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ON THE DIVISIBILITY OF SOME TRUNCATED

HYPERGEOMETRIC SERIES

GUO-SHUAI MAO AND HAO PAN

Abstract. Let p be an odd prime and r ≥ 1. Suppose that
α is a p-adic integer with α ≡ 2a (mod p) for some 1 ≤ a <
(p+ r)/(2r + 1). We confirm a conjecture of Sun and prove that

2r+1F2r

[

α α . . . α
1 . . . 1

∣

∣

∣

∣

1

]

p−1

≡ 0 (mod p2),

where the truncated hypergeometric series

q+1Fq

[

x0 x1 . . . xq

y1 . . . yq

∣

∣

∣

∣

z

]

n

:=

n
∑

k=0

(x0)k(x1)k · · · (xq)k
(y1)k · (yq)k

·
zk

k!
.

1. Introduction

For an odd prime p, let Zp denote the ring of all p-adic integers. In
[14, Theorem 1.3 (i)], Sun proved that if x ∈ Zp and x ≡ −2a (mod p)
for some 1 ≤ a ≤ (p− 1)/3, then

p−1
∑

k=0

(−1)k
(

x

k

)3

≡ 0 (mod p3). (1.1)

Motivated by (1.1), Sun conjectured [14, Conjecture 4.4] that for any
integer r ≥ 2 and odd prime p, if x ∈ Zp and x ≡ −2a (mod p) for
some 1 ≤ a ≤ (p+ 1)/(2r + 1), then

p−1
∑

k=0

(−1)k
(

x

k

)2r+1

≡ 0 (mod p2). (1.2)

Define the truncated hypergeometric series

r+1Fr

[

x0 x1 . . . xr
y1 . . . yr

∣

∣

∣

∣

z

]

n

=

n
∑

k=0

(x0)k(x1)k · · · (xr)k
(y1)k · (yr)k

·
zk

k!
,
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where

(x)k =

{

x(x+ 1) · · · (x+ k − 1), if k ≥ 1,

1, if k = 0.

In fact, the truncated hypergeometric series is just the sum of the first
finite terms of the original hypergeometric series. In the recent years,
the arithmetic properties of the truncated hypergeometric series have
been widely investigated (cf. [1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 15, 16]).
Note that

(

x

k

)

= (−1)k ·
(−x)k
(1)k

.

Clearly the left side of (1.2) coincides with

2r+1F2r

[

−x −x . . . −x
1 . . . 1

∣

∣

∣

∣

1

]

p−1

.

In this short note, we shall give an affirmative answer to Sun’s con-
jecture.

Theorem 1.1. Let p be an odd prime and r ≥ 1. Suppose that α ∈ Zp

and α ≡ 2a (mod p) for some 1 ≤ a < (p+ r)/(2r + 1). Then

2r+1F2r

[

α α . . . α
1 . . . 1

∣

∣

∣

∣

1

]

p−1

≡ 0 (mod p2). (1.3)

Notice that the permitted range of α in Theorem 1.1 is a little larger
than the one conjectured by Sun.
Furthermore, we mention that Theorem 1.1 (or just (1.1)) also im-

plies another conjecture of Sun. In [13, Remark 1.2], Sun conjectured
that for any prime p with p ≡ 1 (mod 4),

1

2
(p−1)
∑

k=0

C3
k

64k
≡ 8 (mod p2), (1.4)

where

Ck :=
1

k + 1

(

2k

k

)

is the k-th Catalan number. It is easy to check that

Ck

4k
=

1

k + 1
·
(1
2
)k

(1)k
= −2 ·

(−1
2
)k+1

(1)k+1

.

We also have Ck ≡ 0 (mod p) for each (p+ 1)/2 ≤ k ≤ p− 2. So (1.4)
is actually equivalent to

p−1
∑

k=0

(−1
2
)3k

(1)3k
≡ 0 (mod p2). (1.5)
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When p ≡ 1 (mod 4),

−
1

2
≡
p− 1

2
= 2 ·

p− 1

4
(mod p).

Thus since (p− 1)/4 < (p+ 1)/3, (1.5) immediately follows from The-
orem 1.1 by setting α = −1/2 and r = 1.
Our proof of Theorem 1.1, which will be given in the subsequent

section, follows a similar way in [7]. We shall construct a polynomial
ψ(x) ∈ Zp[x] with ψ(p) = 0 such that

2r+1F2r

[

α α . . . α
1 . . . 1

∣

∣

∣

∣

1

]

p−1

= ψ(sp)

for some s ∈ Zp. Then the proof of (1.3) can be easily reduced to show
that ψ′(0) is divisible by p.

2. Proof of Theorem 1.1

First, let us introduce several auxiliary lemmas.

Lemma 2.1. Let m1, . . . , mr be non-negative integers and a be a pos-

itive integer. If a > m1 + . . .+mr, then

r+1Fr

[

−a 1 +m1 . . . 1 +mr

1 . . . 1

∣

∣

∣

∣

1

]

= 0. (2.1)

Proof. This is a consequence of the Karlsson-Minton formula [4, (12)].
�

Lemma 2.2. Suppose that m is a positive odd integer and r ≥ 0 is

even. Then

r+1Fr

[

−m −m . . . −m
1 . . . 1

∣

∣

∣

∣

1

]

= 0. (2.2)

Proof. We have

r+1Fr

[

−m −m . . . −m
1 . . . 1

∣

∣

∣

∣

1

]

=
m
∑

k=0

(−m)r+1
k

(1)r+1
k

=
m
∑

k=0

(−1)k
(

m

k

)r+1

.

Then (2.2) follows from the fact

m
∑

k=0

(−1)k
(

m

k

)r+1

=
m
∑

k=0

(−1)m−k

(

m

m− k

)r+1

= −

m
∑

k=0

(−1)k
(

m

k

)r+1

.

�
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Define the n-th harmonic number

Hn :=

n
∑

k=1

1

k
.

In particular, we set H0 = 0.

Lemma 2.3. Suppose that p is an odd prime and 0 ≤ a < p/2 is an

integer. Then for any r ≥ 0,

p−2a
∑

k=0

(2a)2r+1
k

(1)2r+1
k

·Hk ≡ −

p−2a
∑

k=0

(2a)2r+1
k

(1)2r+1
k

·H2a+k−1 (mod p). (2.3)

Proof. Clearly

p−2a
∑

k=0

(2a)2r+1
k

(1)2r+1
k

·Hk ≡

p−2a
∑

k=0

(2a− p)2r+1
k

(1)2r+1
k

·Hk =

p−2a
∑

k=0

(−1)kHk

(

p− 2a

k

)2r+1

=

p−2a
∑

k=0

(−1)p−2a−kHp−2a−k

(

p− 2a

p− 2a− k

)2r+1

≡−

p−2a
∑

k=0

(−1)kH2a+k−1

(

p− 2a

k

)2r+1

(mod p),

where in the last step we use the well-known fact

Hk ≡ Hp−1−k (mod p)

for any 0 ≤ k ≤ p− 1. �

Now we are ready to prove Theorem 1.1. Let

ψ(x) = 2r+1F2r

[

2a− x 2a− x . . . 2a− x
1 . . . 1

∣

∣

∣

∣

1

]

p−1

.

Then by Lemma 2.2,

ψ(p) = 2r+1F2r

[

2a− p 2a− p . . . 2a− p
1 . . . 1

∣

∣

∣

∣

1

]

= 0.

Furthermore, for any integers s0, s1, . . . , sr, t1, . . . , tr, evidently we have

2r+1F2r

[

2a− s0p 2a− s1p . . . 2a− srp
1 + t1p . . . 1 + trp

∣

∣

∣

∣

1

]

p−1

≡2r+1F2r

[

2a− p 2a− p . . . 2a− p
1 . . . 1

∣

∣

∣

∣

1

]

p−1

= 0 (mod p). (2.4)
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Let s = (2a− α)/p. By the Taylor expansion of ψ(x), we have

2r+1F2r

[

α α . . . α
1 . . . 1

∣

∣

∣

∣

1

]

p−1

= ψ(sp) ≡ψ(p) + (s− 1)p · ψ′(p)

≡(s− 1)p · ψ′(0) (mod p2).

It suffices to show that ψ′(0) is divisible by p. Let

φ(x) = 2r+1F2r

[

2a− x 2a . . . 2a
1 . . . 1

∣

∣

∣

∣

1

]

p−1

.

Then

ψ′(x) = (2r + 1)φ′(x). (2.5)

If 2r + 1 ≡ 0 (mod p), clearly ψ′(0) ≡ 0 (mod p). So we may assume
that 2r + 1 is not divisible by p. Below we only need to prove that

φ′(0) ≡ 0 (mod p). (2.6)

Our strategy is to compute φ′(0) modulo p in two different ways.
One way is simple. Clearly

d((m− x)k)

dx

∣

∣

∣

∣

x=0

= −(m)k

k−1
∑

i=0

1

m+ i
= (m)k(Hm−1 −Hm+k−1) (2.7)

for any positive integer m. So we get

φ′(0) =

p−1
∑

k=0

(2a)2rk
(1)2r+1

k

·
d((2a− x)k)

dx

∣

∣

∣

∣

x=0

=

p−1
∑

k=0

(2a)2r+1
k

(1)2r+1
k

· (H2a−1 −H2a+k−1)

≡−

p−2a
∑

k=0

(2a)2r+1
k

(1)2r+1
k

·H2a+k−1 (mod p), (2.8)

by noting that p divides (2a)k for 2a+ 1 ≤ k ≤ p− 1.
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However, the other way is a little complicated. According to Lemma
2.1, we have

φ(2p) =2r+1F2r

[

2a− 2p 2a . . . 2a
1 . . . 1

∣

∣

∣

∣

1

]

p−1

=2r+1F2r

[

2a− 2p 2a . . . 2a
1 . . . 1

∣

∣

∣

∣

1

]

−

p−2a
∑

k=0

(2a− 2p)p+k(2a)
2r
p+k

(1)2r+1
p+k

=−

p−2a
∑

k=0

(2a− 2p)p+k(2a)
2r
p+k

(1)2r+1
p+k

, (2.9)

since 2p− 2a > 2r(2a− 1) now. It is easy to check that

(2a− 2p)p(2a)
2r
p

(1)2r+1
p

≡ −1 (mod p).

Then we get

p−2a
∑

k=0

(2a− 2p)p+k(2a)
2r
p+k

(1)2r+1
p+k

=
(2a− 2p)p(2a)

2r
p

(1)2r+1
p

p−2a
∑

k=0

(2a− p)k(2a+ p)2rk
(1 + p)2r+1

k

≡−

p−2a
∑

k=0

(2a− p)k(2a+ p)2rk
(1 + p)2r+1

k

(mod p2),

(2.10)

since p divides the last sum by (2.4).
While in view of (2.7), for any t ∈ Zp, we have

(2a− tp)k − (2a)k ≡tp ·
d((2a− x)k)

dx

∣

∣

∣

∣

x=0

≡tp · (2a)k(H2a−1 −H2a+k−1) (mod p2).

It follows that
p−2a
∑

k=0

(2a− p)k(2a+ p)2rk
(1 + p)2r+1

k

−

p−2a
∑

k=0

(2a)2r+1
k

(1)2r+1
k

≡p

p−2k
∑

k=0

(2a)2r+1
k

(1)2r+1
k

·
(

(1− 2r) · (H2a−1 −H2a+k−1)− (2r + 1)Hk

)

≡p

p−2k
∑

k=0

(2a)2r+1
k

(1)2r+1
k

·
(

(2r − 1)H2a+k−1 − (2r + 1)Hk

)

(mod p2), (2.11)

where (2.4) is applied again in the last step.
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Finally, combining (2.11) with (2.9) and (2.10), and applying Lemma
2.3, we obtain that

φ′(0) ≡
φ(2p)− φ(0)

2p

≡
1

2

p−2k
∑

k=0

(2a)2r+1
k

(1)2r+1
k

·
(

(2r − 1)H2a+k−1 − (2r + 1)Hk

)

≡2r

p−2k
∑

k=0

(2a)2r+1
k

(1)2r+1
k

·H2a+k−1 (mod p). (2.12)

Recall that 2r + 1 has been assumed to be co-prime to p. Hence by
(2.8) and (2.12), we must have

φ′(0) ≡ 0 (mod p).

All are done. �

Remark 2.1. In view of (2.5), we always have ψ′(0) ≡ 0 (mod p) when-
ever p divides 2r + 1. So if α ∈ Zp and α ≡ 2a (mod p) for some
1 ≤ a ≤ (p− 1)/2, then

npFnp−1

[

α α . . . α
1 . . . 1

∣

∣

∣

∣

1

]

p−1

≡ 0 (mod p2) (2.13)

for any odd n ≥ 1.

Remark 2.2. Suppose that r ≥ 1 is not divisible by (p − 1)/2. Let
r∗ ≥ 1 be the least positive residue of r modulo (p−1)/2. Then by the
Fermat little theorem,

d

dx

( p−1
∑

k=0

(2a− x)k(2a)
2r
k

(1)2r+1
k

)
∣

∣

∣

∣

x=0

≡
d

dx

( p−1
∑

k=0

(2a− x)k(2a)
2r∗
k

(1)2r∗+1
k

)
∣

∣

∣

∣

x=0

(mod p).

It follows that for any p-adic integer α with α ≡ 2a (mod p) for some
1 ≤ a < (p+ r∗)/(2r∗ + 1),

2r+1F2r

[

α α . . . α
1 . . . 1

∣

∣

∣

∣

1

]

p−1

≡ 0 (mod p2) (2.14)
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