The Features of the Lateral Photovoltaic Effect in the Fe3O4/SiO2/n-Si Structure Depending on Silicon Substrate Orientation

Article Preview

Abstract:

We report on the results of a study of the lateral photovoltaic effect in theFe3O4/SiO2/n-Si structure grown on Si(001) and Si(111) substrates. It was found that in theFe3O4/SiO2/Si(001) structure the LPE sensitivity is a half times as much, and the photoresponseparameters are about 3 times less than those in the Fe3O4/SiO2/Si(111) structure. It is supposed thata higher sensitivity and faster photoresponse in the Fe3O4/SiO2/Si(001) structure, compared with theFe3O4/SiO2/Si(111) structure, are caused by a lower density of surface states at the SiO2/Si(001)interface than at the SiO2/Si(111) interface.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 312)

Pages:

98-104

Citation:

Online since:

November 2020

Export:

Price:

* - Corresponding Author

[1] G. Lucovsky, Photoeffects in nonuniformly irradiated p-n junctions. J. Appl. Phys. 31 (1960) 1088-1095.

DOI: 10.1063/1.1735750

Google Scholar

[2] T. Shikama, H. Niu, M. Takai, Lateral photovoltaic effect in the weakly inverted and in the depleted MOS interface layers. Jap. J. Appl. Phys. 33(10) (1984) 1314-1319.

DOI: 10.1143/jjap.23.1314

Google Scholar

[3] C.Yu, H.Wang, Large lateral photovoltaic effect in metal-oxide semiconductor structures. Sensors. 10 (2010) 10155-10180.

DOI: 10.3390/s101110155

Google Scholar

[4] H. Wang, S.Q. Xiao, C.Q. Yu, Y.X. Xia, Q.Y. Jin, Z.H. Wang, Correlation of magnetoresistance and lateral photovoltage in Co3Mn2O/SiO2/Si metal–oxide–semiconductor structure. New J. Phys. 10 (2008) 093006-093020.

DOI: 10.1088/1367-2630/10/9/093006

Google Scholar

[5] L. Chi, P. Zhu, H. Wang, X. Huang, X. Li, A high sensitivity position-sensitive detector based on Au–SiO2–Si structure. J. Opt. 13 (2011) 015601-015605.

DOI: 10.1088/2040-8978/13/1/015601

Google Scholar

[6] S. Liu, X. Xie, H. Wang, Lateral photovoltaic effect and electron transport observed in Cr nano-film. Opt. Express. 22(10) (2014) 11627-11632.

DOI: 10.1364/oe.22.011627

Google Scholar

[7] X. Huang, C. Mei, J. Hu, D. Zheng, Z. Gan, P. Zhou, and H. Wang, Potential superiority of p-type silicon based metal-oxide-semiconductor structures over n-type for lateral photovoltaic effects. IEEE Electron Device Lett. 37 (2016) 1018-1021.

DOI: 10.1109/led.2016.2577700

Google Scholar

[8] S.Q. Xiao, H. Wang, Z.C. Zhao, Y.Z. Gu, Y.X. Xia, Z.H. Wang, The Co-film-thickness dependent lateral photoeffect in Co-SiO2-Si metal-oxide-semiconductor structures. Opt. Express. 16(6) (2008) 3798-3806.

DOI: 10.1364/oe.16.003798

Google Scholar

[9] W. M. Liu, Y. Zhang, G. Ni, Large lateral photovoltaic effects in Co/Alq3 granular films on Si substrates. Opt. Express. 20(6) (2012) 6225-6229.

DOI: 10.1364/oe.20.006225

Google Scholar

[10] Y. Zhang, Y. Zhang, T. Yao, C. Hu, Y. Sui, X. Wang, Ultrahigh position sensitivity and fast optical relaxation time of lateral photovoltaic effect in Sb2Se3/p-Si junctions. Opt. Express. 26(26) (2018) 34214-34223.

DOI: 10.1364/oe.26.034214

Google Scholar

[11] X. Wang, B. Song, M. Huo, Y. Song, Z. Lv, Y. Zhang, Y. Wang, Y. Song, J. Wen, Y. Sui, J. Tang, Fast and sensitive lateral photovoltaic effects in Fe3O4/Si Schottky junction. RSC Adv. 5 (2015) 65048-65051.

DOI: 10.1039/c5ra11872g

Google Scholar

[12] T.A. Pisarenko, V.V. Balashev, V.A. Vikulov, A.A. Dimitriev, V.V. Korobtsov, A comparative study of the lateral photovoltaic effect in Fe3O4/SiO2/n-Si and Fe3O4/SiO2/p-Si structures. Phys. Solid State. 60 (2018) 1316-1322.

DOI: 10.1134/s1063783418070223

Google Scholar

[13] V.V. Balashev, V.A. Vikulov, T.A. Pisarenko, V.V. Korobtsov, Effect of oxygen pressure on the texture of a magnetite film grown by reactive deposition on a SiO2/Si(001) surface. Phys. Solid State. 57(12) (2015) 2532-2536.

DOI: 10.1134/s1063783415120070

Google Scholar

[14] P.P. Konorov, Yu.A. Tarantov, The surface lateral photovoltaic effect in germanium, in: L.P. Strakhov (Eds.), The aspects of solid-state electronics, Scientific papers of the State university of Leningrad. 370 (17) (1974) 114-120.

Google Scholar

[15] B.E. Deal, M. Sklar, A.S. Grove, E. H. Snow, Characteristics of the Surface-State Charge (Qss) of Thermally Oxidized Silicon. J. Electrochem. Soc.: Solid State Science. 114(3) (1967) 266-274.

DOI: 10.1149/1.2426565

Google Scholar

[16] H. Angermann, Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements, Appl. Surf. Sci. 312 (2014) 3-16.

DOI: 10.1016/j.apsusc.2014.05.087

Google Scholar

[17] A.M. Cowley, S.M. Sze, Surface states and barrier height of metal-semiconductor systems, J. Appl. Phys. 36 (1965) 3212-3220.

DOI: 10.1063/1.1702952

Google Scholar

[18] J. Shewchun, R. Singh, M.A. Green. Theory of metal-insulator-semiconductor solar cells, J. Appl. Phys. 48 (1977): 765-770.

DOI: 10.1063/1.323667

Google Scholar

[19] P.O. Hahn, M. Henzler, The Si–SiO2 interface: Correlation of atomic structure and electrical properties. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 2 (1984) 574-583.

DOI: 10.1116/1.572449

Google Scholar

[20] A. Ishizaka, Y. Shiraki, Low temperature surface cleaning of silicon and its application to silicon MBE. J. Electrochem. Soc. 133 (1986) 666-672.

DOI: 10.1149/1.2108651

Google Scholar

[21] Y. Chen, R. Myricks, M. Decker, J. Liu, G.S. Higashi, The origination and optimization of Si/SiO2 interface roughness and its effect on CMOS performance. IEEE Electron Device Letters. 24, 5 (2003) 295-297.

DOI: 10.1109/led.2003.812545

Google Scholar

[22] K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, M. Katayama, Surface science: an introduction, Springer Science & Business Media, Berlin, (2013).

Google Scholar

[23] R.H. Bube, Photoconductivity of Solids, Wiley and Sons, New York, (1960).

Google Scholar

[24] K. Lehovec, A. Slobodskoy, Impedance of semiconductor-insulator-metal capacitors, Solid-State Electronics. 7(1) (1964) 59-79.

DOI: 10.1016/0038-1101(64)90122-4

Google Scholar

[25] A.K. Dutta, Y. Hatanaka, A study of the transient response of position-sensitive detectors, Solid-state electronics. 32(6) (1989) 485-492.

DOI: 10.1016/0038-1101(89)90031-2

Google Scholar

[26] C. Narayanan, A.B. Buckman, I. Busch-Vishniac, W. Wang, Position dependence of the transient response of a position-sensitive detector under periodic pulsed light modulation. IEEE transactions on electron devices. 40(9) (1993) 1688-1694.

DOI: 10.1109/16.231576

Google Scholar