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We present the pan-genome tree as a tool for visualizing similarities and differences between 
closely related microbial genomes within a species or genus. Distance between genomes is 
computed as a weighted relative Manhattan distance based on gene family presence/absence. 
The weights can be chosen with emphasis on groups of gene families conserved to various 
degrees inside the pan-genome. The software is available for free as an R-package. 

Introduction 
Currently, there are about a thousand sequenced 
prokaryotic genomes in GenBank, and several 
thousand more are in various stages of comple-
tion. For many bacterial species, sequenced ge-
nomes from several different strains are available, 
opening the possibility to study pan-genomes or 
supra-genomes. The pan-genome of a species or 
genus, as opposed to the genome of a single strain, 
is defined as the union of all gene families found at 
least once in a genome within that species or ge-
nus [1,2]. Studying the diversity within pan-
genomes is of interest for the characterization of 
the species or genus. Low pan-genome diversity 
could be reflective of a stable environment, while 
bacterial species with substantial abilities to adapt 
to various environments would be expected to 
have high pan-genome diversity. Visualizing the 
relations between genomes within pan-genomes 
could also be helpful in establishing a picture of 
the degree of horizontal gene transfer (HGT), as 
well as aid in the understanding of phenotypic 
differences. 
Diversity between genomes is often displayed in 
the form of trees. Over the past decade several 
procedures have been proposed for constructing 
trees from more or less whole-genome data [3,4]. 
Many strategies have been employed, and two 
major approaches are sequence-based and gene-
content based trees. Sequence based trees include 

super-trees and phylogenomic trees, and their 
construction is based more or less directly on se-
quence alignments and evolutionary distances 
known from classical phylogenetics [5-7]. The 
gene content trees use as data the pres-
ence/absence of genes in the various genomes, 
and compute distance between genomes from 
such data [8,9]. The pan-genome tree described 
here would naturally be categorized amongst the 
gene-content trees. 
It should be noted that the vast majority of ge-
nome-trees are constructed with the ultimate goal 
of reconstructing evolution. As for the gene-
content trees, this has the effect that a separation 
between orthologs and paralogs is crucial, and 
HGT is considered to be noise that ideally should 
have no impact on calculation of distances be-
tween genomes (in the case of distance based 
trees). There are, however, other reasons for 
building trees. In applied sciences like medicine or 
agricultural sciences, a functional relation is as 
important as evolutionary distance. Admittedly, a 
good reconstruction of evolution can be very help-
ful to unravel the functional relations, but discard-
ing HGT as noise in order to present a clean view 
of history is clearly a mistake in this context. The 
pan-genome tree we describe here is intended to 
display, in a hierarchical tree-like structure, the 
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functional relationship between a “snapshot” set 
of sequenced genomes. 

Requirements 
The software is implemented in R, which is a  
freely available computing environment, see 
http://www.r-project.org.  A package for microbial 
pan-genomics is under construction, and a pre-
release version is available upon request from the 
corresponding author. The computation of gene 
families mentioned in this paper is based on BLAST, 
which is available at ftp://ftp.ncbi.nih.gov/blast/. 

Procedure 
Gene families 
Sequences are grouped into gene families based 
on sequence similarity. A FASTA formatted file 
with all protein sequences for one genome is 
BLASTed against similar sequences for all ge-
nomes, including itself. Two sequences are in the 
same gene family if there are significant align-
ments between them when either sequence is 
used as query, and when both these alignments 
span at least 50% of the length of the query se-
quence and contain at least 50% identity ([1]). 
The gene family results are represented in a pan-
matrix M, where each row corresponds to a ge-
nome and each column to a gene family. Element 
Mi,j is 1 if gene family j is present in genome i, or 0 
if not. Hence, each row of M is a sequence of bi-
nary digits which we refer to as the pan-genome 
profile of the corresponding genome. When we 
use the term “genes” below we actually mean gene 
families. 

Pan-genome trees 
The genome trees are formed on the basis of dis-
tance between pan-genome profiles. We use a 
relative Manhattan distance, i.e. the distance  
between genome i and k is 
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where n is the total number of gene families, wj is 
some gene family specific weight and W is the sum 
of these weights. As default wj=1 for all j, but some 
genes may be down-weighted, as described below. 
This distance describes the proportion of the pan-
genome in which genome i and k differ. A fre-
quently used distance for phylogenetic gene-
content trees is the Jaccard distance [10]. Consi-

dering genomes A and B, genes are either i) 
present in both, ii) present in A and absent in B, 
iii) absent in A and present in B or iv) absent in 
both. The Jaccard distance is 1 minus the number 
of genes in class i) divided by the sum of genes in 
class ii) and iii). The Manhattan distance we use 
above is the sum of genes in ii) and iii) divided by 
the sum of all genes. A similar, unweighted, dis-
tance was also used in [11] in their construction of 
the pan-genome tree. 
Using this distance measure, trees can be formed 
by hierarchical clustering. We have employed an 
average linkage, corresponding to the Unweighted 
Pair-Group Method with Arithmetic mean (UPG-
MA) algorithm; UPGMA has been previously used 
in the building of phylogenetic trees. 
Bootstrapping is frequently used to illustrate the 
stability of the branching in a tree. We have im-
plemented this by re-sampling gene families, i.e. 
columns of the pan-matrix, and re-clustering these 
data. The bootstrap-value for a split is the percen-
tage of the re-sampled trees having a similar node, 
i.e. with the same two sets of leaves in the 
branches. 

Gene family weights 
The core genes, i.e. the gene families present in all 
genomes, contribute to no difference between 
genomes, and could be discarded, i.e. given weight 
zero. Other gene families may also be down-
weighted. Genes found in only one single genome, 
referred to as ORFans, are often dubious and can 
be the product of over-sensitive gene finders. 
Hence, giving such genes zero weight could im-
prove the robustness of the tree to these types of 
errors. 
It has been observed that genes could be divided 
into classes depending on their degree of conser-
vation within the pan-genome. This is the basis for 
the use of mixture models to predict pan-genome 
size [12,13]. In [14] the bacterial pan-genome was 
divided into three major categories, core, shell and 
cloud, as illustrated in Figure 1. 
The Shell represents the genes found in the major-
ity of the genomes, and the corresponding Cloud 
consists of genes only observed in a minority of 
the genomes. Weights can be designed to emphas-
ize both these types of gene families. Figure 2 illu-
strates these weighting strategies.  The size of the 
cloud and shell can be significantly larger than the 
core genome [13], reflecting the diversity (or lack 
thereof) of various types of bacteria in different 
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ecological niches.  For example, the shell and cloud 
would be expected to be larger for Actinobacteria 
and other organisms that produce secondary me-
tabolites.  Further, the pan-genomes of phyla 
could contain specific pathways which are phy-
lum- or class-specific (e.g. polyketides type I and II 
pathways, aminoglycosides, non-ribosomal pep-
tides, β-lactams, etc), that would be part of phylum 
specific shells.  On the other hand, pathogenic, 
parasitic and commensal species that are not rou-
tinely found in the environment could have small-
er clouds. 

 
Figure 1. The bacterial pan-genome can be divided 
into the core (genes always occurring in any genome 
inside the pan-genome) the shell (genes frequently 
occurring) and cloud (rarely occurring genes). 

Implementation 
Standard settings for BLASTp were used, except 
the E-value cutoff, where we use 10-5. A more lib-
eral cutoff will have very small effects on the final 
results, but will slow down the procedure signifi-
cantly by producing a lot of poorer alignments in 
addition to the best alignments. Since the BLAST-
ing and parsing of BLAST results is the computa-
tional bottleneck of this procedure we have found 
this cutoff appropriate. The remaining computa-
tions and plotting have been implemented in R as 
part of a package for microbial pan-genomics. 

Pan-genome tree versus 16S phylogenetic tree 
Figure 3 show a pan-genome family tree for the 
genus Streptococcus, based on 42 completed ge-
nomes downloaded from NCBI in August 2009. We 
have used this genus as an example, because it 
contains several species with multiple completed 
genomes. All genomes within each species cluster 
together, without exception, and further the reso-
lution is good enough to distinguish smaller dif-
ferences among strains within the species. 
In Figure 4 we have, for comparison to Figure 3, 
included another tree for the same genus, based 
on the more traditional approach of computing 
evolutionary distances from the multiple align-
ment of the 16S ribosomal RNA sequences of each 
genome. Here we typically see extremely small 
distances between many strains, combined with 
some bigger distances, giving a lower resolution. 
Also, S. pyogenes is divided into two very different 
clusters with 7 and 5 genomes in each. The small-
er cluster of S. pyogenes strains all share an almost 
identical annotation of the 16S sequences differing 
in length from all other streptococci. In the pan-
genome tree of Figure 3 this division of S. pyogenes 
strains is not supported. Also the S. agalactiae 
genomes are no longer clustered in the 16S tree, 
and the strain S. pneumoniae R6 is also found se-
parated from all other S. pneumoniae strains. The 
16S tree was constructed using UPGMA in order to 
make it comparable to that in Figure 3. UPGMA is 
in general not accepted as a proper way of re-
constructing phylogenetic trees, but a tree built by 
neighbor-joining verified the separation of strains, 
even if distances between nodes changed (not 
shown).  

Effect of weights 
In Figure 5 we illustrate different choices of 
weights. Here we have used data for a single spe-
cies, Staphylococcus aureus. Annotated proteins 
for all completed genomes of this species were 
downloaded from NCBI. Note that there are some 
differences in clustering - for example, the two 
USA300 strains, which are community-acquired 
methicillin-resistant strains [15] that would be 
expected to be similar, are not as close in the shell, 
but cluster together when more weight is given to 
the “cloudy part” of the pan-genome. Thus, these 
two strains are not very similar when we consider 
the S. aureus typical part of the genomes, but be-
come more alike when we instead focus on the 
rarely occurring, more strain-specific (accessory) 
genes.  

http://standardsingenomics.org/�
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Figure 2. The left panel shows as an example the number of gene families found in 1, 2,…,14 genomes of the 14 
completed genomes of Staphylococcus aureus downloaded from NCBI in July 2009. The right panel illustrates three 
possible weighting schemes. The green bars give weight 1.0 to all gene families except the ORFans, i.e. those gene 
families only present in one genome, who get weight 0.0 (discarded). The blue bars give a gradually higher weight 
to the gene families found in the majority of the genomes, the shell. The red bars illustrate the opposite strategy, 
emphasizing the cloud. All gene families found in the same number of genomes get the same weights. 

 
Figure 3. Pan-genome tree for the genus Streptococcus. The red numbers 
are bootstrap values (percentages). 
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Discussion 
We present here the pan-genome tree as a stan-
dard operating procedure in the pan-genomic 
toolbox. It is a whole-genome tree not unlike many 
other gene-content trees, but with the emphasis 
on describing functional differences between 
closely related genomes, within a species or genus. 
Examples of successful use of variants of such 
trees are [11] and [16]. 
The distance between genomes is the relative 
Manhattan distance between pan-genome profiles. 
Two genomes are similar not only by sharing the 
same genes as defined by the Jaccard distance, but 
also by lacking the same genes. The latter is mea-
ningful inside a pan-genome where all the genes 
could in principle be present. When looking for 
differences in phenotype those parts of the “ma-

chinery” which are absent are just as important as 
those that are present. In [17] an estimate of 
shared absence was introduced by including a 
third reference genome when comparing two ge-
nomes of interest. In our case the pan-genome 
plays the role as the reference genome. 
The weights illustrated in Figure 2 are only a se-
lection out of a long range of possible choices. Dis-
carding ORFans, and emphasizing the shell or 
cloud, are, however, strategies with a meaning. 
Weighted distances in gene-content trees have 
been used before, e.g. [18]. Two of their weighting 
strategies, termed prevalence-weighted and rari-
ty-weighted trees, are in principle similar to what 
we call shell and cloud strategies.  

 

 
Figure 4. A tree for the same genomes as in Figure 3, but computed from distances based 
on multiple alignment of the 16S ribosomal RNA sequence from each species. The tree 
is constructed by UPGMA to make it comparable to that in Figure 3. 
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Figure 5. The left panel show the pan-genome family tree for the 14 strains of Staphylococcus aureus 
completed as NCBI. Here the weights have been chosen according to the blue bars in Figure 1, i.e. the 
“stabilome” genes have been emphasized. In the right panel, the same data have been used, but weights 
are now chosen to emphasize the “mobilome” genes. In both cases ORFans have been discarded. 

A pan-genome profile of a genome is a vector of 1s 
(present) and 0s (absent) with N elements if the 
pan-genome has N gene families. In [10] the term 
conservation profile was used for a similar vector, 
but with one vector for each gene sequence in 
each genome. Merging these sequence-specific 
conservation profiles into one pan-genome profile 
for the entire genome is in principle what is done 
when gene families are computed and the pan-
matrix constructed. We compute gene families in a 
simple way, using BLAST and a simple cutoff-rule. 
This will have to change in the near future,  
because the alignment of all-against-all is not a 

computationally feasible solution as the number of 
genomes grows. Computing gene families by 
BLASTing against a database like COG [19] has 
been a common strategy and Wolf et al. [8] con-
cluded that gene-content trees based on pres-
ence/absence of such gene families resulted in a 
grouping of genomes based on phenotype. How-
ever, groups of orthologs, like the COGs, are often 
large and diverse and in our experience give too 
few and too large gene families to achieve good 
resolution when clustering closely related ge-
nomes. We are currently working on improve-
ments of this. 
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