω0
(s) =

8 · 6−s

s(s− 1)
, for all s ∈ C. (4.2.40)

Since by (4.2.40),

ζA,Ω(s) ∼ 1

1− 8 · 3−s
,

one deduces from this equivalence that the abscissa of convergence of ζA,Ω is given by D =
log3 8 = dimB(A,Ω), where the equality follows from Theorem 2.1(b).

Here, the relative box dimension of A coincides with its usual box dimension, namely, log3 8.
Moreover, the set Pc(ζA,Ω) of relative principal complex dimensions of the Sierpiński carpet A
with respect to the unit square Ω is given by

dimPC(A,Ω) = log3 8 + piZ, (4.2.41)

where p := 2π/ log 3 is the oscillatory period of the Sierpiński carpet A.

Observe that it follows immediately from (4.2.38) that the set P(ζA,Ω) of all relative complex
dimensions of the Sierpiński carpet A (with respect to the unit square Ω) is given by

P(ζA,Ω) = dimPC A ∪ {0, 1} = (log3 8 + piZ) ∪ {0, 1},
where {0, 1} can be viewed as the set of ‘integer dimensions’ of A (in the sense of [LapPe2–3] and
[LapPeWi1], see also [Lap-vFr3, §13.1]). Furthermore, each of these relative complex dimensions
is simple (i.e., is a simple pole of ζA,Ω). Interestingly, these are exactly the complex dimensions
which one would expect to be associated with A, according to the theory developed in [LapPe2–
3] and [LapPeWi1–2] (as described in [Lap-vFr3, §13.1]) via self-similar tilings (or sprays) and
associated tubular zeta functions.

In light of (4.2.38), the residue of the distance zeta function of the relative Sierpiński carpet
(A,Ω) computed at any principal pole sk := log3 8 + pik, k ∈ Z is given by

res(ζA,Ω, sk) =
2−sk

(log 3)sk(sk − 1)
.

In particular,

| res(ζA,Ω, sk)| ∼
2−D

D log 3
k−2 as k → ±∞,

where D := log3 8.

Similarly as in the case of the relative Sierpiński gasket (see Proposition 4.13), the relative
Sierpiński carpet can be viewed as a fractal spray generated by the base RFD appearing in
Figure 4 on the right.

Proposition 4.16 (Relative Sierpiński carpet). Let (A′,Ω′) be the RFD defined on the right-

hand side of Figure 4. Let (A,Ω) be the relative fractal spray generated by the base relative fractal

drum (A′,Ω′), with scaling ratio λ = 1/3 and with multiplicities mk = 8k for any positive integer

k:

(A,Ω) = Spray((A′,Ω′), λ = 1/3, mk = 8k for k ∈ N). (4.2.42)
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(Note that we assume here that the base relative fractal drum (A′,Ω′) has a multiplicity equal

to 8.) Then, the relative distance zeta function of the relative fractal spray (A,Ω) coincides with

the relative distance zeta function of the relative Sierpiński carpet. (See Equation (4.2.38).)

Example 4.17. (Sierpiński N-carpet). It is easy to generalize the example of the standard
Sierpiński carpet (which is a compact subset of the unit square [0, 1]2 ⊂ R2, see Example 4.15
above), to the Sierpiński N-carpet (or N-carpet, for short), defined analogously as a compact
subset A of the unit N-dimensional cube [0, 1]N ⊂ RN . More precisely, we divide [0, 1]N into
the union of 3N congruent N-dimensional subcubes of length 1/3 and with disjoint interiors
and then remove the middle open subcube. The remaining compact set is denoted by F1. We
then remove the middle open N-dimensional cubes of length 1/32 from the remaining 3N − 1
subcubes. The resulting compact subset is denoted by F2. Proceeding analogously ad infinitum,
we obtain a decreasing sequence of compact subsets Fk of [0, 1]N , for k ≥ 1. The Sierpiński
N-carpet A is then defined by

A :=

∞⋂

k=1

Fk. (4.2.43)

(Note that the Sierpiński 1-carpet coincides with the usual ternary Cantor set, while the Sierpiń-
ski 2-carpet coincides with the usual Sierpiński carpet discussed in Example 4.15; furthermore,
the Sierpiński 3-carpet is discussed in [LapRaŽu7, Example 2].)

It is clear that the Sierpiński N-carpet RFD (A,Ω), where A is the Sierpiński N-carpet and
Ω := (0, 1)N is the open unit cube of RN , can be viewed as the following relative fractal spray;
see the end of Definition 4.1:

(A,Ω) = Spray ((∂Ω0,Ω0), λ = 1/3, b = 3N − 1). (4.2.44)

(Here, the cube Ω0 = (0, 1/3)N is obtained by a suitable translation of the middle open subcube
from the first step of the construction of the set A.) According to Theorem 4.8, we then have
that

ζA,Ω(s) = f(s) · ζ∂Ω0,Ω0
(s)

=
ζ∂Ω0,Ω0

(s)

1− (3N − 1)3−s
∼ 1

1− (3N − 1)3−s
.

(4.2.45)

Since Ω0 has a Lipschitz boundary and log1/λ b = log3(3
N − 1) ∈ (N − 1, N), we deduce from

(4.1.16) in Theorem 4.8 that the set of principal complex dimensions of the relative Sierpiński
N-carpet spray is given by

dimPC(A,Ω) = log3(3
N − 1) +

2π

log 3
iZ (4.2.46)

and hence,

dimPC(A,Ω) ⊂ {Re s = log3(3
N − 1)} ⊂ {N − 1 < Re s < N}.

In particular, according to Theorem 2.1(b), we have that

dimB(A,Ω) = log3(3
N − 1). (4.2.47)

Furthermore, it can be shown that in the present case of the Sierpiński N-carpet RFD, we have
that dimB A and dimB(A,Ω) exist and

dimB(A,Ω) = dimB(A,Ω) = dimB A = log3(3
N − 1). (4.2.48)

It is easy to see that the set of principal complex dimensions dimPC A of the Sierpiński N-
carpet A in RN coincides with the set dimPC(A,Ω) appearing in Equation (4.2.46). As simple
special cases, we obtain the set of principal complex dimensions of the ternary Cantor set or of
the usual Sierpiński carpet appearing in Equation (4.2.41), for N = 1 or N = 2, respectively.
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Since the set of all complex dimensions of the RFD (∂Ω0,Ω0) is equal to {0, 1, . . . , N−1},(5)
it follows from Equation (4.2.45) that the set of all complex dimensions of the Sierpiński N-carpet
relative fractal spray (A,Ω) is given by

P(ζA,Ω) = dimPC(A,Ω) ∪ {0, 1, . . . , N − 1}

=
(
log3(3

N − 1) +
2π

log 3
iZ

)
∪ {0, 1, . . . , N − 1}.

(4.2.49)

This concludes our study of the relative fractal drum (A,Ω) naturally associated with the
N-dimensional Sierpiński carpet.

4.3. Self-similar sprays and RFDs. Let us now recall the definition of a self-similar spray
or tiling (see [LapPe2–3], [LapPeWi1–2], [Lap-vFr3, §13.1]). More precisely, let us state this
definition slightly more generally and in the context of relative fractal drums.

Definition 4.18. (Self-similar spray or tiling). Let G be a given open subset (base set or gener-
ator) of RN of finite N-dimensional Lebesgue measure and let {r1, r2, . . . , rJ} be a finite multiset
(also called a ratio list) of positive real numbers such that J ∈ N, J ≥ 2 and

J∑

j=1

rNj < 1. (4.3.1)

Furthermore, let Λ be the multiset consisting of all the possible ‘words’ of multiples of the scaling
factors r1, . . . , rJ ; that is, let

Λ := {1, r1, . . . , rJ , r1r1, . . . , r1rJ , r2r1, . . . , r2rJ , . . . , rJr1, . . . , rJrJ ,
r1r1r1, . . . , r1r1rJ , . . .}

(4.3.2)

and arrange all of the elements of the multiset Λ into a scaling sequence (λi)i≥0, where λ0 := 1.
(Note that 0 < λi < 1, for every i ≥ 1.)

A self-similar spray (or tiling), generated by the base set G and the ratio list {r1, r2, . . . , rJ}
is an RFD (∂Ω,Ω) in RN , where Ω is a disjoint union of open sets Gi; i.e.,

Ω :=
∞⊔

i=0

Gi, (4.3.3)

such that each Gi is congruent to λiG, for every i ≥ 0. Here, the disjoint union ⊔ can be
understood as the disjoint union of RFDs given in Definition 2.18, with (Ai,Ωi) := (∂Gi, Gi)
for each i ≥ 0, in the notation of that definition. In the sequel, (∂G,G) is also referred to as a
self-similar RFD.

Remark 4.19. Note that in the above definition, the scaling sequence (λi)i≥0 consists of all the
products of ratios r1, . . . , rJ appearing in the infinite sum

∞∑

n=0

( J∑

j=1

rj

)n

, (4.3.4)

after expanding the powers and counted with their multiplicities. More precisely, we have that
for every multi-index α = (α1, . . . , αJ ) ∈ NJ

0 , the multiplicity of rα1
1 rα2

2 . . . rαJ
J in the multiset Λ

is equal to the multinomial coefficient
(

|α|
α1, α2, . . . , αJ

)
=

|α|!
α1!α2! · · ·αJ !

, (4.3.5)

(5) Note that the relative zeta function ζA,Ω appearing in Equation (4.2.45) can be mero-
mophically extended in a unique way to the whole complex plane C since the same can be done
with ζ∂Ω0,,Ω0

. See, for example, Equation (4.2.40) dealing with the case when N = 2.



4.3. Self-similar sprays and RFDs 63

where |α| :=∑J
j=1 αj . Of course, depending on the specific values of the ratios r1, . . . , rJ , some

of the numbers rα1
1 rα2

2 . . . rαJ
J may be equal for different multi-indices α ∈ NJ

0 .

Furthermore, the condition (4.3.1) ensures that the set Ω = ⊔i≥0Gi has finite N-dimensional
Lebesgue measure. Indeed, we have

|Ω| =
∞∑

i=0

|Gi| =
∞∑

i=0

|λiG| = |G|
∞∑

i=0

λN
i

= |G|
∞∑

n=0

( J∑

j=1

rNj

)n

=
|G|

1−
(∑J

j=1 r
N
j

)n ,
(4.3.6)

since (4.3.1) is satisfied. Note that the second to last equality above follows from the construction
of the scaling sequence (λi)i≥0.

Consider now a self-similar spray as a relative fractal drum (A,Ω); that is, let A := ∂Ω and
Ω := ⊔i≥0Gi (see Definition 4.18). The ‘self-similarity’ of (A,Ω) is nicely exhibited by the scaling
relation (4.3.7) given in the following lemma.

Lemma 4.20. Let (A,Ω) be a self-similar spray in RN , as in Definition 4.18. Then, the relative

fractal drum (A,Ω) satisfies the following ‘self-similar identity’:

(A,Ω) = (∂G,G) ⊔
J⊔

j=1

rj(A,Ω), (4.3.7)

where (with the exception of the first term on the right-hand side of (4.3.7)) the symbol ⊔J
j=1

indicates that this represents a disjoint union of copies of (A,Ω) scaled by factors r1, . . . , rJ and

displaced by isometries of RN .

Proof. Let us re-index the scaling sequence (λi)i≥0 in a way that keeps track of the actual
construction of the numbers λi out of the scaling ratios r1, . . . , rJ ; see Equation (4.3.2) above.
We let

I := {∅} ∪
∞⋃

m=1

{1, . . . , J}m (4.3.8)

be the set of all finite sequences consisting of numbers 1, . . . , J (or, equivalently, of all finite
words based on the alphabet {1, . . . , J}). Furthermore, for every α ∈ I , define

λα :=

{
1, α = ∅
rα1rα2 · · · rαm , α 6= ∅.

(4.3.9)

We then deduce from the construction of (A,Ω) that

(A,Ω) =
∞⊔

i=0

(∂Gi, Gi) =
∞⊔

i=0

λi(∂G,G)

=
⊔

α∈I

λα(∂G,G) = (∂G,G) ⊔
⊔

α∈I\{∅}
λα(∂G,G).

Observe now that in the last disjoint union above, every α ∈ {1, . . . , J}m can be written as
{j}×{1, . . . , J}m−1, for some j ∈ {1, . . . , J}, if we identify {j} with {j}×{∅} when m = 1. Note
that this identification is consistent with the definition of λα, in the sense that λ{j}×β = rjλβ

for all j ∈ {1. . . . , J} and β ∈ I . In light of this, we can next partition the last union above with



64 4. Relative fractal sprays and principal complex dimensions of any multiplicity

respect to which number j ∈ {1, . . . , J} the sequence α begins with:

(A,Ω) = (∂G,G) ⊔
J⊔

j=1

⊔

α∈{j}×I

λα(∂G,G) = (∂G,G) ⊔
J⊔

j=1

⊔

β∈I

rjλβ(∂G,G)

= (∂G,G) ⊔
J⊔

j=1

rj

( ⊔

β∈I

λβ(∂G,G)

)
= (∂G,G) ⊔

J⊔

j=1

rj(A,Ω).

This completes the proof of the lemma.

In light of the identity (4.3.7) and a very special case of Theorem 2.19, it is now clear that
the distance zeta function of (A,Ω) satisfies the following functional equation, which itself can
be considered as a self-similar identity:

ζA,Ω(s) = ζ∂G,G(s) +
J∑

j=1

ζrj(A,Ω)(s), (4.3.10)

for all s ∈ C with Re s sufficiently large.(6) Furthermore, for such s, by using the scaling property
of the relative distance zeta function (Theorem 2.16), we deduce that the above equation then
becomes

ζA,Ω(s) = ζ∂G,G(s) +

J∑

j=1

rsjζA,Ω(s). (4.3.11)

Finally, this last identity together with an application of the principle of analytic continuation
now yields the following theorem.

Theorem 4.21. Let G be the generator of a self-similar spray in RN , and let {r1, r2, . . . , rJ}, with
rj > 0 (for j = 1, . . . , J, J ≥ 2) and such that

∑J
j=1 r

N
j < 1, be its scaling ratios. Furthermore,

let (A,Ω) := (∂Ω,Ω) be the self-similar spray generated by G, as in Definition 4.18. Then, the

distance zeta function of (A,Ω) is given by

ζA,Ω(s) =
ζ∂G,G(s)

1−∑J
j=1 r

s
j

, (4.3.12)

for all s ∈ C with Re s sufficiently large. In addition,

D(ζA,Ω) = max{dimB(∂G,G), D}, (4.3.13)

where D > 0 is the unique real solution of
∑J

j=1 r
D
j = 1 (i.e., D is the similarity dimension of

the self-similar spray (∂Ω,Ω)).

More specifically, given a connected open neighborhood U of the critical line {Re s = D},
ζA,Ω has a meromorphic continuation to U if and only if ζ∂G,G does, and in that case, ζA,Ω(s)
is given by (4.3.12) for all s ∈ U . Consequently, the visible complex dimensions of (A,Ω) satisfy

P(ζA,Ω, U) ⊆ (D ∩ U) ∪ P(ζ∂G,G, U), (4.3.14)

where D is the set of all the complex solutions of the Moran equation
∑J

j=1 r
s
j = 1 (i.e., the

scaling complex dimensions of the fractal spray); see Remark 4.23 for detailed information about

D. Finally, if there are no zero-pole cancellations in (4.3.12), then we have an equality in (4.3.14).

Remark 4.22. (Complex dimensions and the definition of fractality). In [Lap-vFr1–3], a geometric
object is said to be “fractal” if the associated zeta function has at least one nonreal complex
dimension (with positive real part). (See [Lap-vFr3, §12.1 and §12.2] for a detailed discussion.)
In [Lap-vFr2, Lap-vFr3], in order, in particular, to take into account some possible situations
pertaining to random fractals (see [HamLap], partly described in [Lap-vFr3, §13.4]), the definition

(6) For instance, it suffices to assume that Re s > N since, by Theorem 2.1, all of the zeta
functions appearing in (4.3.10) are holomorphic on the right half-plane {Re s > N}.
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of fractality (within the context of the theory of complex dimensions) was extended so as to
allow for the case described in part (i) of Definition 2.38 just above, namely, the existence of a
(meromorphic) natural boundary along a screen. (See [Lap-vFr3, §13.4.3].)

We note that in [Lap-vFr3] (and the other aforementioned references), the term “hyperfrac-
tal” was not used to refer to case (i) (or to any other situation). More important, except for
fractal strings and in very special higher-dimensional situations (such as suitable fractal sprays),
one did not have to our disposal (as we now do), a general definition of “fractal zeta function”
associated with an arbitrary bounded subset of RN , for every N ≥ 1. Therefore, we can now
define the “fractality” of any bounded subset of RN (including Julia sets and the Mandelbrot
set) and, more generally, of any relative fractal drum, by the presence of a nonreal complex
dimension or else by the “hyperfractality” (in the sense of part (i) of Definition 2.38) of the geo-
metric object under consideration. Here, “complex dimension” is understood as a (visible) pole
of the associated fractal zeta function (the distance or tube zeta function of a bounded subset
or a relative fractal drum of RN , or else, as was the case in most of [Lap-vFr3], the geometric
zeta function of a fractal string).

Much as in [Lap-vFr1–3] and [Lap3–8], this terminology (concerning fractality, hyperfractal-
ity, and complex dimensions), can be extended to ‘virtual geometries’, as well as to (absolute or)
relative fractal drums, noncommutative geometries, dynamical systems, and arithmetic geome-
tries, via suitably associated ‘fractal zeta functions’, be they absolute or relative distance or tube
zeta functions, spectral zeta functions, dynamical zeta functions, or arithmetic zeta functions
(or their logarithmic derivatives thereof).

We will return to the discussion of the notion of fractality in the closing chapter of this
paper, namely, Chapter 5; see also the next remark.

Remark 4.23. The multiset D of scaling complex dimensions of the self-similar spray (A,Ω) is
analyzed in detail in [Lap-vFr3, Chapter 3; esp., Theorem 3.6].(7) Accordingly, there is a natural
lattice / nonlattice dichotomy defined as follows: (A,Ω) is lattice if the multiplicative subgroup
G of (0,+∞) generated by the distinct values of the scaling ratios r1, . . . , rJ is of rank 1 (i.e., is
of the form rZ for some unique real number r ∈ (0, 1), called the multiplicative generator of the
spray). It is nonlattice, otherwise (i.e., if the above group is of rank > 1), and generic nonlattice

if G is of maximal rank > 1 (i.e., of rank J ′, the number of distinct elements in the ratio list
r1, . . . , rJ , and J ′ > 1).

Then, according to [Lap-vFr3, Theorem 3.6], in the lattice case, all of the scaling complex
dimensions are periodically distributed along finitely many vertical lines (the right most of which
is the vertical line {Re s = D}) with the same period T := 2π/ log(r−1), called the oscillatory

period of the lattice self-similar spray.(8) On the other hand, in the nonlatice case, D is simple
and is the only principal scaling complex dimension (i.e., the only scaling complex dimension
with real part D located on the vertical line {Re s = D}). However, there is an infinite sequence
of distinct scaling complex dimensions converging from the left to (but not touching) the vertical
line {Re s = D}.

Moreover, it was conjectured in [Lap-vFr2,3, §3.7] (and especially, in reference [Lap-vF7] of
[Lap-vFr3]) that in the generic nonlattice case, the set of real parts of the scaling dimensions is
dense in a compact interval [σl, D], with σl ∈ R and σl < D; i.e., the set of “fractality” (that
is, the closure of the above set of real parts, as defined in [Lap-vFr2,3]) is equal to [σl, D], in
striking contrast to the lattice case where it is a finite set. This conjecture has recently been
proved in [MorSep], where it was also shown that in the nonlattice (but not necessarily, generic

(7) See also [Lap-vFr3, Chapter 2; esp., Theorem 2.16] for the one-dimensional case, corre-
sponding to self-similar strings.

(8) On each of these vertical lines, the corresponding scaling complex dimensions all have
the same multiplicity. In particular, along the vertical line {Re s = D}, they are all simple.
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nonlattice) case, the set of “fractality” is equal to a finite (and nonempty) disjoint union of
nonempty compact intervals.

Finally, via Diophantine approximation techniques, the scaling complex dimensions of a non-
lattice self-similar spray can be approximated by those of a sequence of lattice sprays with larger
and larger periods. (See [Lap-vFr3, §3.4, esp., Theorem 3.19].) Accordingly, in the nonlattice
case, the scaling complex dimensions exhibit a quasiperiodic pattern (studied in detail both
numerically and theoretically in [Lap-vFr3, Chapter 3]).

Example 4.24. (The 1/2-square fractal). In this planar example, we will further investigate and
illustrate the new interesting phenomenon which occurs in the case of the Sierpiński 3-gasket
RFD discussed in Example 4.14. Namely, we start with the closed unit square I = [0, 1]2 in R2

and subdivide it into 4 smaller squares by taking the centerlines of its sides. We then remove the
two diagonal open smaller squares, denoted by G1 and G2 in Figure 5, so that G := G1 ∪G2 is
our generator in the sense of Definition 4.18. Next, we repeat this step with the remaining two
closed smaller squares and continue this process, ad infinitum. The 1/2-square fractal is then
defined as the set A which remains at the end of the process; see Figure 5, where the first 6
iterations are shown. More precisely, the set A is the closure of the union of the boundaries of
the disjoint family of open squares appearing in Figure 5 and packed in the unit square I . If we
now let Ω := (0, 1)2, we have that (A,Ω) is an example of a self-similar spray (or tiling), in the
sense of Definition 4.18, with generator G = G1 ∪ G2 and scaling ratios r1 = r2 = 1/2. Note,
however, that A is not a (homogeneous) self-similar set in the usual sense (see, e.g., [Fal1, Hut]),
defined via iterated function systems (or, in short, IFS), but it is an inhomogeneous self-similar
set.

More specifically, the set A is the unique nonempty compact subset of R2 which is the solution
of the inhomogeneous fixed point equation

A =

2⋃

j=1

Φj(A) ∪B, (4.3.15)

where Φ1 and Φ2 are contractive similitudes of R2 with fixed points located at the lower left
vertex and the upper right vertex of the unit square, respectively, and with a common scaling
ratio equal to 1/2 (i.e., r1 = r2 = 1/2, where {rj}2j=1 are the scaling ratios of the self-similar
RFD (A,Ω)). Furthermore, the nonempty compact set B in Equation (4.3.15) is the union of
the left and upper sides of the square G1 and the right and lower sides of the square G2; see
Figure 5. We note that here, the corresponding (classic or homogeneous) self-similar set (i.e.,
the unique nonempty compact subset C of R2 which is the solution of the homogeneous fixed
point equation, C = ∪2

j=1Φj(C)), is the diagonal C of the unit square connecting the lower left
and the upper right vertices of the unit square.

Let us now compute the distance zeta function ζA of the 1/2-square fractal. Without loss of
generality, we may assume that δ > 1/4; so that we have

ζA(s) = ζA,Ω(s) + ζI(s), (4.3.16)

where, intuitively, ζI denotes the distance zeta function corresponding to the ‘outer’ δ-neighbor-
hood of A. Clearly, ζI is equal to the distance zeta function of the unit square I := [0, 1]2; it is
straightforward to compute it and show that it has a meromorphic extension to all of C given
by

ζI(s) =
4δs−1

s− 1
+

2πδs

s
, (4.3.17)

for all s ∈ C.
Furthermore, by using Theorem 4.21, we obtain that

ζA,Ω(s) =
ζ∂G,G(s)

1− 2 · 2−s
=

2sζ∂G,G(s)

2s − 2
, (4.3.18)
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Fig. 5. The 1/2-square fractal A from Example 4.24. The first 6 iterations are depicted. Here,
G := G1 ∪ G2 is the single generator of the corresponding self-similar spray or RFD (A,Ω), in
the sense of Definition 4.18. The set A is equal to the complement of the union of the disjoint
family of all open squares, with respect to Ω = (0, 1)2. Equivalently, the set A coincides with
the closure of the union of the boundaries of all the open squares.

for all s ∈ C with Re s sufficiently large. Next, we compute the distance zeta function of (∂G,G)
by subdividing G = G1 ∪ G2 into 16 congruent triangles (see also Figure 4, which describes
the way we subdivide both G1 and G2) and by using local Cartesian coordinates (x, y) ∈ R2 to
deduce that

ζ∂G,G(s) = 16

∫ 1/4

0

dx

∫ x

0

ys−2dy =
4−s

s(s− 1)
,

for all s ∈ C with Re s > 1. Hence,

ζ∂G,G(s) =
4−s

s(s− 1)
, (4.3.19)

an identity valid initially for all s ∈ C such that Re s > 1, and then, after meromorphic contin-
uation, for all s ∈ C. Finally, by combining Equations (4.3.16)–(4.3.19), we conclude that the
distance zeta function ζA is meromorphic on all of C and is given by

ζA(s) =
2−s

s(s− 1)(2s − 2)
+

4δs−1

s− 1
+

2πδs

s
, (4.3.20)

for all s ∈ C.
Consequently, we have that dimB A exists,(9)

D(ζA) = dimB A = 1,

P(ζA) := P(ζA,C) = {0} ∪ (1 + piZ)
(4.3.21)

and
dimPC A := Pc(ζA) = 1 + piZ, (4.3.22)

(9) The existence of dimB A in Example 4.24 (as well as in Examples 4.25 and 4.26 below)

follows from [LapRaŽu1, Theorem 5.4.30] (see also [LapRaŽu6, Theorem 4.2].)
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where the oscillatory period p of A is given by p := 2π
log 2

. All of the complex dimensions in
P(ζA) are simple except for ω = 1, which is a double pole of ζA. Finally, we note that in light
of Equation (4.3.21) (and hence, in light of the presence of nonreal complex dimensions), the
set A is indeed fractal according to our proposed definition of fractality given in Remark 4.22
and further discussed in Chapter 5 below. In fact, according to Equation (4.3.22), it is critically
fractal (i.e., fractal in dimension d := 1 = dimB A, in the sense of §5.1).

Example 4.25. (The 1/3-square fractal). In the present planar example, we illustrate a situation
which is similar to that of the inhomogeneous Sierpiński N-gasket RFD discussed in Example
4.14 for N ≥ 4. Again, we start with the closed unit square I = [0, 1]2 in R2 and subdivide it into
9 smaller congruent squares (similarly as in the case of the Sierpiński carpet). Next, we remove
7 of those smaller squares; that is, we only leave the lower left and the upper right squares (see
Figure 6). In other words, our generator G (in the sense of Definition 4.18) is the (nonconvex)
open polygon depicted in Figure 6.

As usual, we proceed by iterating this procedure with the two remaining closed squares and
then continue this process ad infinitum. (The first 4 iterations are depicted in Figure 6.) The
1/3-square fractal is then defined as the set A which remains at the end of the process. We now
let Ω := (0, 1)2, which makes the RFD (A,Ω) a self-similar spray (or tiling), in the sense of
Definition 4.18, with generator G and scaling ratios {rj}2j=1 such that r1 = r2 = 1/3. Again, the
set A is not a homogeneous self-similar set, but is instead an inhomogeneous self-similar set.

More specifically, the set A is the unique nonempty compact subset of R2 which is the solution
of the inhomogeneous equation

A =
2⋃

j=1

Φj(A) ∪B, (4.3.23)

where Φ1 and Φ2 are contractive similitudes of R2 with fixed points located at the lower left
vertex and the upper right vertex of the unit square, respectively, and with a common scaling
ratio equal to 1/3. Furthermore, the set B in Equation (4.3.23) is equal to the boundary of G
without the part belonging to the boundary of the two smaller squares which are left behind
in the first iteration; see Figure 6. We also observe that here, the corresponding (classic or
homogeneous) self-similar set generated by the IFS consisting of Φ1 and Φ2, is the ternary
Cantor set located along the diagonal of the unit square.

We now proceed by computing the distance zeta function ζA of the 1/3-square fractal. With-
out loss of generality, we may assume that δ > 1/4; so that we have

ζA(s) = ζA,Ω(s) + ζI(s), (4.3.24)

where, as before in Example 4.24, ζI denotes the distance zeta function corresponding to the
‘outer’ δ-neighborhood of A and coincides with the distance zeta function of the unit square
I := [0, 1]2. Recall that ζI was computed in Example 4.24 and is given by Equation (4.3.17).

Furthermore, by using Theorem 4.21, we obtain that

ζA,Ω(s) =
ζ∂G,G(s)

1− 2 · 3−s
=

3sζ∂G,G(s)

3s − 2
, (4.3.25)

for all s ∈ C with Re s sufficiently large.

Next, we compute the distance zeta function of (∂G,G) by subdividing G into 14 congruent
triangles denoted by Gi, for i = 1, . . . , 14 (see Figure 6). Therefore, by symmetry, we obtain the
following functional equation:

ζ∂G,G(s) = 12ζ∂G,G1
(s) + 2ζ∂G,G13

, (4.3.26)

valid initially for all s ∈ C such that Re s is sufficiently large.
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Fig. 6. The 1/3-square fractal A from Example 4.25. The first 4 iterations are depicted. Here,
G is the single generator of the corresponding self-similar spray or RFD (A,Ω), in the sense of
Definition 4.18. The set A is equal to the complement of the union of the disjoint family of all
the open 8-gons, with respect to the open square Ω = (0, 1)2. The largest 8-gon is equal to the
union of two open squares indicated by dashed sides of length 2/3, while each of the next two
smaller 8-gons is obtained by scaling the first one by the factor 1/3. Any of the 2k 8-gons of
the k-th generation is obtained by scaling the first one by the factor 1/3k−1, for any k ∈ N.
Equivalently, A coincides with the closure of the union of the boundaries of all the 8-gons.

We use local Cartesian coordinates (x, y) ∈ R2 in order to compute ζ∂G,G1
and obtain that

ζ∂G,G1
=

∫ 1/3

0

dx

∫ x

0

ys−2dy =
3−s

s(s− 1)
.

Hence,

ζ∂G,G1
=

3−s

s(s− 1)
, (4.3.27)

an identity valid initially for all s ∈ C such that Re s > 1, and then, after meromorphic con-
tinuation, for all s ∈ C. In order to compute ζ∂G,G13

, we use local polar coordinates (r, θ) and
deduce that

ζ∂G,G13
(s) =

∫ π/2

0

dθ

∫ 3−1(sin θ+cos θ)−1

0

rs−1dr

=
3−s

s

∫ π/2

0

(cos θ + sin θ)−sdθ,

(4.3.28)

valid, initially, for all s ∈ C such that Re s > 0 and then, after meromorphic continuation, for
all s ∈ C. It is easy to check that

Z(s) :=

∫ π/2

0

(cos θ + sin θ)−sdθ (4.3.29)

is an entire function, since it is a generalized DTI f(s) :=
∫
E
ϕ(θ)sdµ(θ), where E := [0, π/2],

ϕ(θ) := (cos θ + sin θ)−1 for all θ ∈ E is uniformly bounded by positive constants both from
above and below, and dµ(θ) := dθ.
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Finally, by combining Equation (4.3.17) and Equations (4.3.24)–(4.3.29), we obtain that ζA
is given by

ζA(s) =
2

s(3s − 2)

(
6

s− 1
+ Z(s)

)
+

4δs−1

s− 1
+

2πδs

s
, (4.3.30)

an identity valid initially for all s ∈ C with Re s > 1 and then, after meromorphic continuation,
for all s ∈ C.

Consequently, we deduce that dimB A exists,

D(ζA) = dimB A = 1,

P(ζA) := P(ζA,C) ⊆ {0} ∪ (log3 2 + piZ) ∪ {1} (4.3.31)

and

dimPC A := Pc(ζA) = {1}, (4.3.32)

where the oscillatory period p of A is given by p := 2π
log 3

. In Equation (4.3.31), we only have an
inclusion since, in principle, some of the complex dimensions with real part log3 2 may be canceled
by the zeros of 6/(s − 1) + Z(s). However, it can be checked numerically that log3 2 ∈ P(ζA)
and that there also exist nonreal complex dimensions with real part log3 2 in P(ζA). All of the
complex dimensions in P(ζA) are simple. We also note that A is indeed fractal, according to our
proposed definition of fractality (see Remark 4.22 above and Chapter 5 below). More precisely, in
light of Equations (4.3.31) and (4.3.32), it is strictly subcritically fractal and fractal in dimension

d = log3 2, in the sense of §5.1.

Example 4.26. (A self-similar fractal nest). In the final planar example of this section, we
investigate the case of a self-similar fractal nest.(10) The set A which we now define is an
inhomogeneous self-similar set. Similarly as in Example 4.25, the set A will be fractal in the
sense of our proposed definition of fractality given in Remark 4.22 and, moreover, will be strictly
subcritically fractal in the sense of §5.1.

Let a ∈ (0, 1) be a real parameter. We define the set A as the union of concentric circles with
center at the origin and of radius ak for k ∈ N0 (see Figure 7). Furthermore, let G be the open
annulus such that ∂G consists of the circles of radius 1 and a, as depicted in Figure 7, and let
Ω := B1(0). We can now consider the RFD (A,Ω) as a self-similar spray with generator G, in
the sense of Definition 4.18.

We note that even though (A,Ω) is a fractal spray, with a single generator G, it is not
(strictly speaking) self-similar in the traditional sense because it only has one scaling ratio r = a
(associated with a single contractive similitude). However, we will continue using this abuse of
language throughout this example. Also, a moment’s reflection reveals that this fact does not
affect any of the conclusions relevant to the distance zeta function of such an RFD. Namely, we
obviously have that

(A,Ω) = (∂G,G) ⊔ a(A,Ω); (4.3.33)

so that

ζA,Ω(s) = ζ∂G,G(s) + ζa(A,Ω)(s), (4.3.34)

for all s ∈ C such that Re s is sufficiently large. Furthermore, by using the scaling property of
the relative distance zeta function (see Theorem 2.16), we conclude that

ζA,Ω(s) =
ζ∂G,G(s)

1− as
, (4.3.35)

again, for all s ∈ C such that Re s is sufficiently large.

(10) As we shall see, throughout this example, the use of the adjective “self-similar” is
somewhat abusive since only one similarity transformation is involved.
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Fig. 7. The self-similar fractal nest from Example 4.26.

Next, we compute the distance zeta function of the generator by using polar coordinates
(r, θ):

ζ∂G,G(s) =

∫ 2π

0

dθ

∫ (1+a)/2

a

(r − a)s−2r dr

+

∫ 2π

0

dθ

∫ 1

(1+a)/2

(1− r)s−2r dr

=
22−sπ(1 + a)(1− a)s−1

s− 1
,

(4.3.36)

an identity valid, after meromorphic continuation, for all s ∈ C.

Equation (4.3.36) combined with Equation (4.3.35) now yields that ζA,Ω is meromorphic on
all of C and is given for all s ∈ C by

ζA,Ω(s) =
22−sπ(1 + a)(1− a)s−1

(s− 1)(1− as)
. (4.3.37)

Finally, we fix an arbitrary δ > (1− a)/2 and observe that for the distance zeta function of
A, we have

ζA(s) = ζA,Ω(s) + ζA,B1+δ(0)\Ω(s), (4.3.38)

for all s ∈ C with Re s sufficiently large. Furthermore, we have that

ζA,B1+δ(0)\Ω(s) =

∫ 2π

0

dθ

∫ 1+δ

1

(r − 1)s−2r dr =
2πδs−1

s− 1
+

2πδs

s
, (4.3.39)

where the last equality is valid, initially, for all s ∈ C such that Re s > 1, and then, after
meromorphic continuation, for all s ∈ C.

Combining now the above equation with (4.3.38), we finally obtain that ζA is meromorphic
on all of C and is given by

ζA(s) =
22−sπ(1 + a)(1− a)s−1

(s− 1)(1− as)
+

2πδs−1

s− 1
+

2πδs

s
, (4.3.40)
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for all s ∈ C.

Consequently, we have that dimB A exists,

D(ζA) = dimB A = 1

P(ζA) := P(ζA,C) = piZ ∪ {1}
(4.3.41)

and

dimPC(A) := Pc(ζA) = {1}, (4.3.42)

where the oscillatory period p of A is given by p := 2π
log a−1 and all of the complex dimensions

in P(ζA) are simple.

In closing, we mention that A is indeed fractal according to our proposed definition of frac-
tality (see Remark 4.22 and Chapter 5). More specifically, in light of Equation (4.3.41), A is
strictly subcritically fractal and fractal in dimension d := 0, in the sense of §5.1 below.

4.4. Generating complex dimensions of RFDs of any multiplicity. A key tool in gen-
erating (principal) complex dimensions of higher multiplicities is the tensor product of bounded
fractal strings, which we now briefly define; see [LapRaŽu3] for more details. If L1 := (ℓ1j)j≥1

and L2 := (ℓ2k)k≥1 are two given bounded fractal strings, then the tensor product L1 ⊗ L2

is defined as the multiset consisting of all possible products of the form ℓ1jℓ1k for all ordered
pairs (j, k) ∈ N2; hence, we take into account the multiplicities. It is easy to see that the tensor
product L1 ⊗L2 is also a bounded fractal string. Furthermore, we have that the geometric zeta
function of the tensor product is equal to the product of each of the component geometric zeta
functions. More specifically, we have that

ζL1⊗L2(s) = ζL1(s) · ζL2(s) (4.4.1)

for all s ∈ C with Re s > max{D(ζL1), D(ζL2)} and

D(ζL1⊗L2) = max{D(ζL1), D(ζL2)};
see [LapRaŽu3, Lemma 4.13].

The following example provides a class of bounded relative fractal drums, generated by an
a-string, which illustrates Theorem 2.24 above. Note that here, we have a unique, nonsimple,
principal complex dimension, D, on the critical line, and that its multiplicity is equal to an
arbitrarily prescribed positive integer m. We shall need the notion of the disjoint union (of an
at most countable family) of bounded fractal strings Lm = (ℓmj)j≥1 for m ∈ N:

L :=
∞⊔

m=1

Lm, (4.4.2)

defined as the multiset L consisting of elements of the union of fractal strings, counting their
multiplicities. Assuming, additionally, that ℓm1 → 0+ as m → ∞, it is easy to see that the
mulitplicity of each of the elements of the multiset L := ⊔∞

m=1Lm is finite, so that L is indeed a
bounded fractal string.

Example 4.27. (m-th order a-string) Let L(a) := {ℓk := k−a − (k + 1)−a}∞k=1 be the a-string,
where a > 0 (see [Lap1, Example 5.1] and [Lap-vFr3, §6.5.1]), and let m be a positive integer.
Let Lm(a) be defined by L1(a) := L(a) for m = 1 and as the (m − 1)-fold tensor product for
m ≥ 2; that is,

Lm(a) :=

{
L(a) for m = 1,

L(a)⊗ · · · ⊗ L(a) for m ≥ 2,
(4.4.3)

which we call them-th order a-string. ThenD = 1/(1+a) is the only principal complex dimension
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of Lm(a), and it is of multiplicity m, since, in light of Equation (4.4.1), we have that

ζLm(a)(s) = [ζL(a)(s)]
m =

( ∞∑

k=1

ℓsk

)m

, (4.4.4)

for all s ∈ C with Re s > 1/(1 + a). Defining h(t) := (log t−1)m−1 for all t ∈ (0, 1), and
using [LapRaŽu6, Theorem 5.4 and Example 3.7], we deduce that the fractal string Lm(a)
is h-Minkowski measurable. Moreover, also according to [LapRaŽu6, Theorem 5.4] (see also
[LapRaŽu1, Theorem 5.4.27 and Example 5.5.10]), we have that Lm(a) has the following tube
asymptotics:

|At| = t1−Dh(t) (M+ o(1)) as t → 0+, (4.4.5)

where M ∈ (0,+∞) is the h-Minkowski content of Lm(a) and can be explicitly computed in
terms of the −m-th coefficient c−m of the Laurent expansion of the tube zeta function ζ̃A around
s = D, as follows: M = c−m/(m − 1)!; see [LapRaŽu6, Theorem 5.4]. In particular, Lm(a) is
h-Minkowski measurable.

In [LapRaŽu3, §4.4], we have constructed a (Cantor-type) bounded fractal string Lm which
has infinitely many principal complex dimensions of arbitrary prescribed multiplicity m ≥ 2.
The bounded fractal string was obtained by taking m − 1 consecutive tensor products of the
usual Cantor string LCS ; i.e., the (m− 1)-fold tensor product:

Lm :=

{
LCS for m = 1,

LCS ⊗ · · · ⊗ LCS for m ≥ 2,
(4.4.6)

which we call m-th order Cantor string or the m-Cantor string, in short. The corresponding
multiset of principal complex dimensions is

dimPC Lm = log3 2 +
2π

log 3
iZ, (4.4.7)

and each of its elements has multiplicity m. Note that by [LapRaŽu6, Theorem 3.1] (see also
[LapRaŽu1, Theorem 5.4.20]), the m-th order Cantor string Lm is not Minkowski measurable
for m ≥ 2.

Furthermore, by letting

L∞ :=
∞⊔

m=1

3−m

m!
Lm, (4.4.8)

we obtain a bounded fractal string L∞, called the Cantor string of infinite order or the ∞-

Cantor string, such that its geometric zeta function ζL∞ has an infinite sequence of essential
singularities along the critical line {Re s = D}, located at each of the points D+ipk (with k ∈ Z,
D := log3 2 and p := 2π/ log 3) of the periodic set defined by the right-hand side of (4.4.7).

Example 4.28. Let m be a fixed positive integer and let a be a positive real number chosen
small enough, so that D := 1/(1 + a) > log3 2. Consider the following bounded fractal string L
defined by

L := Lm(a) ⊔ L∞, (4.4.9)

where the bounded fractal strings Lm(a) (m-th order a-string) and L∞ (∞-Cantor string) are de-
fined by Equations (4.4.3) and (4.4.8), respectively, and generated by tensor products of a-strings
and Cantor strings, respectively. Here, we have that Dmer(ζL) = log3 2, since the geometric zeta
function

ζL(s) = ζLm(a)(s) + ζL∞(s) (4.4.10)

is holomorphic on the connected open set {Re s > 0} \
(
{D} ∪ (log3 2 + 2π

log 3
iZ)
)
, where D =

dimB L and is the (unique) pole of ζL of order m in the open right half-plane {Re s > 0},
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while log3 2 + 2π
log 3

iZ is the set of essential singularities of ζL in {Re s > 0}. Denoting by

AL := {ak :=
∑∞

j=k ℓj : k ∈ N} the canonical representation of the fractal string L := {ℓj}∞j=1,

and applying [LapRaŽu1, Theorem 5.4.27] to the RFD (AL, (AL)δ) (for any fixed positive real
number δ),(11) we obtain the following asymptotic expansion of the tube function of the set AL:

|(AL)t| = t1−Dh(t)
(
M+O(tD−Dmer(ζL)−ε

)
as t → 0+, (4.4.11)

for any ε > 0, where h(t) := (log t−1)m−1 for all t ∈ (0, 1); i.e.,

|(AL)t| = ta/(1−a)h(t)
(
M+O(t

1
1+a

−log3 2−ε) as t → 0+, (4.4.12)

where M is a positive real number (the h-Minkowski content) and can be computed (see
[LapRaŽu6, Theorem 4.5] or [LapRaŽu1, Theorem 5.4.27]). According to [LapRaŽu6, Theorem
5.6] (or [LapRaŽu1, Theorem 5.4.29]), the exponent 1

1+a
− log3 2 appearing on the right-hand

side of Equation (4.4.12), is optimal; i.e., it cannot be replaced by a larger exponent.

In Examples 4.29 and 4.30 below, we construct Minkowski measurable RFDs which possess
infinitely many complex dimensions of arbitrary multiplicity m, with m ≥ 1, or even essential
singularities.

Example 4.29. Let us first define the unit square RFD (A0,Ω0) by Ω0 := [0, 1]2 and A0 := ∂Ω0.
We introduce the RFD

(A′
m,Ω′

m) := (A0,Ω0) ⊔ Lm, (4.4.13)

where we embed Lm via its canonical geometric representation ALm into the x-axis of the 2-
dimensional plane R2. Since ζA′

m,Ω′
m
(s) = ζA0,Ω0(s) + ζLm(s), we have that

P(ζ̃A′
m,Ω′

m
) = {0, 1} ∪ P ′, (4.4.14)

where P ′ := log3 2+
2π

log 3
iZ and each of the complex dimensions D+ipk (with k ∈ Z, D := log3 2)

of P ′ is of multiplicity m. On the other hand, the only principal complex dimension of (A′
m,Ω′

m)
is 1, and it is simple (i.e., of multiplicity 1). Therefore, according to [LapRaŽu5, Theorem 5.2],
the RFD (A′

m,Ω′
m) is Minkowski measurable.

Example 4.30. Let us again define the unit square RFD (A0,Ω0) by Ω0 := [0, 1]2 and A := ∂Ω.
We introduce the RFD

(Am,Ωm) := (A0,Ω0)⊗ Lm, (4.4.15)

where Lm is the m-th order Cantor string defined by (4.4.6), and the tensor product of the RFD
(A0,Ω0) and Lm is defined analogously as in Example 4.3 above. Using Equation (4.1.9) from
Theorem 4.6 above (see also Equation (4.1.14) from Theorem 4.8), we obtain that

ζAm,Ωm (s) = ζA0,Ω0(s) · ζLm(s) =
g(s)

s(s− 1)(3s − 2)m
. (4.4.16)

Here, g(s) is an entire function without zeros at 0, 1 or at any point of the arithmetic set

P ′ := log3 2 +
2π

log 3
iZ. (4.4.17)

In other words,

dimPC(Am,Ωm) = {1}, P(Am,Ωm) = {0, 1} ∪ P ′, (4.4.18)

and each complex dimension of (A,Ω) lying in the arithmetic set P ′ has multiplicity m. The
value of D := dimB(Am,Ωm) = 1 is the only complex dimension located on the critical line
{Re s = 1}, while the infinite set P ′ is contained in the vertical line {Re s = log3 2} located
strictly to the left of the critical line. It follows from [LapRaŽu6, Theorem 5.4] (or [LapRaŽu1,

(11) The open right half-plane {Re s > Dmer(ζL)} does not contain any other poles of ζL,
except for s = D.
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Theorem 5.4.29]) that the RFD (A,Ω) is h-Minkowski measurable with respect to the gauge
function h(t) := (log t−1)m−1, for all t ∈ (0, 1).

We can further define the RFD

(A∞,Ω∞) :=
∞⊔

m=2

3−m

m!
· (Am,Ωm). (4.4.19)

Similarly as above, we have that (with P ′ given by (4.4.17))

dimPC(A∞,Ω∞) = {1}, P(A∞,Ω∞) = {0, 1} ∪ P ′, (4.4.20)

and each complex dimension of (A∞,Ω∞) lying in the arithmetic set P ′ = log3 2 +
2π

log 3
iZ is an

essential singularity of ζA∞,Ω∞ .



5. Fractality, complex dimensions and singularities

We close this article by specifying, within the general theory of fractal zeta functions developed
here and in [LapRaŽu1–8], the elusive notion of “fractality”. Much as in [Lap-vFr1–3] (see,
especially, [Lap-vFr3, §12.1 and §13.4.3]), but now using the general higher-dimensional notion
of fractal zeta function and associated notion of complex dimensions, we say that a bounded set
A (or, more generally, an RFD (A,Ω)) in RN is fractal if it has at least one nonreal (visible)
complex dimension (i.e., a nonreal pole for its associated fractal zeta function),(1) relative to
some screen S, or else if there exists a screen S which is a (meromorphic) natural boundary
for its fractal zeta function (i.e., such that the fractal zeta function cannot be meromorphically
extended to the left of S). In the latter situation, A (or, more generally, (A,Ω)) is said to be
hyperfractal. In particular, it is said to be strictly hyperfractal if we may choose S = {Re s = D},
and maximally hyperfractal if the critical line S = {Re s = D} consists entirely of nonremovable
singularities of the fractal zeta function; see Definition 2.38. Here, as before, we let D := dimBA
(or D := dimB(A,Ω)). Recall that in Theorem 2.40, we have constructed a family of maximally
hyperfractal RFDs.

5.1. Fractal and subcritically fractal RFDs. In this work, we have seen many examples of
fractals (that are not hyperfractal), for instance, the Cantor string or set, the relative Sierpiński
gasket and carpet (Examples 4.12 and 4.15) or, more generally, the relative N-gasket RFD and
the N-carpet RFD (Examples 4.14 and 4.17), along with the examples discussed in §4.3. Among
these examples, some have nonreal complex dimensions located on the critical line (such as, for
instance, the Cantor string, the inhomogeneous Sierpiński gasket and carpet RFDs, the N-carpet
RFD for any N ≥ 2, as well as the inhomogeneous N-gasket (AN ,ΩN ) when N = 2 or 3). These
are called critically fractal. Yet others only have nonreal complex dimensions with real parts
strictly less than D. The latter are called subcritically fractal. In addition, strictly subcritical

fractals are subcritical fractals which do not have any nonreal principal complex dimensions
(i.e., complex dimensions with real part D). Examples of strictly subcritical fractals include the
inhomogeneous Sierpiński N-gasket RFD when N ≥ 4 (Example 4.12 above) , the 1/3-square
fractal (Example 4.25), a self-similar fractal nest (Example 4.26), as well as the modified devil’s
staircase (or Cantor graph) RFD to be discussed in Example 5.1 below.

Finally, we complete this list of definitions by stating that, given d ∈ R, the bounded set
A (or, more generally, the RFD (A,Ω)) is fractal in dimension d if it has nonreal complex
dimensions of real parts d. (In light of Theorem 2.1, we must then necessarily have d ≤ N .)
Hence, a critical fractal is such that d := D, while a strictly subcritical fractal is such that
d < D. For instance, with the notation of Example 4.14, for N ≥ 4, the Sierpiński N-gasket
RFD (AN ,ΩN ) is fractal in dimension

d = σ0 = log2(N + 1) < D = N − 1 = dimB(AN,0,ΩN,0) (5.1.1)

but not in dimension D, and therefore, it is strictly subcritically fractal. By contrast, when

(1) Provided D := dimBA (resp., dimB(A,Ω)) < N , it does not matter whether we use ζA

or ζ̃A (resp., ζA,Ω or ζ̃A,Ω) throughout this definition.

[76]
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N = 2 or 3, it is critically fractal (indeed, in those cases, it is fractal in dimension d := D = σ0,
the similarity dimension).

We point out that, much as as was the case in the one-dimensional situation in [Lap-vFr3,
Chapter 12], based on the general explicit formulas and fractal tube formulas obtained in [Lap-
Fr1–3] (see, especially, [Lap-vFr3, Chapters 5 and 8]), the definitions of fractality, critical frac-
tality and (strict) subcritical fractality are justified in part by the general fractal tube formulas
obtained in [LapRaŽu5] (see also [LapRaŽu4] and [LapRaŽu1, Chapter 5]).(2) Indeed, the latter
tube formulas show that, under mild assumptions, the presence of nonreal complex dimensions
of real part d ∈ R corresponds to oscillations of order d in the geometry of A (or of (A,Ω)).
Similarly, roughly speaking, critical fractality (along with the simplicity of D) corresponds to
the Minkowski nonmeasurability of A (or (A,Ω)), while strict subcritical fractality (still assum-
ing the simplicity of D) not only corresponds to (critical) Minkowski measurability but also to
(strictly subcritical) Minkowski nonmeasurability in dimension d < D. (See also [LapRaŽu6].)
This is the case, for instance, for the inhomogeneous Sierpiński N-gasket RFD (see Example
4.12) whenever N ≥ 4 (and avoiding nongeneric values of N), for the RFDs of Examples 4.25
and 4.26, as well as for the (modified) devil’s staircase RFD, which we discuss in Example 5.1
just below.

Finally, we note that it follows from the discussion in Remark 4.23 (and from Theorem 4.21)
above that, under mild assumptions on their generators,(3) self-similar sprays (in the sense of
Definition 4.18) are fractal in dimension d for only a finite (but nonempty) set of values of d in
the lattice case, whereas they are fractal in dimension d for an infinite countable and dense set
of values of d in the nonlattice case. More specifically, the set of d’s for which nonlattice (respec-
tively, generic nonlattice) self-similar RFDs are fractal in dimension d is dense in finitely many
nonempty compact intervals (respectively, in a single compact interval of the form [Dl, D], where
Dl ∈ R and Dl < D).(4) More generally, we conjecture that under suitable mild hypotheses,
self-similar RFDs and sets satisfying the open set condition enjoy the same properties.

5.2. The Cantor graph relative fractal drum. Recall that in the introduction (i.e., in §1),
we have discussed the Cantor graph (or devil’s staircase) in relation with the notion of fractality.
We end this chapter by considering a closely related example, namely, the Cantor graph RFD.

Example 5.1. (The Cantor graph RFD). In this example, we compute the distance zeta function
of the RFD (A,Ω) in R2, where A is the graph of the Cantor function and Ω is the union of
triangles △k that lie above and the triangles △̃k that lie below each of the horizontal parts of
the graph denoted by Bk. (At each step of the construction there are 2k−1 mutually congruent
triangles △k and △̃k.) Each of these triangles is isosceles, has for one of its sides a horizontal
part of the Cantor function graph, and has a right angle at the left end of Bk, in the case of △k,
or at the right end of Bk, in the case of △̃k. (See Figure 1.)

For obvious geometric reasons and by using the scaling property of the relative distance zeta

(2) These fractal tube formulas generalize to any N ≥ 1 and to arbitrary bounded sets A (or,

more generally, RFDs) in RN the ones obtained for fractal strings (i.e., when N = 1) in [Lap-
vFr1–3] (see, especially, [Lap-vFr3, Chapter 8]), as well as for the very special but important
higher-dimensional case of fractal sprays, in [LapPe2–3] and, more generally, in [LapPeWi1–2]
(see [Lap-vFr3, §13.1] for an exposition).

(3) It suffices to assume that the base RFD (∂G,G) is “nonfractal” (so that it does not
have any nonreal complex dimensions) and “sufficiently nice” (so that ζ∂G,G has a meromorphic
continuation to all of C). Both conditions are satisfied, for instance, if G is the interior of a
convex polytope, which is the case for essentially all of the classical examples.

(4) We refer to Remark 4.23 for the definitions of the terms “lattice”, “nonlattice” and
“generic nonlattice”, as well as for the appropriate references.
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Fig. 1. The third step in the construction of the Cantor graph relative fractal drum (A,Ω) from
Example 5.1. One can see, in particular, the sets Bk, △k and △̃k for k = 1, 2, 3.

function of the resulting RFD (A,Ω) (see Theorem 2.16), we then have the following identity:

ζA,Ω(s) =

∞∑

k=1

2kζBk,△k
(s) =

∞∑

k=1

2kζ3−kB1,3−k△1
(s)

= ζB1,△1
(s)

∞∑

k=1

2k

3ks
=

2ζB1,△1
(s)

3s − 2
,

(5.2.1)

valid for all s ∈ C with Re s sufficiently large. Here, (B1,△1) is the relative fractal drum described
above with two perpendicular sides of length equal to 1. It is straightforward to compute its
relative distance zeta function:

ζB1,△1
(s) =

∫ 1

0

dx

∫ x

0

ys−2dy =
1

s(s− 1)
, (5.2.2)

valid, initially, for all s ∈ C such that Re s > 1 and then, upon meromorphic continuation, for
all s ∈ C. This fact, combined with (the last equality of) Equation (5.2.1), yields the distance
zeta function of (A,Ω), which is clearly meromorphic on all of C:

ζA,Ω(s) =
2

s(3s − 2)(s− 1)
, for all s ∈ C. (5.2.3)

We therefore deduce that the set of complex dimensions of the RFD (A,Ω) is given by

P(ζA,Ω) := P(ζA,Ω,C) = {0, 1} ∪
(
log3 2 +

2π

log 3
iZ

)
, (5.2.4)

with each complex dimension being simple. Hence, its set of principal complex dimensions is
given by

dimPC(A,Ω) := Pc(ζA,Ω) = {1}. (5.2.5)

We conclude from part (b) of Theorem 2.1 that dimB(A,Ω) = 1 and that the RFD (A,Ω)
is Minkowski measurable. Moreover, one also deduces from [LapRaŽu6, Theorem 4.2] that the
(one-dimensional) Minkowski content of (A,Ω) is given by

M1(A,Ω) =
res(ζA,Ω, 1)

2− 1
= 2, (5.2.6)

which coincides with the length of the Cantor graph (i.e., the graph of the Cantor function, also
called the devil’s staircase in [Man]).
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In the sequel, we associate the RFD (A,A1/3) in R2 to the classic Cantor graph. We do
not know if the right-hand side of (5.2.4) coincides with the set of complex dimensions of the
‘full’ graph of the Cantor function (i.e., the original devil’s staircase), or equivalently, the RFD
(A,A1/3), but we expect that this is indeed the case since (A,Ω) is a ‘relative fractal subdrum’
of (A,A1/3). Moreover, it clearly follows from the construction of (A,Ω) that for the distance
zeta function of the RFD (A,A1/3) associated with the graph of the Cantor function, we have

ζA,A1/3
(s) = ζA,Ω(s) + ζA,A1/3\Ω(s). (5.2.7)

In order to prove that P(ζA,Ω), given by (5.2.4), is a subset of the set of complex dimensions
of the ‘full’ Cantor graph, it would therefore remain to show that ζA,A1/3\Ω has a meromorphic

continuation to some connected open neighborhood U of the critical line {Re s = 1} such that
U contains the set of complex dimensions of (A,Ω), as given by (5.2.4), and that there are no
pole-pole cancellation in the right-hand side of (5.2.7).

We now return to the RFD (A,Ω) (that is, the Cantor graph relative fractal drum). It follows
from (5.2.4) that (A,Ω) is fractal, in our sense. More specifically, in light of (5.2.5), it is not

critically fractal (because its only complex dimension of real part DCG (= D = dimB(A,Ω)) = 1
is 1 itself, the Minkowski dimension of the Cantor graph RFD, and it is simple) but it is strictly

subcritically fractal. In fact, it is subcritically fractal in a single dimension, namely, in dimension
d := DCS = log3 2, the Minkowski dimension of the Cantor set.

We expect the exact same statements to be true for the devil’s staircase itself (i.e., the
‘full’ graph of the Cantor function), represented by the RFD (A,A1/3) and of which (A,Ω) is
a ‘relative fractal subdrum’, as was explained above. Clearly, in light of (5.2.7) and (5.2.4), we
have the following inclusions (between multisets):

P(ζA,A1/3
) ⊆ P(ζA,Ω) ∪ P(ζA,A1/3\Ω)

⊆ {0, 1} ∪
{
DCS +

2π

log 3
iZ

}
.

(5.2.8)

Also, we know for a fact that dimB(A,A1/3) exists and

D(ζA,A1/3
) = dimB(A,A1/3) = 1, (5.2.9)

so that

dimPC(A,A1/3) := Pc(ζA,A1/3
) = {1}. (5.2.10)

(Thus, we have that {1} ⊆ P(ζA,A1/3
) in (5.2.8).) Note that (5.2.9) (and hence, (5.2.10)) follows

from the rectifiability of the devil’s staircase, combined with a well-known result in [Fed2] and
with part (b) of Theorem 2.1.

As was conjectured in [Lap-vFr3, §12.1.2 and §12.3.2], based on an ‘approximate tube for-
mula’, we expect that P(ζA,A1/3

) = P(ζA,Ω), as given by (5.2.4), and hence, that we actually
have equalities instead of inclusions in (5.2.8), even equalities between multisets. If so, then the
‘full’ Cantor graph (A,A1/3) is fractal, not critically fractal, but (strictly) subcritically fractal
in the single dimension d := DCS = log3 2.

In his celebrated book, The Fractal Geometry of Nature [Man], Mandelbrot reluctantly de-
fined “fractality” by the property that a geometric object has Hausdorff dimension strictly
greater than (i.e., different from) its topological dimension; see [Man, p. 15]. However, he was
aware of an obvious counterexample to his definition; namely, the Cantor graph (or devil’s stair-
case, depicted in [Man, plate 83, p. 83]), for which all the notions of fractal dimensions (Hausdorff,
Minkowski, etc.) coincide with the topological dimension (i.e., one). In this regard, he stated in
[Man, p. 82] about the devil’s staircase that “one would love to call the present curve a fractal,

but to achieve this goal, we would have to define fractals less stringently, on the basis of notions

other than [the Hausdorff dimension] alone.”
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The above paradox has puzzled the first author from the very beginning and was one of
the key motivations for the development of the mathematical theory of complex dimensions,
eventually in [Lap-vFr1–3], for fractal strings (i.e., when N = 1), and now (in higher dimensions)
in [LapRaŽu1–8]. If we replace the (full) Cantor graph (A,A1/3) by the Cantor graph RFD
(A,Ω), then the paradox is completely resolved since, as was discussed above, (A,Ω) is “fractal”,
in the sense of the theory of complex dimensions. Nevertheless, the fact that (A,Ω) is strictly
subcritically fractal (i.e., does not have nonreal principal complex dimensions, that is, with real
part 1, but has nonreal complex dimensions with real part < 1, namely, on the vertical line
{Re s = log3 2}) shows that the issue at hand is rather subtle.

Since, according to the above discussion, the (full) Cantor graph (or devil’s staircase) is
also expected to be fractal (as well as strictly subcritically fractal), the original paradox should
itself be completely resolved in the future within the present theory of complex dimensions of
relative fractal drums. Naturally, we expect that many other apparent paradoxes can be similarly
resolved within the theory developed in this paper and in [LapRaŽu1–8].
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L. Lapidus and M. van Frankenhuijsen, eds.), Proc. Symposia Pure Math., vol.

72, Parts 1 & 2, Amer. Math. Soc., Providence, R. I., 2008, pp. 1–25 (of Part 1).
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[Ra2] G. Radunović, Fractality and Lapidus zeta functions at infinity, Mathematical

Communications 21 (2016), 141–162, 2016. (Also: e-print,

arXiv:1510.06449v2 [math-ph], 2015.)



References 87

[RatWi] J. Rataj and S. Winter, Characterization of Minkowski measurability in terms of

surface area, J. Math. Anal. Appl. 400 (2013), 120–132. (Also: e-print,

arXiv: 1111.1825v2 [math.CA], 2012.)

[Res] M. Resman, Invariance of the normalized Minkowski content with respect to the

ambient space, Chaos, Solitons & Fractals 57 (2013), 123–128. (Also: e-print,

arXiv:1207.3279v1, 2012.)

[Ru] W. Rudin, Real and Complex Analysis, third edition, McGraw-Hill, New York,

1987.

[Schn1] R. Schneider, Curvature measures of convex bodies, Ann. Mat. Pura Appl. IV,

116 (1978), 101–134.

[Schn2] R. Schneider, Convex Bodies: The Brunn–Minkowski Theory, Encyclopedia of

Mathematics and its Applications, vol. 44, Cambridge Univ. Press, Cambridge,

2003. (Reprinted from the 1993 edition.)
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[Stein] J. Steiner, Über parallele Flächen, Monatsb. preuss. Akad. Wiss., Berlin, 1840,

pp. 114–118. (Reprinted in: Gesamm. Werke, vol. II, pp. 173–176.)

[Tep1] A. Teplyaev, Spectral zeta functions of symmetric fractals, in: Fractal Geometry

and Stochastics III, Progress in Probability, vol. 57, Birkhäuser-Verlag, Basel,
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