Anionic Electrochemical Exfoliation of Few-Layer Graphene Nano-Sheets: An Emphasis on Characterization

Article Preview

Abstract:

Graphene, the most unique member of carbon family has fuelled a huge interest across the globe with its superior mechanical, chemical, optical and electronic properties. It has opened enormous avenues for humankind in terms of different applications. Since its discovery in 2004, people have tried various techniques to extract graphene, such as mechanical exfoliation, chemical exfoliation, epitaxial growth, CVD (chemical vapour deposition) etc. However, the above methods are not optimal for mass production, neither are they simple and cost effective. The present work highlights synthesis of graphene through electrochemical approach and its subsequent characterization. Pyrolytic graphite is subjected to intercalation of two different concentrations of HNO3 electrolyte. XRD, FESEM and TEM were utilised to understand the structure and morphology of the obtained few-layer graphene nanosheets (FLGNs). Scanning probe spectroscopy is a useful technique for understanding the morphological structure of a sample at atomic level. Authors have utilised AFM which shows the thickness of the FLGNs to be in the range of 5-6 nm. STM studies of graphene nanosheets revealed atomic scaled periodicity and atomic flatness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

399-406

Citation:

Online since:

February 2020

Export:

Price:

* - Corresponding Author

[1] K.S. Novoselov, A.K. Geim, S. V Morozov, D. Jiang, Y. Zhang, S. V Dubonos, I. V Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science (80-. ). 306 (2004) 666–669.

DOI: 10.1126/science.1102896

Google Scholar

[2] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183–191.

Google Scholar

[3] F. Hao, D. Fang, Z. Xu, Mechanical and thermal transport properties of graphene with defects, Appl. Phys. Lett. 99 (2011) 041901.

DOI: 10.1063/1.3615290

Google Scholar

[4] N.M.R. Peres, The electronic properties of graphene and its bilayer, Vacuum. 83 (2009) 1248–1252.

DOI: 10.1016/j.vacuum.2009.03.018

Google Scholar

[5] S. V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett. (2008).

DOI: 10.1103/PhysRevLett.100.016602

Google Scholar

[6] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science (80-. ). 321 (2008) 385–388.

DOI: 10.1126/science.1157996

Google Scholar

[7] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8 (2008) 902–907.

DOI: 10.1021/nl0731872

Google Scholar

[8] W. Cai, Y. Zhu, X. Li, R.D. Piner, R.S. Ruoff, Large area few-layer graphene/graphite films as transparent thin conducting electrodes, Appl. Phys. Lett. 95 (2009) 123115.

DOI: 10.1063/1.3220807

Google Scholar

[9] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, <2009 Naon lett v9 p.4359 Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes.pdf>, (2009).

DOI: 10.1021/nl902623y

Google Scholar

[10] S.K. Sahoo, A. Mallik, Synthesis and characterization of conductive few layered graphene nanosheets using an anionic electrochemical intercalation and exfoliation technique, J. Mater. Chem. C. 3 (2015) 10870–10878.

DOI: 10.1039/C5TC01893E

Google Scholar

[11] S.K. Sahoo, S. Ratha, C.S. Rout, A. Mallik, Physicochemical properties and supercapacitor behavior of electrochemically synthesized few layered graphene nanosheets, J. Solid State Electrochem. 20 (2016) 3415–3428.

DOI: 10.1007/s10008-016-3304-6

Google Scholar

[12] S.K. Sahoo, A. Mallik, Simple, fast and cost-effective electrochemical synthesis of few layer graphene nanosheets, Nano. 10 (2015) 1550019.

DOI: 10.1142/S1793292015500198

Google Scholar

[13] C.-H. Chuang, C.-Y. Su, K.-T. Hsu, C.-H. Chen, C.-H. Huang, C.-W. Chu, W.-R. Liu, A green, simple and cost-effective approach to synthesize high quality graphene by electrochemical exfoliation via process optimization, RSC Adv. 5 (2015) 54762–54768.

DOI: 10.1039/C5RA07710A

Google Scholar

[14] V. V. Singh, G. Gupta, A. Batra, A.K. Nigam, M. Boopathi, P.K. Gutch, B.K. Tripathi, A. Srivastava, M. Samuel, G.S. Agarwal, B. Singh, R. Vijayaraghavan, Greener electrochemical synthesis of high quality graphene nanosheets directly from pencil and its SPR sensing application, Adv. Funct. Mater. 22 (2012) 2352–2362.

DOI: 10.1002/adfm.201102525

Google Scholar

[15] G. Prakash, M.A. Capano, M.L. Bolen, D. Zemlyanov, R.G. Reifenberger, AFM study of ridges in few-layer epitaxial graphene grown on the carbon-face of 4H-SiC (0001̄), Carbon N. Y. 48 (2010) 2383–2393.

DOI: 10.1016/j.carbon.2010.02.026

Google Scholar

[16] D. Pandey, R. Reifenberger, R. Piner, Scanning probe microscopy study of exfoliated oxidized graphene sheets, Surf. Sci. 602 (2008) 1607–1613.

DOI: 10.1016/j.susc.2008.02.025

Google Scholar

[17] E. Stolyarova, K.T. Rim, S. Ryu, J. Maultzsch, P. Kim, L.E. Brus, T.F. Heinz, M.S. Hybertsen, G.W. Flynn, High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface, Proc. Natl. Acad. Sci. 104 (2007) 9209–9212.

DOI: 10.1073/pnas.0703337104

Google Scholar

[18] K. Xu, P.G. Cao, J.R. Heath, Scanning Tunneling Microscopy Characterization of the Electrical Properties of Wrinkles in Exfoliated Graphene Monolayers, Nano Lett. 9 (2009) 4446–4451.

DOI: 10.1021/nl902729p

Google Scholar

[19] M.Z. Hossain, M. a. Walsh, M.C. Hersam, Scanning Tunneling Microscopy, Spectroscopy, and Nanolithography of Epitaxial Graphene Chemically Modified with Aryl Moities, J. Am. Chem. Soc. 132 (2010) 15399–15403.

DOI: 10.1021/ja107085n

Google Scholar

[20] G. Li, A. Luican, E.Y. Andrei, Scanning tunneling spectroscopy of graphene on graphite, Phys. Rev. Lett. 102 (2009) 1–4.

DOI: 10.1103/PhysRevLett.102.176804

Google Scholar

[21] M. Ridene, J.C. Girard, L. Travers, C. David, A. Ouerghi, STM/STS investigation of edge structure in epitaxial graphene, Surf. Sci. 606 (2012) 1289–1292.

DOI: 10.1016/j.susc.2012.04.006

Google Scholar

[22] M. Morgenstern, Scanning tunneling microscopy and spectroscopy of graphene on insulating substrates, Phys. Status Solidi Basic Res. 248 (2011) 2423–2434.

DOI: 10.1002/pssb.201147312

Google Scholar

[23] K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B. 54 (1996) 17954–17961.

DOI: 10.1103/PhysRevB.54.17954

Google Scholar

[24] V.M. Pereira, A.H. Castro Neto, Strain Engineering of Graphene's Electronic Structure, Phys. Rev. Lett. 103 (2009) 046801.

DOI: 10.1103/PhysRevLett.103.046801

Google Scholar