
Recent advances in ambit stochastics with a view towards
tempo-spatial stochastic volatility/intermittency

Ole E. Barndorff-Nielsen∗

Aarhus University
Fred Espen Benth†

University of Oslo

Almut E. D. Veraart‡

Imperial College London & CREATES

September 12, 2018

Abstract

Ambit stochastics is the name for the theory and applications of ambit fields and ambit pro-
cesses and constitutes a new research area in stochastics for tempo-spatial phenomena. This paper
gives an overview of the main findings in ambit stochastics up to date and establishes new results
on general properties of ambit fields. Moreover, it develops the concept of tempo-spatial stochas-
tic volatility/intermittency within ambit fields. Various types of volatility modulation ranging
from stochastic scaling of the amplitude, to stochastic time change and extended subordination
of random measures and to probability and Lévy mixing of volatility/intensity parameters will be
developed. Important examples for concrete model specifications within the class of ambit fields
are given.
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1 Introduction

Tempo-spatial stochastic models describe objects which are influenced both by time and location.
They naturally arise in various applications such as agricultural and environmental studies, ecology,
meteorology, geophysics, turbulence, biology, global economies and financial markets. Despite the
fact that the aforementioned areas of application are very different in nature, they pose some common
challenging mathematical and statistical problems. While there is a very comprehensive literature on
both time series modelling, see e.g. Brockwell & Davis (2002), Hamilton (1994), and also on mod-
elling purely spatial phenomena, see e.g. Cressie (1993), tempo-spatial stochastic modelling has only
recently become one of the most challenging research frontiers in modern probability and statistics,
see Cressie & Wikle (2011), Finkenstädt et al. (2007) for textbook treatments. Advanced and novel
methods from statistics, probability, and stochastic analysis are called for to address the difficulties
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1 INTRODUCTION

in constructing and estimating flexible and, at the same time, parsimoniously parametrised stochas-
tic tempo-spatial models. There are various challenging issues which need to be addressed when
dealing with tempo-spatial data, starting from data collection, model building, model estimation and
selection, and model validation up to prediction. This paper focuses on building a flexible, dynamic
tempo-spatial modelling framework, in which we develop the novel concept of tempo-spatial stochas-
tic volatility/intermittency which allows one to model random volatility clusters and fluctuations both
in time and in space. Note that intermittency is an alternative name for stochastic volatility, used
in particular in turbulence. The presence of stochastic volatility is an empirical fact in a variety of
scientific fields (including the ones mentioned above), see e.g. Amiri (2009), Huang et al. (2011),
Shephard & Andersen (2009). Despite its ubiquitousness and importance, however, this important
quantity has so far been often overlooked in the tempo-spatial literature. Possibly this is due to the
fact that stochastic volatility induces high mathematical complexity which is challenging both in terms
of model building as well as for model estimation.

The concept of stochastic volatility needs to be defined with respect to a base model, which we
introduce in the following. While the models should be the best realistic description of the underlying
random phenomena, they also have to be treatable for further use in the design of controls, or risk
evaluation, or planning of engineering equipment in the areas of application in which the tempo-
spatial phenomenon is considered. Stochastic models for such tempo-spatial systems are typically
formulated in terms of evolution equations, and they rely on the use of random fields. We focus on
such random fields which are defined in terms of certain types of stochastic integrals with respect to
random measures which can be regarded as a unifying framework which encompasses many of the
traditional modelling classes. We will work with random fields denoted by Yt(x) ∈ R with Yt(x) :=
Y (x, t), where t ∈ R denotes the temporal parameter and x ∈ Rd denotes the spatial parameter, where
d ∈ IN0. Typically, we have d ∈ {1, 2, 3} representing, for instance, longitude, latitude and height.
Note that by choosing continuous parameters (x, t), we can later allow for considerable flexibility
in the discretisation of the model (including in particular the possibility of irregularly spaced data).
This maximises the potential for wide applications of the model. We expect that the random variables
Yt(x) and Yt′(x′) are correlated as soon as the points (x, t) and (x′, t′) are “proximate” according to
a suitable measure of distance. This idea can be formalised in terms of a set At(x) ⊆ Rd × R such
that for all (x′, t′) ∈ At(x), the random variables Yt(x) and Yt′(x′) are correlated. The set At(x)
is sometimes referred to as causality cone and more recently as ambit set, see Barndorff-Nielsen
& Schmiegel (2004), describing the sphere of influence of the random variable Yt(x). A concrete
example of an ambit set would, for instance, be given by a light cone or a sound cone.

As the base model for a tempo-spatial object, we choose

Yt(x) =

∫
At(x)

h(x, t; ξ, s)L(dξ, ds), (1)

where L is an infinitely divisible, independently scattered random measure, i.e. a Lévy basis. Under
suitable regularity conditions, our base model (1) can be linked to solutions of certain types of stochas-
tic partial differential equations, which are often used for tempo-spatial modelling, see Barndorff-
Nielsen, Benth & Veraart (2011) for details. The kernel function h : Rd × R × Rd × R → R needs
to satisfy some integrability conditions to ensure the existence of the integral, which we will study in
detail in Section 2. Note that the covariance structure of the base model is fully determined by the
choice of the kernel function h and the set At(x), see Barndorff-Nielsen et al. (2010). In particular,
by choosing a certain bounded set At(x), one can easily construct models which induce a covariance
structure with bounded support; such models are typically sought after in applications, which feature a
certain decorrelation time and distance. Under suitable regularity assumptions on h and on At(x), see
Barndorff-Nielsen, Benth & Veraart (2011), the random field defined in (1) will be made stationary
in time and homogeneous in space. It should be noted that in any concrete application, one needs to
account for components in addition to the base model, such as a potential drift, trend and seasonality,
and observation error on the data level.
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2 BACKGROUND

One of the key questions we try to answer in this paper is the following one: How can stochastic
volatility/intermittency be introduced in our base model (1)? We propose four complementary meth-
ods for tempo-spatial volatility modulation. First, stochastic volatility can be introduced by stochas-
tically changing the amplitude of the Lévy basis L. This can be achieved by adding a stochastic
integrand to the base model. This method has frequently been used in the purely temporal case to
account for volatility clusters. In the tempo-spatial case, one needs to establish a suitable stochastic
integration theory, which allows for stochastic integrands in the form of random fields. Moreover,
suitable models for tempo-spatial stochastic volatility fields need to be developed.

In the purely temporal, examples typically used to model stochastic volatility are e.g. constant
elasticity of variance processes, in particular, square root diffusions, see Cox (1975), Cox et al. (1985),
Ornstein-Uhlenbeck (OU) processes, see Uhlenbeck & Ornstein (1930) and more recently Barndorff-
Nielsen & Shephard (2001), and supOU processes, see Barndorff-Nielsen (2000), Barndorff-Nielsen
& Stelzer (2011). Second, stochastic volatility can be introduced by extended subordination of the
Lévy basis. This concept can be viewed as an extension of the concept of stochastic time change as
developed by Bochner (1949), see also Veraart & Winkel (2010) for further references, to a tempo-
spatial framework. Last, volatility modulation can be achieved by randomising a volatility/intensity
parameter of the Lévy basis L. Here we will study both probability mixing and the new concept of
Lévy mixing, which has recently been developed by Barndorff-Nielsen, Perez-Abreu & Thorbjørnsen
(2012). We will show how these two mixing concepts can be used to account for stochastic volatil-
ity/intermittency.

Altogether, this paper contributes to the area of ambit stochastics, which is the name for the theory
and application of ambit fields and ambit processes. Ambit stochastics is a new field of mathemati-
cal stochastics that has its origin in the study of turbulence, see e.g. Barndorff-Nielsen & Schmiegel
(2004), but is in fact of broad applicability in science, technology and finance, in relation to mod-
elling of spatio-temporal dynamic processes. E.g. important applications of ambit stochastics include
modelling turbulence in physics, see e.g. Barndorff-Nielsen & Schmiegel (2004, 2009), Hedevang
(2012), modelling tumour growth in biology, see Barndorff-Nielsen & Schmiegel (2007), Jónsdóttir
et al. (2008), and applications in financial mathematics, see Barndorff-Nielsen et al. (2010), Barndorff-
Nielsen, Benth & Veraart (2012), Veraart & Veraart (2012).

The outline for the remainder of this article is as follows. Section 2 reviews the concept of Lévy
bases and integration with respect to Lévy bases, where the focus is on the integration theories devel-
oped by Rajput & Rosinski (1989) and Walsh (1986). Integrals with respect to Lévy bases are then
used to establish the notion for our base model (1) and for general ambit fields and ambit processes in
Section 3. In addition to reviewing the general framework of ambit fields, we establish new smooth-
ness and semimartingale conditions for ambit fields. An important sub-class of ambit fields – the so-
called trawl processes, which constitute a class of stationary infinitely divisible stochastic processes –
are then presented in Section 4. Section 5 focuses on volatility modulation and establishes four com-
plementary concepts which can be used to model tempo-spatial stochastic volatility/intermittency:
Stochastic scaling of the amplitude through a stochastic integrand, time change and extended subordi-
nation of a random measure, and probability and Lévy mixing. Finally, Section 6 concludes and gives
an outlook on future research.

2 Background

Ambit fields and ambit processes are constructed from so-called Lévy bases. We will now review the
definition and key properties of such Lévy bases and then describe how stochastic integrals can be
defined with respect to Lévy bases.
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2.1 Background on Lévy bases

Our review is based on the work by Pedersen (2003), Rajput & Rosinski (1989), where detailed proofs
can be found.

Throughout the paper, we denote by (Ω,F , P ) a probability space. Also, let (S,S,Leb) denote a
Lebesgue-Borel space where S denotes a Borel set in Rk for a k ∈ N, e.g. often we choose S = Rk.
Moreover S = B(S) is the Borel σ-algebra on S and Leb denotes the Lebesgue measure. In addition,
we define

Bb(S) = {A ∈ S : Leb(A) <∞},

which is the subset of S that contains sets which have bounded Lebesgue measure. Note that since
Leb is σ-finite, we can deduce that S = σ(Bb(S)), see Peccati & Taqqu (2008, p. 399). Also, the
set Bb(S) is closed under finite union, relative complementation, and countable intersection and is
therefore a δ-ring.

2.1.1 Random measures

Random measures play a key role in ambit stochastics, hence we start off by recalling the definition
of a (full) random measure.

Definition 1. 1. By a random measure M on (S,S) we mean a collection of R-valued random
variables {M (A) : A ∈ Bb(S)} such that for any sequence A1, A2, . . . of disjoint elements of
Bb(S) satisfying ∪∞j=1Aj ∈ Bb(S) we have M

(
∪∞j=1Aj

)
=
∑∞

j=1M (Aj) a.s..

2. By a full random measure M on (S,S) we mean a random object whose realisations are
measures on (S,S) a.s..

Note here that a realisation of a random measure is in general not an ordinary signed measure
since it does not necessarily have finite variation. That is why we also introduced the term of a full
random measure. Other articles or textbooks would sometimes call the quantity we have defined as a
random measure as random noise to stress that it might not be a (signed) measure, see Samorodnitsky
& Taqqu (1994, p. 118) for a discussion of this aspect.

In some applications, we work with stationary random measures, which are defined as follows.

Definition 2. A (full) random measure on S is said to be stationary if for any s ∈ S and any finite
collection A1, A2, . . . , An of elements (of B(S)) of Bb(S) the random vector

(M (A1 + s) ,M (A2 + s) , . . . ,M (An + s))

has the same law as (M (A1) ,M (A2) , . . . ,M (An)).

The above definition ensures that a random measure is stationary in all components. One could
also study stationarity in the individual components separately.

2.1.2 Lévy bases

In this paper, we work with a special class of random measures, called Lévy bases. Before we can
define them, we define independently scattered random measures.

Definition 3. A random measureM on (S,S) is independently scattered if for any sequenceA1, A2, . . .
of disjoint elements of Bb(S), the random variables M(A1),M(A2), . . . are independent.

Recall the definition of infinite divisibility of a distribution.
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Definition 4. The law µ of a random variable on R is infinitely divisible (ID) if for any n ∈ IN , there
exists a law µn on R such that µ = µ∗nn , where µ∗nn denotes the n-fold convolution of µn with itself.

In the following, we are interested in ID random measures, which we define now.

Definition 5. A random measure M on (S,S) is said to be infinitely divisible if for any finite col-
lection A1, A2, . . . , An of elements of Bb(S) the random vector (M (A1) ,M (A2) , . . . ,M (An)) is
infinitely divisible.

Let us study one relevant example.

Example 1. Assume thatM is an absolutely continuous full random measure on (S,S) with a density
m and suppose that the stochastic process {m (x)}x∈S is non-negative and infinitely divisible. Then
M is an infinitely divisible full random measure.

Now we can give the definition of a Lévy basis.

Definition 6. 1. A Lévy basis L on (S,S) is an independently scattered, infinitely divisible ran-
dom measure.

2. A homogeneous Lévy basis on (S,S) is a stationary, independently scattered, infinitely divisible
random measure.

2.1.3 Lévy-Khintchine formula and Lévy-Itô decomposition

Since a Lévy basis L is ID, it has a Lévy-Khintchine representation. I.e. let ζ ∈ R and A ∈ Bb(S),
then

C{ζ ‡ L(A)} = log (E(exp(iζL(A)))

= iζa∗(A)− 1

2
ζ2b∗(A) +

∫
R

(
eiζx − 1− iζxI[−1,1](x)

)
n(dx,A),

(2)

where, according to Rajput & Rosinski (1989, Proposition 2.1 (a)), a∗ is a signed measure on Bb(S),
b∗ is a measure on Bb(S), and n(·, ·) is the generalised Lévy measure, i.e. n(dx,A) is a Lévy measure
on R for fixed A ∈ Bb(S) and a measure on Bb(S) for fixed dx.

Next, we define the control measure as introduced in Rajput & Rosinski (1989, Proposition 2.1
(c), Definition 2.2).

Definition 7. Let L be a Lévy basis with Lévy-Khintchine representation (2). Then, the measure c is
defined by

c(B) = |a∗|(B) + b∗(B) +

∫
R

min(1, x2)n(dx,B), B ∈ Sb, (3)

where | · | denotes the total variation. The extension of the measure c to a σ-finite measure on (S,S)
is called the control measure measure of L.

Based on the control measure we can now characterise the generalised Lévy measure n further,
see Rajput & Rosinski (1989, Lemma 2.3, Proposition 2.4). First of all, we define the Radon-Nikodym
derivatives of the three components of c, which are given by

a(z) =
da∗

dc
(z), b(z) =

db∗

dc
(z), ν(dx, z) =

n(dx, ·)
dc

(z). (4)

Hence, we have in particular that n(dx, dz) = ν(dx, z)c(dz). Without loss of generality we can
assume that ν(dx, z) is a Lévy measure for each fixed z and hence we do so in the following.
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Definition 8. We call (a, b, ν(dx, ·), c) = (a(z), b(z), ν(dx, z), c(dz))z∈S a characteristic quadruplet
(CQ) associated with a Lévy basis L on (S,S) provided the following conditions hold:

1. Both a and b are functions on S, where b is restricted to be non-negative.

2. For fixed z, ν(dx, z) is a Lévy measure on R, and, for fixed dx, it is a measurable function on
S.

3. The control measure c is a measure on (S,S) such that
∫
B a(z)c(dz) is a (possibly signed)

measure on (S,S),
∫
B b(z)c(dz) is a measure on (S,S) and

∫
B ν(dx, z)c(dz) is a Lévy measure

on R for fixed B ∈ S.

We have seen that every Lévy basis on (S,S) determines a CQ of the form (a, b, ν(dx, ·), c) =
(a(z), b(z), ν(dx, z), c(dz))z∈S . And, conversely, every CQ satisfying the conditions in Definition 8
determines, in law, a Lévy basis on (S,S) .

In a next step, we relate the notion of Lévy bases and CQs to the concept of Poisson random
measures and their compensators.

Definition 9. A Lévy basis on (S,S) is dispersive if its control measure c satisfies c({z}) = 0 for all
z ∈ S.

For a dispersive Lévy basis L on (S,S) with characteristic quadruplet (a, b, ν, c) there is a modi-
fication L∗ with the same characteristic quadruplet which has following Lévy-Itô decomposition:

L∗(A) = a∗(A) +W (A) +

∫
{|y|≤1}

y(N − n)(dy,A) +

∫
{|y|>1}

yN(dy,A), (5)

for A ∈ Bb(S) and for a Gaussian basis W (with characteristic quadruplet (0, b, 0, c), i.e. W (A) ∼
N(0,

∫
A b(z)c(dz))), and a Poisson basis N (independent of W ) with compensator n (dy;A) =

E {N (dy;A)} where n(dx, dz) = ν(dx, z)c(dz), cf. Pedersen (2003) and Barndorff-Nielsen &
Stelzer (2011, Theorem 2.2)

It is also possible to write (5) in infinitesimal form by

L∗(dz) = a∗(dz) +W (dz) +

∫
{|x|>1}

xN(dx, dz) +

∫
{|x|≤1}

x(N − n)(dx, dz). (6)

This is particularly useful in the context of the Lévy-Khintchine representation, which can then also
be expressed in infinitesimal form by

C{ζ ‡ L(dz)} = log (E(exp(iζL(dz)))

= iζa∗(dz)− 1

2
ζ2b∗(dz) +

∫
R

(
eiζx − 1− iζxI[−1,1](x)

)
n(dx, dz)

=

(
iζa(z)− 1

2
ζ2b(z) +

∫
R

(
eiζx − 1− iζxI[−1,1](x)

)
ν(dx, z)

)
c(dz)

= C{ζ ‡ L′(z)}c(dz), ζ ∈ R,

(7)

where L′(z) denotes the Levy seed of L at z. Note that L′(z) is defined as the infinitely divisible
random variable having Lévy-Khintchine representation

C{ζ ‡ L′(z)} = iζa(z)− 1

2
ζ2b(z) +

∫
R

(
eiζx − 1− iζxI[−1,1](x)

)
ν(dx, z). (8)

Remark 1. We can associate a Lévy process with any Lévy seed. In particular, let L′(z) denote the
Lévy seed of L at z. Then, (L′t(z))t denotes the Lévy process generated by L′(z), which is defined as

the Lévy process whose law is determined by L′1(z)
law
= L′(z).
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Definition 10. Let L denote a Lévy basis on (S,S) with CQ given by (a, b, ν(dx, ·), c).

1. If ν(dr, z) does not depend on z, we call L factorisable.

2. If L is factorisable and if c is proportional to the Lebesgue measure and a(z) and b(z) do not
depend on z, then L is called homogeneous. In that case we write c(dz) = vLeb(dz) = vdz for
a positive constant v > 0 and where Leb(·) denotes the Lebesgue measure.

In order to simplify the exposition, we will throughout this paper assume that in the case of
a homogeneous Lévy basis the constant v is set to 1, i.e. the measure c is given by the Lebesgue
measure.

2.1.4 Examples of Lévy bases

Let us study some examples of Lévy bases L on (Rk,B(Rk)) with CQ (a, b, ν(dx, ·), c).

Example 2 (Gaussian Lévy basis). When ν(dx, z) ≡ 0, then L constitutes a Gaussian Lévy basis
with L(A) ∼ N

(∫
A a(z)c(dz),

∫
A b(z)c(dz)

)
, for A ∈ Bb(Rk). If, in addition, L is homogeneous,

then L(A) ∼ N (aLeb(A), bLeb(A)).

Example 3 (Poisson Lévy basis). When c(dz) = dz and a ≡ b ≡ 0 and ν(dx; z) = λ(z)δ1(dx),
where δ1 denotes the Dirac measure with point mass at 1 and λ(z) > 0 is the intensity function, then
L constitutes a Poisson Lévy basis. If, in addition, L is factorisable, i.e. λ does not depend on z, then
L(A) ∼ Poisson (λLeb(A)), for all A ∈ Bb(Rk).

Example 4 (Gamma Lévy basis). Suppose that c(dz) = dz, a ≡ b ≡ 0 and the (generalised)
Lévy measure is of the form ν(dx; z) = x−1e−α(z)xdx, where α(z) > 0. In that case, we call the
corresponding Lévy basis L a gamma Lévy basis. If, in addition, L is factorisable, i.e. the function α
does not depend on the parameter z, then L(A) has a gamma law for all A ∈ Bb(Rk).

Example 5 (Inverse Gaussian Lévy basis). Suppose that c(dz) = dz, a ≡ b ≡ 0 and the (generalised)
Lévy measure is of the form ν(dx; z) = x−3/2e−

1
2
γ2(z)xdx, where γ(z) > 0. Then we call the

corresponding Lévy basis L an inverse Gaussian Lévy basis. If, in addition, L is factorisable, i.e. the
function γ does not depend on the parameter z, then L(A) has an inverse Gaussian law for all
A ∈ Bb(Rk).

Example 6 (Lévy process). If k = 1, i.e. L is a Lévy basis on R, then L([0, t]) = Lt, t ≥ 0 is a Lévy
process.

2.2 Integration concepts with respect to a Lévy basis

In order to build relevant models based on Lévy bases, we need a suitable integration theory. In
the following, we will briefly review the integration theory developed by Rajput & Rosinski (1989)
and also the one by Walsh (1986), and we refer to Barndorff-Nielsen, Benth & Veraart (2011) for
a detailed overview on integration concepts with respect to Lévy bases, see also Dalang & Quer-
Sardanyons (2011) for a related review and Basse-O’Connor et al. (2012) for details on integration
with respect to multiparameter processes with stationary increments.

2.2.1 The integration concept by Rajput & Rosinski (1989)

According to Rajput & Rosinski (1989, p.460), integration of suitable deterministic functions with
respect to Lévy bases can be defined as follows. First define an integral for simple functions:

7
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Definition 11. Let L be a Lévy basis on (S,S). Define a simple function on S, i.e. let f :=∑n
j=1 xjIAj , where Aj ∈ Bb(S), for j = 1, . . . , n, are disjoint. Then, one defines the integral,

for every A ∈ σ(Bb(S)) = S, by ∫
A
fdL :=

n∑
j=1

xjL(A ∩Aj).

The integral for general measurable functions can be derived by a limit argument.

Definition 12. Let L be a Lévy basis on (S,S). A measurable function f : (S,S) 7→ (R,B(R)) is
called L-measurable if there exists a sequence {fn} of simple function as in Definition 11, such that

• fn → f a.e. (i.e. c-a.e., where c is the control measure of L),

• for every A ∈ S, the sequence of simple integrals {
∫
A fndL} converges in probability, as

n→∞.

For integrable measurable functions, define∫
A
fdL := P− lim

n→∞

∫
A
fndL.

Rajput & Rosinski (1989) have pointed out that the above integral is well-defined in the sense
that it does not depend on the approximating sequence {fn}. Also, the necessary and sufficient
conditions for the existence of the integral

∫
fdL can be expressed in terms of the characteristics

of L and can be found in Rajput & Rosinski (1989, Theorem 2.7), which says the following. Let
f : (S,S) 7→ (R,B(R)) be a measurable function. Let L be a Lévy basis with CQ (a, b, ν(dx, ·), c).
Then f is integrable w.r.t. L if and only if the following three conditions are satisfied:∫

S
|V1(f(z), z)|c(dz) <∞,

∫
S
|f(z)|2b(z)c(dz) <∞,

∫
S
V2(f(z), z)c(dz) <∞, (9)

where for %(x) := xI[−1,1](x),

V1(u, z) := ua(z) +

∫
R

(%(xu)− u%(x)) ν(dx, z), V2(u, z) :=

∫
R

min(1, |xu|2)ν(dx, z).

Note that such integrals have been defined for deterministic integrands. However, in the context
of ambit fields, which we will focus on in this paper, we typically encounter stochastic integrands
representing stochastic volatility, which tends to be present in most applications we have in mind.
Since we often work under the independence assumption that the stochastic volatility σ and the Lévy
basis L are independent, it has been suggested to work with conditioning to extend the definition by
Rajput & Rosinski (1989) to allow for stochastic integrands. An alternative concept, which directly
allows for stochastic integrands which can be dependent of the Lévy basis, is the integration concept
by Walsh (1986), which we study next.

2.2.2 Integration w.r.t. martingale measures introduced by Walsh (1986)

The integration theory due to Walsh (1986) can be regarded as Itô integration extended to random
fields. In the following we will present the integration theory on a bounded domain and comment
later on how one can extend the theory to the case of an unbounded domain.

Here we treat time and space separately, which allows us to work with a natural ordering (intro-
duced by time) and to relate the integrals w.r.t. to Lévy bases to martingale measures. In the following,
we denote by S a bounded Borel set in X = Rd for a d ∈ N0 (where d + 1 = k) and S = B(S)
denotes the Borel σ-algebra on S. Since S is bounded, we have in fact S = B(S) = Bb(S).

8
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Let L denote a Lévy basis on (S × [0, T ],B(S × [0, T ])) for some T > 0. For any A ∈ Bb(S)
and 0 ≤ t ≤ T , we define

Lt(A) = L(A, t) = L(A× (0, t]).

Here Lt(·) is a measure-valued process, and for a fixed set A ∈ Bb(S), Lt(A) is an additive process
in law. In the following, we want to use the Lt(A) as integrators as in Walsh (1986). In order to do
that, we work under the square-integrability assumption, i.e.:

Assumption (A1): For each A ∈ Bb(S), we have that Lt(A) ∈ L2(Ω,F , P ).

In the following, we will, unless otherwise stated, work without loss of generality under the zero-mean
assumption on L, i.e.

Assumption (A2): For each A ∈ Bb(S), we have that E(Lt(A)) = 0.

Next, we define the filtration Ft by

Ft = ∩∞n=1F0
t+1/n, where F0

t = σ{Ls(A) : A ∈ Bb(S), 0 < s ≤ t} ∨ N , (10)

and where N denotes the P -null sets of F . Note that Ft is right-continuous by construction. One
can show that under the assumptions (A1) and (A2) and for fixed A ∈ Bb(S), (Lt(A))0≤t≤T is a
(square-integrable) martingale with respect to the filtration (Ft)0≤t≤T . Note that these two properties
together with the fact that L0(A) = 0 a.s. ensure that (Lt(A))t≥0,A∈B(Rd) is a martingale measure
with respect to (Ft)0≤t≤T in the sense of Walsh (1986). Furthermore, we have the following orthogo-
nality property: IfA,B ∈ Bb(S) withA∩B = ∅, then Lt(A) and Lt(B) are independent. Martingale
measures which satisfy such an orthogonality property are referred to as orthogonal martingale mea-
sures by Walsh (1986), see also Barndorff-Nielsen, Benth & Veraart (2011) for more details. Note that
orthogonal martingale measure are worthy, see Walsh (1986, Corollary 2.9), a property which makes
them suitable as integrators. For such orthogonal martingale measures, Walsh (1986) introduces their
covariance measure Q by

Q(A× [0, t]) = < L(A) >t, (11)

forA ∈ B(S). Note thatQ is a positive measure and is used by Walsh (1986) when defining stochastic
integration with respect to L.

Walsh (1986) defines stochastic integration in the following way. Let ζ(ξ, s) be an elementary
random field ζ(ξ, s), i.e. it has the form

ζ(ξ, s, ω) = X(ω)I(a,b](s)IA(ξ) , (12)

where 0 ≤ a < t, a ≤ b, X is bounded and Fa-measurable, and A ∈ S. For such elementary
functions, the stochastic integral with respect to L can be defined as∫ t

0

∫
B
ζ(ξ, s)L(dξ, ds) := X (Lt∧b(A ∩B)− Lt∧a(A ∩B)) , (13)

for everyB ∈ S. It turns out that the stochastic integral becomes a martingale measure itself inB (for
fixed a, b, A). Clearly, the above integral can easily be generalised to allow for integrands given by
simple random fields, i.e. finite linear combinations of elementary random fields. Let T denote the set
of simple random fields and let the predictable σ-algebra P be the σ-algebra generated by T . Then
we call a random field predictable provided it is P-measurable. The aim is now to define stochastic
integrals with respect to L where the integrand is given by a predictable random field.

9
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In order to do that Walsh (1986) defines a norm ‖ · ‖L on the predictable random fields ζ by

‖ζ‖2L := E

[∫
[0,T ]×S

ζ2(ξ, s)Q(dξ, ds)

]
, (14)

which determines the Hilbert space PL := L2(Ω× [0, T ]×S,P, Q), which is the space of predictable
random fields ζ with ‖ζ‖2L < ∞, and he shows that T is dense in PL. Hence, in order to define
the stochastic integral of ζ ∈ PL, one can choose an approximating sequence {ζn}n ⊂ T such that
‖ζ − ζn‖L → 0 as n→∞. Clearly, for each A ∈ S,

∫
[0,t]×A ζn(ξ, s)L(dξ, ds) is a Cauchy sequence

in L2(Ω,F , P ), and thus there exists a limit which is defined as the stochastic integral of ζ.
Then, this stochastic integral is again a martingale measure and satisfies the following Itô-type

isometry:

E

(∫
[0,T ]×S

ζ(ξ, s)L(dξ, ds)

)2
 = ‖ζ‖2L , (15)

see (Walsh 1986, Theorem 2.5) for more details.

2.2.3 Relation between the two integration concepts

The relation between the two different integration concept has been discussed in Barndorff-Nielsen,
Benth & Veraart (2011, pp. 60–61), hence we only mention it briefly here.

Note that the Walsh (1986) theory defines the stochastic integral as the L2-limit of simple random
fields, whereas Rajput & Rosinski (1989) work with the P -limit. Barndorff-Nielsen, Benth & Veraart
(2011) point out that deterministic integrands, which are integrable in the sense of Walsh, are thus also
integrable in the Rajput and Rosinski sense since the control measure of Rajput & Rosinski (1989)
and the covariance measure of Walsh (1986) are equivalent.

3 General aspects of the theory of ambit fields and processes

In the following we will show how stochastic processes and random fields can be constructed based on
Lévy bases, which leads us to the general framework of ambit fields. This section reviews the concept
of ambit fields and ambit processes. For a detailed account on this topic see Barndorff-Nielsen, Benth
& Veraart (2011) and Barndorff-Nielsen & Schmiegel (2007).

3.1 The general framework

The general framework for defining an ambit process is as follows. Let Y = {Yt (x)} with Yt(x) :=
Y (x, t) denoting a stochastic field in space-time X × R. In most applications, the space X is chosen
to be Rd for d = 1, 2 or 3. Let $ (θ) = (x (θ) , t (θ)) denote a curve in X ×R. The values of the field
along the curve are then given byXθ = Yt(θ) (x (θ)). Clearly,X = {Xθ} denotes a stochastic process.
Further, the stochastic field is assumed to be generated by innovations in space-time with values Yt (x)
which are supposed to depend only on innovations that occur prior to or at time t and in general only
on a restricted set of the corresponding part of space-time. I.e., at each point (x, t), the value of Yt (x)
is only determined by innovations in some subset At (x) of X × Rt (where Rt = (−∞, t]), which
we call the ambit set associated to (x, t). Furthermore, we refer to Y and X as an ambit field and an
ambit process, respectively.

In order to use such general ambit fields in applications, we have to impose some structural as-
sumptions. More precisely, we will define Yt (x) as a stochastic integral plus a drift term, where the
integrand in the stochastic integral will consist of a deterministic kernel times a positive random vari-
ate which is taken to express the volatility of the field Y . More precisely, we think of ambit fields as
being defined as follows.

10
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Definition 13. Using the notation introduced above, an ambit field is defined as a random field of the
form

Yt (x) = µ+

∫
At(x)

h (x, t; ξ, s)σs (ξ)L (dξ,ds) +

∫
Dt(x)

q (x, t; ξ, s) as (ξ) dξds, (16)

provided the integrals exist, where At (x), and Dt (x) are ambit sets, h and q are deterministic func-
tions, σ ≥ 0 is a stochastic field referred to as volatility or intermittency, a is also a stochastic field,
and L is a Lévy basis.

Remark 2. Note that compared to the base model (1) we introduced in the Introduction, the ambit
field defined in (16) also comes with a drift term and stochastic volatility introduced in form of a
stochastic integrand. In Section 5, we will describe in detail how such a stochastic volatility field σ
can be specified and what kind of complementary routes can be taken in order to allow for stochastic
volatility clustering.

The corresponding ambit process X along the curve $ is then given by

Xθ = µ+

∫
A(θ)

h(t(θ); ξ, s)σs(ξ)L(dξ, ds) +

∫
D(θ)

q(t(θ); ξ, s)as(ξ)dξds, (17)

where A(θ) = At(θ)(x(θ)) and D(θ) = Dt(θ)(x(θ)).

In Section 3.2, we will formulate the suitable integrability conditions which guarantee the exis-
tence of the integrals above.

Of particular interest in many applications are ambit processes that are stationary in time and
nonanticipative and homogeneous in space. More specifically, they may be derived from ambit fields
Y of the form

Yt (x) = µ+

∫
At(x)

h (x− ξ, t− s)σs (ξ)L (dξ,ds) +

∫
Dt(x)

q (x− ξ, t− s) as (ξ) dξds. (18)

Here the ambit sets At (x) and Dt (x) are taken to be homogeneous and nonanticipative, i.e. At (x)
is of the form At (x) = A+ (x, t) where A only involves negative time coordinates, and similarly for
Dt (x). In addition, σ and a are chosen to be stationary in time and space and L to be homogeneous.

3.2 Integration for general ambit fields

Ambit fields have initially been defined for deterministic integrands using the Rajput & Rosinski
(1989) integration concept. Their definition could then be extended to allow for stochastic integrands
which are independent of the Lévy basis by a conditioning argument. As discussed before, the integra-
tion framework developed by Walsh (1986) has the advantage that it allows for stochastic integrands
which are potentially dependent of the Lévy basis and enables us to study dynamic properties (such
as martingale properties). Let us explain in more detail how the Walsh (1986) integration concept can
be used to define ambit fields using an Itô-type integration concept.

One concern regarding the applicability of the Walsh (1986) framework to ambit fields might be
that general ambit sets At(x) are not necessarily bounded, and we have only presented the Walsh
(1986) concept for a bounded domain. However, the stochastic integration concept reviewed above
can be extended to unbounded ambit sets using standard arguments, cf. Walsh (1986, p. 289). Also,
as pointed out in Walsh (1986, p. 292), it is possible to extend the Walsh (1986) integration concept
beyond the L2-framework, cf. Walsh (1986, p. 292).

Note that the classical Walsh (1986) framework works under the zero mean assumption, which
might not be satisfied for general ambit fields. However, we can always define a new Lévy basis L by
setting L := L − E(L), which clearly has zero mean. Then we can define the Walsh (1986) integral

11
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w.r.t. L, and we obtain an additional drift term which needs to satisfy an additional integrability
condition.

However, the main point we need to address is the fact that the integrand in the ambit field does
not seem to comply with the structure of the integrand in the Walsh-theory. More precisely, for ambit
fields with ambit sets At(x) ⊂ Rd × (−∞, t], we would like to define Walsh-type integrals for
integrands of the form

ζ(ξ, s) := ζ(x, t; ξ, s) := IAt(x)(ξ, s)h(x, t; ξ, s)σs(ξ). (19)

The original Walsh’s integration theory covers integrands which do not depend on the time index t.
Clearly, the integrand given in (19) generally exhibits t-dependence due to the choice of the ambit set
At(x) and due to the deterministic kernel function h.

Suppose we are in the simple case where the ambit set can be represented asAt(x) = B×(−∞, t],
where B ∈ B(Rd) does not depend on t, and where the kernel function does not depend on t, i.e.
h(x, t; ξ, s) = h(x; ξ, s). Then the Walsh-theory is directly applicable, and provided the integrand is
indeed Walsh-integrable, then (for fixed B and fixed x) the process(∫ t

−∞

∫
B
h(x; ξ, s)σs(ξ)L(dξ, ds)

)
t∈R

is a martingale.
Note that the t-dependence (and also the additional x-dependence) for general integrands in the

ambit field is in the deterministic part of the integrand only, i.e. in IAt(x)(ξ, s)h(x, t; ξ, s). Now in
order to allow for time t- (and x-) dependence in the integrand, we can define the integrals in the
Walsh sense for any fixed t and for fixed x. Note that we treat x as an additional parameter which
does not have an influence on the structural properties of the integral as a stochastic process in t.

It is clear that in the case of having t-dependence in the integrand, the resulting stochastic integral
is, in general, not a martingale measure any more. However, the properties of adaptedness, square-
integrability and countable additivity carry over to the process(∫ t

−∞

∫
Rd
ζ(x, t; ξ, s)L(dξ, ds)

)
t∈R

(for fixed x) since it is the L2-limit of a stochastic process with the above mentioned properties.
In order to ensure that the ambit fields (as defined in (16)) are well-defined (in the Walsh-sense),

throughout the rest of the paper we will work under the following assumption:

Assumption 1. LetL denote a Lévy basis on S×(−∞, T ], where S denotes a not necessarily bounded
Borel set S in X = Rd for some d ∈ IN . Define the new Lévy basis L := L − E(L). We extend the
definition of the covariance measure Q of L, see (11), to an unbounded domain and, next, we define
a Hilbert space PL with norm || · ||L as in (14) (extended to an unbounded domain) and, hence, we
have an Itô isometry of type (15) extended to an unbounded domain. We assume that, for fixed x and
t,

ζ(ξ, s) = IAt(x)(ξ, s)h(x, t; ξ, s)σs(ξ)

satisfies

1. ζ ∈ PL,

2. ||ζ||
L
2 = E

[∫
R×X ζ

2(ξ, s)Q(dξ, ds)
]
<∞.

3.
∫
R×X |ζ(ξ, s)|EL(dξ, ds) <∞

12
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Remark 3. Note that alternatively, we could work with the càdlàg elementary random fields

ζ∗(ξ, s, ω) := X(ω)I[a,b)(s)IA(ξ),

where X(ω) is assumed to be Fa-adapted and the remaining notation is as in (12). Next, one can
construct a σ-algebra from the corresponding simple random fields and one would then define the
stochastic integral for ζ∗(ξ, s−, ω), since clearly adaptedness and the càdlàg property of ζ∗(ξ, s, ω)
implies predictability of ζ∗(ξ, s−, ω).

3.3 Cumulant function for stochastic integrals w.r.t. a Lévy basis

Next we study some of the fundamental properties of ambit fields. Throughout this subsection, we
work under the following assumption:

Assumption 2. The stochastic fields σ and a are independent of the Lévy basis L.

Now we have all the tools at hand which are needed to compute the conditional characteristic func-
tion of ambit fields defined in (16) where σ and L are assumed independent and where we condition
on the σ-algebra Fσ = Fσt (x) which is generated by the history of σ, i.e.

Fσt (x) = σ{σs(ξ) : (ξ, s) ∈ At(x)}.

Proposition 1. Assume that Assumption 2 holds. Let Cσ denote the conditional cumulant function
when we condition on the volatility field σ. The conditional cumulant function of the ambit field
defined by (16) is given by

Cσ

{
θ ‡
∫
At(x)

h(x, t; ξ, s)σs(ξ)L(dξ, ds)

}

= log

(
E

(
exp

(
iθ

∫
At(x)

h(x, t; ξ, s)σs(ξ)L(dξ, ds)

)∣∣∣∣∣Fσ
))

=

∫
At(x)

C
{
θh(x, t; ξ, s)σs(ξ) ‡ L′(ξ, s)

}
c(dξ, ds),

(20)

where L′ denotes the Lévy seed and c is the control measure associated with the Lévy basis L, cf. (8)
and (3).

Proof. The proof of the Proposition is an immediate consequence of Rajput & Rosinski (1989, Propo-
sition 2.6).

Corollary 1. In the case where L is a homogeneous Lévy basis, equation (20) simplifies to

Cσ

{
θ ‡
∫
At(x)

h(x, t; ξ, s)σs(ξ)L(dξ, ds)

}
=

∫
At(x)

C
{
θh(x, t; ξ, s)σs(ξ) ‡ L′

}
dξds.

3.4 Second order structure of ambit fields

Next we study the second order structure of ambit fields. Throughout the Section, let

Yt(x) =

∫
At(x)

h(x, t; ξ, s)σs(ξ)L(dξ, ds), (21)

where σ is independent of L, i.e. Assumption 2 holds, and L′ is the Lévy seed associated with L.
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Proposition 2. Let t, t̃,x, x̃ ≥ 0 and let Yt(x) be an ambit field as defined in (21). The second order
structure is then as follows. The means are given by

E (Yt(x)| Fσ) =

∫
At(x)

h(x, t; ξ, s)σs(ξ)E(L′(ξ, s))c(dξ, ds),

E (Yt(x)) =

∫
At(x)

h(x, t; ξ, s)E (σs(ξ))E(L′(ξ, s))c(dξ, ds).

The variances are given by

V ar (Yt(x)| Fσ) =

∫
At(x)

h2(x, t; ξ, s)σ2
s(ξ)V ar(L′(ξ, s))c(dξ, ds),

V ar (Yt(x)) =

∫
At(x)

h2(x, t; ξ, s)E
(
σ2
s(ξ)

)
V ar(L′(ξ, s))c(dξ, ds)

+

∫
At(x)

∫
At(x)

h(x, t; ξ, s)h(x, t; ξ̃, s̃)ρ(s, s̃, ξ, ξ̃)E(L′(ξ, s))E(L′(ξ̃, s̃))c(dξ, ds)c(dξ̃, ds̃),

where ρ(s, s̃, ξ, ξ̃) = E
(
σs(ξ)σs̃(ξ̃)

)
− E (σs(ξ))E

(
σs̃(ξ̃)

)
. The covariances are given by

Cov (Yt(x), Yt̃(x̃)| Fσ) =

∫
At(x)∩At̃(x̃)

h(x, t; ξ, s)h(x̃, t̃; ξ, s)σ2
s(ξ)V ar(L′(ξ, s))c(dξ, ds),

Cov (Yt(x), Yt̃(x̃)) =

∫
At(x)∩At̃(x̃)

h(x, t; ξ, s)h(x̃, t̃; ξ, s)E
(
σ2
s(ξ)

)
V ar(L′(ξ, s))c(dξ, ds)

+

∫
At(x)

∫
At̃(x̃)

h(x, t; ξ, s)h(x̃, t̃; ξ̃, s̃)ρ(s, s̃, ξ, ξ̃)E(L′(ξ, s))E(L′(ξ̃, s̃))c(dξ̃, ds̃)c(dξ, ds).

Proof. From the conditional cumulant function (20), we can easily deduce the second order structure
conditional on the stochastic volatility. Integrating over σ and using the law of total variance and
covariance leads to the corresponding unconditional results.

Note that it is straightforward to generalise the above results to allow for an additional drift term
as in (16).

The second order structure provides us with some valuable insight into the autocorrelation struc-
ture of an ambit field. Knowledge of the autocorrelation structure can help us to study smoothness
properties of an ambit field, as we do in the following section. Also, from a more practical point of
view, we could think of specifying a fully parametric model based on the ambit field. Then the sec-
ond order structure could be used e.g. in a (quasi-) maximum-likelihood set-up to estimate the model
parameters.

3.5 Smoothness conditions

Let us study sufficient conditions which ensure smoothness of an ambit field.

3.5.1 Some related results in the literature

In the purely temporal (or null-spatial) case, which we will discuss in more detail in Section 3.7,
smoothness conditions for so-called Volterra processes have been studied before. In particular, De-
creusefond (2002) shows that under mild integrability assumptions on a progressively measurable
stochastic volatility process, the sample-paths of the volatility modulated Brownian-driven Volterra
process are a.s. Hölder-continuous even for some singular deterministic kernels. Note that Decreuse-
fond (2002) does not use the term stochastic volatility in his article, but the stochastic integrand he
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considers could be regarded as a stochastic volatility process. Also, Mytnik & Neuman (2011) study
sample path properties of Volterra processes.

In the tempo-spatial context, or generally for random fields, smoothness conditions have been
discussed in detail in the literature. For textbook treatments see e.g. Adler (1981), Adler & Taylor
(2007) and Azaı̈s & Wschebor (2009). Important articles in this context include the following ones.
Kent (1989) formulates sufficient conditions on the covariance function of a stationary real-valued
random field which ensure sample path continuity.

Rosinski (1989) studies the relationship between the sample-path properties of an infinitely di-
visible integral process and the properties of the sections of the deterministic kernel. The study is
carried out under the assumption of absence of a Gaussian component. In particular, he shows that
various properties of the section are inherited by the paths of the process, which include boundedness,
continuity, differentiability, integrability and boundedness of pth variation.

Marcus & Rosinski (2005) extend the previous results to derive sufficient conditions for bound-
edness and continuity for stochastically continuous infinitely divisible processes, without Gaussian
component.

3.5.2 Sufficient condition on the covariance function

In the following, we write

ρ(t,x; t̃, x̃) = Cov (Yt(x), Yt̃(x̃)) ,

where the covariance is given as in Proposition 2. We can apply the key results derived in Kent (1989)
to ambit fields.

Let t, h1 ∈ R and x,h2 ∈ Rd and h := (h1,h2)′. For each (x, t)′ we assume that ρ(t +
h1,x + h2; t − h1,x − h2) is k-times continuously differentiable with respect to h for a k ∈ IN0.
We write pk(h; t,x) for the polynomial of degree k which is obtained from a Taylor expansion of
ρ(t + h1,x + h2; t − h1,x − h2) about h = 0 for each (x, t). In the following, we denote by || · ||
the Euclidean norm.

Proposition 3. For each (x, t)′ suppose that ρ(t+h1,x+h2; t−h1,x−h2) is d+1-times continuously
differentiable with respect to h and that there exists a constant γ > 0 such that

sup
(x,t)
{|ρ(t+ h1,x + h2; t− h1,x− h2)− pd+1(h; t,x)|} = O

(
||h||d+1

| log ||h|||3+γ

)
, (22)

as ||h|| → 0, where the supremum is computed over (x, t) being in each compact subset of Rd+1. Then
there exists a version of the random field {Yt(x), (x, t) ∈ Rd+1} which has almost surely continuous
sample paths.

Proof. The result is a direct consequence of Kent (1989, Theorem 1 and Remark 6).

Remark 4. As pointed out in Kent (1989, Remark 3), (22) could be replaced by the stronger con-
ditions of the supremum being of order O(||h||d+1+β) as h → 0 for some constant β > 0. This
condition is easier to check in practice and if it holds for any β > 0, then it implies that (22) holds for
all γ > 0.

Remark 5. As pointed out in Kent (1989, Remark 5) and Adler (1981, p. 60), as soon as we have a
Gaussian field, milder conditions ensure continuity. Note that an ambit field is Gaussian if the Lévy
basis is Gaussian and the stochastic volatility component is absent (or purely deterministic).
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3.6 Semimartingale conditions

Next we derive sufficient conditions which ensure that an ambit field is a semimartingale in time.
This is interesting since in financial applications we typically want to stay within the semimartingale
framework whereas in applications to turbulence one typically focuses on non-semimartingales.

We will see that a sufficient condition for a semimartingale is linked to a smoothness condition
on the kernel function. When studying the semimartingale condition, we focus on ambit sets which
factorise as At(x) = [0, t] × A(x), which is in line with the Walsh (1986)-framework. We start with
a preliminary Lemma.

Lemma 1. Let L be a Lévy basis satisfying (A1) and (A2) and σ be a predictable stochastic volatility
field which is integrable w.r.t. L. Then

Mt(A(x)) =

∫ t

0

∫
A(x)

σs(ξ)L(dξ, ds), (23)

is an orthogonal martingale measure.

Proof. See Walsh (1986, p. 296) for a proof of the lemma above.

Assumption 3. Assume that the deterministic function u 7→ h(·, u, ·, ·) is differentiable (in the second
component) and denote by h′ = ∂h

∂u(·, u, ·, ·) the derivative with respect to the second component.
Then for s ≤ t we have the representation

h(x, t; ξ, s) = h(x, s; ξ, s) +

∫ t

s
h′(x, u; ξ, s)du, (24)

provided that h(x, s; ξ, s) exists. Further, we assume that both components in the representation (24)
are Walsh (1986)-integrable w.r.t. M and ζ1(ξ, s) = h(x, s; ξ, s) and ζ2(ξ, s) =

∫ t
s h
′(x, u; ξ, s)du

satisfy ζi ∈ PM , ||ζi||M2 <∞,
∫
R×X |ζi(ξ, s)|EM(dξ, ds) <∞ for i = 1, 2.

Proposition 4. Let M be defined as in (23) with covariance measure QM , and assume that h satisfies
Assumption 3 and

E
∫
S×S×[0,T ]×G

|F (u,x; s, ξ1)F (u,x; s, ξ2)|QM (dξ1, dξ2, ds)du <∞,

for

F (u,x; s, ξ) = h′(x, u; ξ, s)I[s,t](u).

Then (
∫ t

0

∫
A(x) h(x, t; ξ, s)M(dξ, ds))t≥0 is a semimartingale with representation

∫ t

0

∫
A(x)

h(t,x; s, ξ)M(dξ, ds)

=

∫ t

0

∫
A(x)

h(s,x; s, ξ)M(dξ, ds) +

∫ t

0

∫ u

0

∫
A(x)

h′(u,x; s, ξ)M(dξ, ds)du. (25)

Clearly, the first term in representation (25) is a martingale measure in the sense of Walsh and the
second term is a finite variation process.

Proof. The result follows from the stochastic Fubini theorem for martingale measures, see Walsh
(1986, Theorem 2.6). In the following, we check that the conditions of the stochastic Fubini theo-
rem are satisfied. Let (G,G,Leb) denote a finite measure space. Concretely, take G = [0, T ] and
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G = B(G). Note that u 7→ h(·, u, ·, ·) has finite first derivative at all points, hence its derivative is
G-measurable. Also, the indicator function is G-measurable since the corresponding interval is an
element of G. Overall we have that the function

F (u,x; s, ξ) = h′(x, u; ξ, s)I[s,t](u)

is G × P-measurable and

E
∫
S×S×[0,T ]×G

|F (u,x; s, ξ1)F (u,x; s, ξ2)|QM (dξ1, dξ2, ds)du <∞,

where QM is the covariance measure of M . Then∫ t

0

∫
A(x)

h(t,x; s, ξ)M(dξ, ds)

=

∫ t

0

∫
A(x)

h(s,x; s, ξ)M(dξ, ds) +

∫ t

0

∫
A(x)

∫ t

s
h′(u,x; s, ξ)duM(dξ, ds)

=

∫ t

0

∫
A(x)

h(s,x; s, ξ)M(dξ, ds) +

∫ t

0

∫ u

0

∫
A(x)

h′(u,x; s, ξ)M(dξ, ds)du.

3.7 The purely-temporal case: Volatility modulated Volterra processes

The purely temporal, i.e. the null-spatial, case of an ambit field has been studied in detail in recent
years. Here we denote by L = (Lt)t∈R a Lévy process on R. Then, the null–spatial ambit field is in
fact a volatility modulated Lévy-driven Volterra (VMLV) process denoted by Y = {Yt}t∈R, where

Yt = µ+

∫ t

−∞
k(t, s)σs−dLs +

∫ t

−∞
q(t, s)asds, (26)

where µ is a constant, k and q are are real–valued measurable function on R2, such that the integrals
above exist with k (t, s) = q (t, s) = 0 for s > t, and σ and a are càdlàg processes.

Of particular interest, are typically semi–stationary processes, i.e. the case when the kernel func-
tion depends on t and s only through the difference t− s. This determines the class of Lévy semista-
tionary processes (LSS), see Barndorff-Nielsen, Benth & Veraart (2012). Specifically,

Yt = µ+

∫ t

−∞
k(t− s)σs−dZs +

∫ t

−∞
q(t− s)asds, (27)

k and q are non-negative deterministic functions on R with k (x) = q (x) = 0 for x ≤ 0. Note
that an LSS process is stationary as soon as σ and a are stationary processes. In the case that L is
a Brownian motion, we call Y a Brownian semistationary (BSS) process, see Barndorff-Nielsen &
Schmiegel (2009).

The class ofBSS processes has been used by Barndorff-Nielsen & Schmiegel (2009) to model tur-
bulence in physics. In that context, intermittency, which is modelled by σ, plays a key role, which has
triggered detailed research on the question of how intermittency can be estimated non-parametrically.
Recent research, see e.g. Barndorff-Nielsen et al. (2009), Barndorff-Nielsen, Corcuera & Podolskij
(2011, 2012), has developed realised multipower variation and related concepts to tackle this impor-
tant question.

The class of LSS processes has subsequently been found to be suitable for modelling energy
spot prices, see Barndorff-Nielsen, Benth & Veraart (2012), Veraart & Veraart (2012). Moreover,
Barndorff-Nielsen, Benth, Pedersen & Veraart (2012) have recently developed an anticipative stochas-
tic integration theory with respect to VMLV processes.
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4 ILLUSTRATIVE EXAMPLE: TRAWL PROCESSES

4 Illustrative example: Trawl processes

Ambit fields and processes constitute a very flexible class for modelling a variety of tempo-spatial
phenomena. This Section will focus on one particular sub-class of ambit processes, which has recently
been used in application in turbulence and finance.

4.1 Definition and general properties

Trawl processes are stochastic processes defined in terms of tempo-spatial Lévy bases. They have re-
cently been introduced in Barndorff-Nielsen (2011) as a class of stationary infinitely divisible stochas-
tic processes.

Definition 14. Let L be a homogeneous Lévy basis on Rd × R for d ∈ IN . Then, using the same
notation as before,

Bb(Rd × R) := {A ∈ B(Rd × R) : Leb(A) <∞}.

Further, for an A = A0 ∈ Bb(Rd × R), we define At := A+ (0, t). Then

Yt =

∫
Rd×R

1A(ξ, s− t)L(dξ, ds) = L(At), (28)

defines the trawl process associated with the Lévy basis L and the trawl A.

The assumption Leb(A) < ∞ in the definition above ensures the existence of the integral in (28)
as defined by Rajput & Rosinski (1989).

Remark 6. If A ⊂ (−∞, 0]× Rd, then the trawl process belongs to the class of ambit processes.

The intuition and also the name of the trawl process comes from the idea that we have a certain
tempo-spatial set – the trawl – which is relevant for our object of interest. I.e. the object of interest at
time t is modelled as the Lévy basis evaluated over the trawl At. As time t progresses, we pull along
the trawl (like a fishing net) and hence obtain a stochastic process (in time t). For the time being, we
have in mind that the shape of the trawl does not change as time progresses, i.e. that the process is
stationary. This assumption can be relaxed as we will discuss in Section 5.

Example 7. Let d = 1 and suppose that the trawl is given by At = {(x, s) : s ≤ t, 0 ≤ x ≤
exp(−0.7(t − s))}. Figure 1 illustrates the basic framework for such a process. It depicts the trawl
at different times t ∈ {2, 5}. The value of the process at time t is then determined by evaluating the
corresponding Lévy basis over the trawl At.

4.2 Cumulants and correlation structure

From Barndorff-Nielsen (2011) we know that the trawl process defined above is a strictly stationary
stochastic process, and we can easily derive the cumulant transform of a trawl process, which is given
by

C(ζ ‡ Yt) := E(exp(iζYt)) = Leb(A)C(ζ ‡ L′) := Leb(A)E(exp(iζL′)). (29)

From the equation (29), we see immediately that the law of the trawl process is infinitely divisible
since the corresponding Lévy seed has infinitely divisible law.

Remark 7. To any infinitely divisible law π there exists a stationary trawl process having π as its
one-dimensional marginal law. This follows from formula (29), cf. Barndorff-Nielsen (2011)
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t

5

e−0.7(5−s)

2

e−0.7(2−s)

0

1

A5A2

1

Figure 1: Example of a relevant choice of the trawl: At = {(x, s) : s ≤ t, 0 ≤ x ≤ exp(−0.7(t−s))}.
The shape of the trawl does not change as time t progresses and, hence, we obtain a stationary process.
The value of the process is obtained by evaluating L(At) for each t.

We can now easily derive the cumulants of the trawl process which are given by κi(Yt) =
Leb(A)κi(L

′), for i ∈ IN , provided they exist. In particular, the mean and variance are given by

E(Yt) = Leb(A) E(L′), V ar(Yt) = Leb(A) V ar(L′).

Marginally, we see that the precise shape of the trawl does not have any impact on the distribution
of the process. The quantity which matters here is the size, i.e. the Lebesgue measure, of the trawl. So
two different specifications of the ambit set, which have the same size, are not identified based on the
marginal distribution only.

However, we will see that the shape of the trawl determines the autocorrelation function. More
precisely, the autocorrelation structure is given as follows. Let h > 0, then

ρ(h) := Cov(Yt, Yt+h) = Leb(A ∩Ah)V ar(L′). (30)

For the autocorrelation, we get

r(h) = Cor(Yt, Yt+h) =
Leb(A ∩Ah)

Leb(A)
.

4.3 Lévy-Itô decomposition for trawl processes

In the following we study some of the sample path properties of trawl processes. First of all, we study
a representation result for trawl process Y , where we split the process into a drift part, a Gaussian
part and a jump part in a similar fashion as in the classical Lévy-Itô decomposition. Recall that L
is a homogeneous Lévy basis on Rd × R. In the following, s denotes the one dimensional temporal
variable and ξ denotes the d-dimensional spatial variable.

From the Lévy-Itô decomposition, see (5), we get the following representation result for the trawl
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process Yt = L(At) defined in (28), i.e.

L(At) = aLeb(A) +W (At) +

∫
{|x|>1}

xN(dx,At) +

∫
{|x|≤1}

x(N − n)(dx,At)

= aLeb(A) +W (At) +

∫
At

∫
{|x|>1}

xN(dx, dξ, ds) +

∫
At

∫
{|x|≤1}

x(N − n)(dx, dξ, ds),

(31)

where W (At) ∼ N(0, bLeb(A)) and n(dx, dξ, ds) = ν(dx)dξds and Leb(At) = Leb(A).

Example 8. Suppose the trawl process Yt is defined based on a Lévy basis with characteristic quadru-
plet (0, b, 0,Leb). Then it can be written as

Yt = W (At) ∼ N(0, bLeb(A)).

Assume further that d = 1 and that the trawl is given by At = {(x, s) : s ≤ t, 0 ≤ x ≤ exp(−λ(t−
s))}, for a positive constant λ > 0. Then Leb(At) = 1

λ , hence Yt = W (At) ∼ N(0, bλ) and the
autocorrelation function is given by r(h) = exp(−λh), for h ≥ 0.

4.4 Generalised cumulant functional

We have already studied the cumulant function of Lévy bases and ambit fields. Here, we will in
addition focus on the more general cumulant functional of a trawl process, which sheds some light on
important properties of trawl processes.

Definition 15. Let Y = (Yt) denote a stochastic process and let µ denote any non-random measure
such that

µ(Y ) =

∫
R
Yt µ(dt) <∞,

where the integral should exist a.s.. The generalised cumulant functional of Y w.r.t. µ is defined as

C{θ ‡ µ(Y )} = logE (exp (iθµ(Y ))) .

When we compute the cumulant functional for a trawl process, we obtain the following result.

Proposition 5. Let Yt = L(At) denote a trawl process and let µ denote any non-random measure
such that µ(Y ) =

∫
R Yt µ(dt) < ∞, a. s.. Given the trawl A, we will further assume that for all

ξ ∈ Rd,

hA(ξ, s) =

(∫
R

1A(ξ, s− t)µ(dt)

)
<∞,

and that hA(ξ, s) is integrable with respect to the Lévy basis L. Then the cumulant function of µ(Y )
is given by

C{θ ‡ µ(Y )} = iθa

∫
R×Rd

hA(ξ, s)dξds− 1

2
θ2b

∫
R×Rd

h2
A(ξ, s)dξds

+

∫
R×Rd

∫
R

(
exp(iθux)− 1− iθuxI[−1,1](x)

)
ν(dx)χ(du),

(32)

where χ is the measure on R obtained by lifting the Lebesgue measure on Rd×R to R by the mapping
(ξ, s)→ (ξ, hA(s, ξ)).
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Proof. An application of Fubini’s theorem (see e.g. Barndorff-Nielsen & Basse-O’Connor (2011))
yields

µ(Y ) =

∫
R

∫
R×Rd

1A(ξ, s− t)L(dξ, ds)µ(dt) =

∫
R×Rd

(∫
R

1A(ξ, s− t)µ(dt)

)
︸ ︷︷ ︸

=hA(ξ,s)

L(dξ,ds)

=

∫
R×Rd

hA(ξ, s)L(dξ, ds).

From this we find that the cumulant function of µ(Y ), i.e. the generalised cumulant functional of Y
w.r.t. µ, is given by

C{θ ‡ µ(Y )} =

∫
R×Rd

C{θhA(ξ, s) ‡ L′}dξds

= iθa

∫
R×Rd

hA(ξ, s)dξds− 1

2
θ2b

∫
R×Rd

h2
A(ξ, s)dξds

+

∫
R×Rd

∫
R

(
exp(iθhA(ξ, s)x)− 1− iθhA(ξ, s)xI[−1,1](x)

)
ν(dx)dξds.

Note that the latter part, i.e. the jump part of C{θ ‡ µ(Y )}, can be recast as∫
R×Rd

∫
R

(
exp(iθhA(ξ, s)x)− 1− iθhA(ξ, s)xI[−1,1](x)

)
ν(dx)dξds

=

∫
R×Rd

∫
R

(
exp(iθux)− 1− iθuxI[−1,1](x)

)
ν(dx)χ(du),

where χ is the measure defined as above. Then the result follows.

In the following, we mention three relevant choices of the measure µ. Let δt denote the Dirac
measure at t. We start with a very simple case:

Example 9. Suppose µ(t) = δ(dt) for a fixed t. Hence

hA(ξ, s) =

(∫
R

1A(ξ, s− t)µ(dt)

)
= 1A(ξ, s− t) <∞,

and clearly, hA(ξ, s) is integrable with respect to L. Then

C{θ ‡ µ(Y )} = C{θ ‡ Yt} = Leb(A)C{θ ‡ L′}.

This is exactly the result we derived in Section 4.2 above. More interesting is the case when µ
is given by a linear combination of different Dirac measures, since this allows us to derive the joint
finite dimensional laws of the trawl process and not just the distribution for fixed t.

Example 10. Suppose µ (dt) = θ1δt1 (dt) + · · · + θnδtn (dt) for constants θ1, . . . , θn ∈ R and
times t1 < · · · < tn for n ∈ IN . As in the example before, the integrability conditions which were
needed to derive (32) are satisfied and, hence, (32) gives us the cumulant function of the joint law of
Yt1 , . . . , Ytn .

Finally, another case of interest is the integrated trawl process, which we study in the next example.

Example 11. Let µ (dt) = 1I (t) dt for an interval I of R. Then (32) determines the law of
∫
I Ysds.

Remark 8. The last example is particularly relevant if the trawl process is for instance used for
modelling stochastic volatility. Note that such an application is feasible since the trawl process is
stationary and we can formulate assumptions which would ensure the positivity of the process as well
(e.g. if we work with a Lévy subordinator as the corresponding Lévy seed). In that context, integrated
volatility is a quantity of key interest.
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4.5 The increment process

Finally, we focus on the increments of a trawl process. Note that whatever the type of trawl, we have
the following representation for the increments of the process for s < t,

Yt − Ys = L (At\As)− L (As\At) , almost surely. (33)

Due to the independence of L (At\As) and −L (As\At), we get the following representation for the
cumulant function of the returns

C(ζ ‡ Yt − Ys) = C(ζ ‡ L (At\As)) + C(−ζ ‡ L (As\At))
= Leb(At\As)C(ζ ‡ L′) + Leb(As\At)C(−ζ ‡ L′)
= Leb(At−s\A0)C(ζ ‡ L′) + Leb(A0\At−s)C(−ζ ‡ L′).

(34)

4.6 Applications of trawl processes

Trawl processes constitute a class of stationary infinitely divisible stochastic processes and can be
used in various applications. E.g. we already pointed out above that they could be used for modelling
stochastic volatility or intermittency. In a recent article by Barndorff-Nielsen, Lunde, Shephard & Ve-
raart (2012), integer-valued trawl processes have been used to model count data or integer-valued data
which are serially dependent. Speaking generally, trawl processes can be viewed as a flexible class
of stochastic processes which can be used to model stationary time series data, where the marginal
distribution and the autocorrelation structure can be modelled independently from each other.

5 Tempo-spatial stochastic volatility/intermittency

Stochastic volatility/intermittency plays a key role in various applications including turbulence and
finance. While a variety of purely temporal stochastic volatility/intermittency models can be found in
the literature, suitable tempo-spatial stochastic volatility/intermittency models still need to be devel-
oped.

Volatility modulation within the framework of an ambit field can be achieved by four comple-
mentary methods: By introducing a stochastic integrand (the term σt(x) in the definition of an ambit
field), or by (extended) subordination or by probability mixing or Lévy mixing. We will discuss all
four methods in the following.

5.1 Volatility modulation via a stochastic integrand

Stochastic volatility in form of a stochastic integrand has already been included in the initial definition
of an ambit field, see (16). The interesting aspect, which we have not addressed yet, is how a model
for the stochastic volatility field σt(x) can be specified in practice. We will discuss several relevant
choices in more detail in the following.

There are essentially two approaches which can be used for constructing a relevant stochastic
volatility field: Either one specifies the stochastic volatility field directly as a random field (e.g. as
another ambit field), or one starts from a purely temporal (or spatial) stochastic volatility process and
then generalises the stochastic process to a random field in a suitable way. In the following, we will
present examples of both types of construction.

5.1.1 Kernel-smoothing of a Lévy basis

First, we focus on the modelling approach where we directly specify a random field for the volatility
field. A natural starting point for modelling the volatility is given by kernel-smoothing of a homo-
geneous Lévy basis – possibly combined with a (nonlinear) transformation to ensure positivity. For

22



5 TEMPO-SPATIAL STOCHASTIC VOLATILITY/INTERMITTENCY

instance, let

σ2
t (x) = V

(∫
Rt×Rd

j(x, ξ, t− s)Lσ(dξ, ds)

)
, (35)

where Lσ is a homogeneous Lévy basis independent of L, j : Rd+1+d 7→ R+ is an integrable kernel
function satisfying j(x, u, ξ) = 0 for u < 0 and V : R→ R+ is a continuous, non-negative function.
Note that σ2 defined by (35) is stationary in the temporal dimension. As soon as j(x, ξ, t − s) =
j∗(x − ξ, t − s) for some function j∗ in (35), then the stochastic volatility is both stationary in time
and homogeneous in space.

Clearly, the kernel function j determines the tempo-spatial autocorrelation structure of the volatil-
ity field.

Let us discuss some examples next.

Example 12 (Tempo-spatial trawl processes). Suppose the kernel function is given by

j(x, ξ, t− s) = IAσ(ξ − x, s− t),

where Aσ ⊂ Rd × (−∞, 0]. Further, let Aσt (x) = Aσ + (x, t); hence Aσt (x) is a homogeneous and
nonanticipative ambit set. Then

σ2
t (x) = V

(∫
Rt×Rd

IσA(ξ − x, s− t)Lσ(dξ, ds)

)
= V

(∫
Aσt (x)

Lσ(dξ, ds)

)
= V (Lσ(Aσt (x))) .

Note that the random field Lσ(Aσt (x)) can be regarded as a tempo-spatial trawl process.

Example 13. Let

j(x, ξ, t− s) = j∗(x, ξ, t− s)IAσ(x)(ξ, s− t),

for an integrable kernel function j∗ and where Aσ(x) ⊂ Rd × (−∞, 0]. Further, let Aσt (x) =
Aσ(x) + (0, t). Then

σ2
t (x) = V

(∫
Aσt (x)

j(ξ,x, t− s)Lσ(dξ, ds)

)
, (36)

which is a transformation of an ambit field (without stochastic volatility).

Let us look at some more concrete examples for the stochastic volatility field.

Example 14. A rather simple specification is given by choosing Lσ to be a standard normal Lévy
basis and V (x) = x2. Then σ2

s(ξ) would be positive and pointwise χ2-distributed with one degree of
freedom.

Example 15. One could also work with a general Lévy basis, in particular Gaussian, and V given by
the exponential function, see e.g. Barndorff-Nielsen & Schmiegel (2004) and Schmiegel et al. (2005).

Example 16. A non-Gaussian example would be to choose Lσ as an inverse Gaussian Lévy basis and
V to be the identity function.

Example 17. We have already mentioned that the kernel function j determines the autocorrelation
structure of the volatility field. E.g. in the absence of spatial correlation one could start off with the
choice j(x, t−s, ξ) = exp(−λ(t−s)) for λ > 0 mimicking the Ornstein-Uhlenbeck-based stochastic
volatility models, see e.g. Barndorff-Nielsen & Schmiegel (2004).
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5.1.2 Ornstein-Uhlenbeck volatility fields

Next, we show how to construct a stochastic volatility field by extending a stochastic process by a
spatial dimension. Note that our objective is to construct a stochastic volatility field which is stationary
(at least in the temporal direction). Clearly, there are many possibilities on how this can be done and
we focus on a particularly relevant one in the following, namely the Ornstein-Uhlenbeck-type volatility
field (OUTVF). The choice of using an OU process as the stationary base component is motivated by
the fact that non-Gaussian OU-based stochastic volatility models, as e.g. studied in Barndorff-Nielsen
& Shephard (2001), are analytically tractable and tend to perform well in practice, at least in the
purely temporal case. In the following, we will restrict our attention to the case d = 1, i.e. that the
spatial dimension is one-dimensional.

Suppose now that Ỹ is a positive OU type process with rate parameter λ > 0 and generated by a
Lévy subordinator Y , i.e.

Ỹt =

∫ t

−∞
e−λ(t−s)dYs,

We call a stochastic volatility field σ2
t (x) on R × R an Ornstein-Uhlenbeck-type volatility field

(OUTVF), if it is defined as follows

τt (x) = σ2
t (x) = e−µxỸt +

∫ x

0
e−µ(x−ξ)dZξ|t, (37)

where µ > 0 is the spatial rate parameter and where Z =
{
Z·|t
}
t∈R+

is a family of Lévy processes,
which we define more precisely in the next but one paragraph.

Note that in the above construction, we start from an OU process in time. In particular, τt(0) is
an OU process. The spatial structure is then introduced by two components: First, we we add an
exponential weight e−µx in the spatial direction, which reaches its maximum for x = 0 and decays
the further away we get from the purely temporal case. Second, an integral is added which resembles
an OU-type process in the spatial variable x. However, note here that the integration starts from 0
rather than from −∞, and hence the resulting component is not stationary in the spatial variable x.
(This could be changed if required in a particular application.)

Let us now focus in more detail on how to define the family of Lévy processes Z . Suppose
X̃ =

{
X̃t

}
t∈R

is a stationary, positive and infinitely divisible process on R. Next we define Z|· ={
Zx|·

}
x∈R+

as the so-called Lévy supra-process generated by X̃ , that is
{
Zx|·

}
x∈R+

is a family of
stationary processes such that Z|· has independent increments, i.e. for any 0 < x1 < x2 < · · · < xn
the processes Zx1|·, Zx2|·−Zx1|·, . . . , Zxn|·−Zxn−1|· are mutually independent, and such that for each
x the cumulant functional of Zx|· equals x times the cumulant functional of X̃ , i.e.

C{m ‡ Zx|·} = xC{m ‡ X̃},
where

C{m ‡ X̃} = log E
{
eim(X̃)

}
,

with m
(
X̃
)

=
∫
X̃sm (ds), m denoting an ‘arbitrary’ signed measure on R. Then at any t ∈ R the

values Zx|t of Z·|· at time t as x runs through R+ constitute a Lévy process that we denote by Z·|t.
This is the Lévy process occurring in the integral in (37).

Note that τ is stationary in t and that τt (x)→ Ỹt as x→ 0.

Example 18. Now suppose, for simplicity, that X̃ is an OU process with rate parameter κ and gen-
erated by a Lévy process X . Then

Cov{τt (x) , τt′
(
x′
)
} =

1

2

(
Var{Y1}λ−1e−λ(|t−t′|)−µ(x+x′) + Var{X̃0}µ−1e−κ|t−t

′|−µ|x−x′|

−Var{X̃0}µ−1e−κ|t−t
′|−µ(x+x′)

)
.
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If, furthermore, Var{Y1} = Var{X̃0} and κ = λ = µ then for fixed x and x′ the autocorrelation
function of τ is

Cor{τt (x) , τt′
(
x′
)
} = e−κ|t−t

′|e−κ|x−x
′|.

This type of construction can of course be generalised in a variety of ways, including dependence
between X and Y and also superposition of OU processes.

Note that the process τt(x) is in general not predictable, which is disadvantageous given that we
want to construct Walsh-type stochastic integrals. However, if we choose X̃ to be of OU type, then
we obtain a predictable stochastic volatility process.

5.2 Extended subordination and meta-times

An alternative way of volatility modulation is by means of (extended) subordination. Extended sub-
ordination and meta-times are important concepts in the ambit framework, which have recently been
introduced by Barndorff-Nielsen (2010) and Barndorff-Nielsen & Pedersen (2012), and we will re-
view their main results in the following. Note that extended subordination generalises the classical
concept of subordination of Lévy processes to subordination of Lévy bases. This in turn will be based
on a concept of meta-times.

5.2.1 Meta-times

This section reviews the concept of meta-times, which we will link to the idea of extended subordina-
tion in the following section.

Definition 16. Let S be a Borel set in Rk. A meta-time T on S is a mapping from Bb(S) into Bb(S)
such that

1. T (A) and T (B) are disjoint whenever A,B ∈ Bb(S) are disjoint.

2. T
(
∪∞j=1Aj

)
= ∪∞j=1T (Aj) whenever A1, A2, · · · ∈ Bb(S) are disjoint and ∪∞j=1Aj ∈ Bb(S).

A slightly more general definition is the following one.

Definition 17. Let S be a Borel set in Rk. A full meta-time T on S is a mapping from B(S) into B(S)
such that

1. T (A) and T (B) are disjoint whenever A,B ∈ B(S) are disjoint.

2. T
(
∪∞j=1Aj

)
= ∪∞j=1T (Aj) whenever A1, A2, · · · ∈ B(S) are disjoint.

Suppose µ is a measure on (S,B(S)) and let T be a full meta-time on S. Define µ (·fT) as the
mapping from B(S) into R given by µ (AfT) = µ (T (A)) for any A ∈ B(S). Then µ (·fT) is
a measure on (S,B(S)). We speak of µ (·fT) as the subordination of µ by T. Similarly, if T is a
meta-time on S we speak of µ (AfT) = µ (T (A)) for A ∈ Bb(S) as the subordination of µ by T.

Let us now recall an important result, which says that any measure, which is finite on compacts,
can be represented as the image measure of the Lebesgue measure of a meta-time.

Lemma 2. Barndorff-Nielsen & Pedersen (2012, Lemma 3.1) Let T be a measure on B(S) satisfying
T (A) <∞ for all A ∈ Bb(S) Then there exists a meta-time T such that, for all A ∈ Bb(S), we have

T (A) = Leb (T (A)) .

We speak of T as a meta-time associated to T .
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Remark 9. T can be chosen so that T (A) = {T (x) : x ∈ A} where T is the inverse of a measurable
mapping U : S → S determined from T. Here integration under subordination satisfies∫

S
f (s)µ (dsfT) =

∫
S
f (s)µ (T (ds)) =

∫
S
f (U (u))µ (du) .

Suppose S is open and that T is a measure on S which is absolutely continuous with density τ . If
we can find a mapping T from S to S sending Borel sets into Borel sets and such that the Jacobian of
T exists and satisfies

|T/x| = τ (x) ,

then T given by T (A) = {T (x) : x ∈ A}, is a natural choice of meta-time induced by T . In fact, by
the change of variable formula,

Leb (T (A)) =

∫
1T(A)(y)dy =

∫
1A (x) |T/x|dx =

∫
A
τ (x) dx = T (A) ,

verifying that T is a meta-time associated to T .

Remark 10. T is not uniquely determined by T and two different meta-times associated to T may
yield different subordinations of one and the same measure µ.

5.2.2 Extended subordination of Levy bases

Let us now study the concept of subordination in the case where we deal with a Lévy basis. Let T be
a full random measure on S. Then, by Lemma 2, there exists a.s. a random meta-time T determined
by T and with the property that Leb (T (A)) = T (A), for all A ∈ Bb(S). There are two cases of
particular interest to us. First, T is induced by a Lévy basis L on S that is non-negative, dispersive
and of finite variation. Second, T is induced by an absolutely continuous random measure T on S
with a non-negative density τ satisfying T (A) =

∫
A τ (z) dz <∞ for all A ∈ Bb(S).

Definition 18. Let L be a Lévy basis on S and let T , independent of L, be a full random measure on
S. The extended subordination of L by T is the random measure L(·f T ) defined by

L(Af T ) = L (T (A))

for all A ∈ Bb (S) and where T is a meta-time induced by T (in which case Leb (T (A)) = T (A)).

Note that the Lévy basisLmay be n-dimensional. We shall occasionally writeLfT forL (·f T ),
which is a random measure on (S,Bb(S)).

In the case that L is a homogeneous Lévy basis and since T is assumed to be independent of L,
L(·fT ) is a (in general not homogeneous) Lévy basis, whose conditional cumulant function satisfies

C{ζ ‡ L(Af T )|T} = T (A)C{ζ ‡ L′} (38)

for all A ∈ Bb(S) and where L′ is the Lévy seed of L. On a distributional level one may, without
attention to the full probabilistic definition of L(· f T ) presented above, carry out many calculations
purely from using the identity established in (38).

Remarks

The two key formulae L(·f T ) = L (T (·)) and Leb (T (A)) = T (A) show that the concepts of ex-
tended subordination and meta-time together generalise the classical subordination of Lévy processes.
Provided that L is homogeneous we have that

C{ζ ‡ L(Af T )|T} = Leb (T (A)) C{ζ ‡ L′},
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and hence
C{ζ ‡ L(Af T )} = log E

{
eT (A)C{ζ‡L′}

}
.

Hence we can deduce the following results.

• The values of the subordination L(· f T ) of L are infinitely divisible provided the values of T
are infinitely divisible and L is homogeneous.

• If L is homogeneous and if T is a homogeneous Lévy basis then L(· f T ) is a homogeneous
Lévy basis.

• In general, T is not uniquely determined by T . Nevertheless, provided the Lévy basis L is
homogeneous the law of L(·f T ) does not depend on the choice of meta-time T.

Lévy-Itô type representation of L (·f ·)

We have already reviewed the Lévy-Itô representation for a dispersive Lévy basis L, see (5). It follows
directly that the subordination ofL by the random measure T with associated meta-time T has a Lévy-
Itô type representation

L (Af T ) = a (T (A)) +
√
b(T (A))W (T (A))

+

∫
{|y|>1}

yN (dy;T (A)) +

∫
{|y|≤1}

y (N − ν) (dy;T (A)) .

Lévy measure of Lf T

Suppose for simplicity that Lf T is non-negative. According to Barndorff-Nielsen (2010), the Lévy
measure ν̃ of Lf T is related to the Lévy measure ν of T by

ν̃ (dx; s) =

∫
R
P
(
L′y(s) ∈ dx

)
ν (dy; s) .

5.2.3 Extended subordination and volatility

In the context of ambit stochastics one considers volatility fields σ in space-time, typically specified
by the squared field τt (x) = σ2

t (x). So far, we have used a stochastic volatility random field σ in the
integrand of the ambit field to introduce volatility modulation.

A complementary method consists of introducing stochastic volatility by extended subordination.
The volatility is incorporated in the modelling through a meta-time associated to the measure T on S
and given by

T (A) =

∫
A
τt (x) dxdt

A natural choice of meta-time is T (A) = {T (x, t) : (x, t) ∈ A}, where T is the mapping given by

T (x, t) =
(
x, τ+

s (x)
)

and where

τ+
t (x) =

∫ t

0
τs (x) ds.

The above construction of a meta-time in a tempo-spatial model is very general. One can construct
a variety of models for the random field τt(x), which lead to new model specifications. Essentially,
this leads us back to the problem we tackled in the previous Subsection, where we discussed how such
fields can be modelled. For instance, one could model τt(x) by an Ornstein-Uhlenbeck type volatility
field or any other model discussed in Subsection 5.1. Clearly, the concrete choice of the model needs
to be tailored to the particular application one has in mind.
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5.3 Probability mixing and Lévy mixing

Volatility modulation can also be obtained through probability mixing as well as Lévy mixing.
The main idea behind the concept of probability or distributional mixing is to construct new dis-

tributions by randomising a parameter from a given parametric distribution.

Example 19. Consider our very first base model (1). Now suppose that the corresponding Lévy basis
is homogeneous and Gaussian, i.e. the corresponding Lévy seed is given by L′ ∼ N(µ+βσ2, σ2) with
µ, β ∈ R and σ2 > 0. Now we use probability mixing and suppose that in fact σ2 is random. Hence,
the conditional law of the Lévy seed is given by L′|σ ∼ N(µ+ βσ2, σ2). Due to the scaling property
of the Gaussian distribution, such a model can be represented as (16) and, hence, in this particular
case probability mixing and stochastic volatility via a stationary stochastic integrand essentially have
the same effect. Suppose that the conditional variance σ2 has a generalised inverse Gaussian (GIG)
distribution rather than being just a constant, then L′ follows in fact a generalised hyperbolic (GH)
distribution. Such a construction falls into the class of normal variance-mean mixtures.

In this context it is important to note that probability/distributional mixing does not generally lead
to infinitely divisible distributions, see e.g. Steutel & van Harn (2004, Chapter VI). Hence Barndorff-
Nielsen, Perez-Abreu & Thorbjørnsen (2012) propose to work with Lévy mixing instead of probabil-
ity/distributional mixing. Lévy mixing is a method which (under mild conditions) leads to classes of
infinitely divisible distributions again. Let us review the main idea behind that concept.

Let L denote a factorisable Lévy basis on Rk with CQ (a, b, ν(dx), c). Suppose that the Lévy
measure ν(dx) depends on a possibly multivariate parameter θ ∈ Θ, say, where Θ denotes the pa-
rameter space. In that case, we write ν(dx;θ). Then, the generalised Lévy measure of L is given by
ν(dx;θ)c(dz). Now let γ denote a measure on Θ and define

ñ(dx, dz) =

∫
Θ
ν(dx;θ)γ(dθ)c(dz),

where we assume that ∫
R

(1 ∧ x2)ñ(dx, dz) <∞. (39)

Then there exists a Lévy basis L̃ which has ñ as its generalised Lévy measure. We call the Lévy basis
L̃ the Lévy basis obtained by Lévy-mixing L with the measure γ.

Let us study a concrete example of Lévy mixing in the following.

Example 20. Suppose L is a homogeneous Lévy basis with CQ given by (0, 0, ν(dx),Leb) with
ν(dx) = θδ1(dx) for θ > 0. I.e. the corresponding Lévy seed is given by L′ ∼ Poi(θ). Now we
do a Lévy-mixing of the intensity parameter θ. Let

ñ(dx, dz) =

∫
Θ
θγ(dθ)δ1(dx)dz,

for a measure γ satisfying condition (39). Let L̃ be the Lévy basis with CQ (0, 0,
∫

Θ θγ(dv)δ1(dx),Leb).
In that case, the base model (1) would be transferred into a model of the form∫

Θ

∫
At(x)

h(x, t; ξ, s)L̃(dξ, ds, dv).

Example 21. Let us consider the example of a (sup)OU process, see Barndorff-Nielsen (2000),
Barndorff-Nielsen & Stelzer (2011) and Barndorff-Nielsen, Perez-Abreu & Thorbjørnsen (2012). Let
L denote a subordinator with Lévy measure νL (and without drift) and consider an OU process

Yt =

∫ t

−∞
e−θ(t−s)dL(s), θ > 0.
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A straightforward computation leads to the following expression for its cumulant function (for ζ ∈ R):

C{ζ ‡ Yt} =

∫ ∞
0

(
eiζx − 1

)
ν(dx; θ), where ν(dx, θ) =

∫ ∞
0

νL(eθudx)du

is a mixture of νL with the Lebesgue measure. A Lévy mixing can be carried out with respect to the
parameter θ, i.e.

ν̃(dx) =

∫ ∞
0

ν(dx, θ)γ(dθ),

where γ is a measure on [0,∞) satisfying
∫∞

0 xν̃(dx) < ∞. Then ν̃ is a Lévy measure again. Now,
let L̃ be the Lévy basis with extended Lévy measure

νL(dx)duγ(dθ),

and define the supOU process Ỹt w.r.t. L̃ by

Ỹt =

∫ ∞
0

∫ t

−∞
e−λ(t−s)L̃(ds, dλ).

Then the cumulant function of Ỹt is given by

C{ζ ‡ Ỹt} =

∫ ∞
0

∫ t

−∞
C{ζe−θ(t−s) ‡ L1}dsγ(dθ) =

∫ ∞
0

∫ ∞
0

(
eiζe

−θu − 1
)
νL(dx)duγ(dθ)

=

∫ ∞
0

(
eiζx − 1

)
ν̃(dx).

Hence, we have seen that a supOU process can be obtained from an OU process through Lévy-mixing.

5.4 Outlook on volatility estimation

Once a model is formulated and data are available the question of assessment of volatility arises and
while we do not discuss this in any detail, tools for this are available for some special classes of ambit
processes, see Barndorff-Nielsen et al. (2009), Barndorff-Nielsen, Corcuera & Podolskij (2011, 2012)
and also Barndorff-Nielsen & Graversen (2011). Extending these results to general ambit fields and
processes is an interesting direction for future research.

6 Conclusion and outlook

In this paper, we have given an overview of some of the main findings in ambit stochastics up to
date, including a suitable stochastic integration theory, and have established new results on general
properties of ambit field. The new results include sufficient conditions which ensure the smoothness
of ambit fields. Also, we have formulated sufficient conditions which guarantee that an ambit field is
a semimartingale in the temporal domain. Moreover, the concept of tempo-spatial stochastic volatil-
ity/intermittency within ambit fields has been further developed. Here our focus has been on four
methods for volatility modulation: Stochastic scaling, stochastic time change and extended subordi-
nation of random measures, and probability and Lévy mixing of the volatility/intensity parameter.

Future research will focus on applications of the general classes of models developed in this paper
in various fields, including empirical research on turbulence modelling as well as modelling e.g. the
term structure of interest rates in finance by ambit fields. In this context, it will be important to
establish a suitable estimation theory for general ambit fields as well as inference techniques.
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XIV — 1984, Springer.

33


	1 Introduction
	2 Background
	2.1 Background on Lévy bases
	2.1.1 Random measures
	2.1.2 Lévy bases
	2.1.3 Lévy-Khintchine formula and Lévy-Itô decomposition 
	2.1.4 Examples of Lévy bases

	2.2 Integration concepts with respect to a Lévy basis 
	2.2.1 The integration concept by RajRos89
	2.2.2 Integration w.r.t. martingale measures introduced by W
	2.2.3 Relation between the two integration concepts


	3 General aspects of the theory of ambit fields and processes
	3.1 The general framework
	3.2 Integration for general ambit fields
	3.3 Cumulant function for stochastic integrals w.r.t. a Lévy basis
	3.4 Second order structure of ambit fields
	3.5 Smoothness conditions
	3.5.1 Some related results in the literature
	3.5.2 Sufficient condition on the covariance function

	3.6 Semimartingale conditions
	3.7 The purely-temporal case: Volatility modulated Volterra processes

	4 Illustrative example: Trawl processes
	4.1 Definition and general properties
	4.2 Cumulants and correlation structure
	4.3 Lévy-Itô decomposition for trawl processes
	4.4 Generalised cumulant functional
	4.5 The increment process
	4.6 Applications of trawl processes

	5 Tempo-spatial stochastic volatility/intermittency
	5.1 Volatility modulation via a stochastic integrand
	5.1.1 Kernel-smoothing of a Lévy basis
	5.1.2 Ornstein-Uhlenbeck volatility fields

	5.2 Extended subordination and meta-times
	5.2.1 Meta-times
	5.2.2 Extended subordination of Levy bases
	5.2.3 Extended subordination and volatility

	5.3 Probability mixing and Lévy mixing
	5.4 Outlook on volatility estimation

	6 Conclusion and outlook

