Recent Advances in Synthesis, Properties and Applications of Magnetic Oxide Nanomaterials

Article Preview

Abstract:

Oxide nanomaterials are in great demand due to their unique physical, chemical and structural properties. The nanostructured materials with desired magnetic properties are the future of power electronics. Unique magnetic properties and excellent biocompatibility of these materials found applications in pharmaceutical field also. For these applications, the synthesis of magnetic oxide nanomaterials with required properties is highly desirable. Till now, various techniques have been evolved for the synthesis of oxide nanomaterials with full control over their shape, size, morphology and magnetic properties. In nanoscale, the magnetic properties are totally different from their bulk counterparts. In this range, each nanoparticle acts as a single magnetic domain and shows fast response to applied magnetic field. This review article discusses the synthesis techniques, properties and the applications of magnetic oxide nanomaterials. Various characterization techniques for magnetic materials have been discussed along with the literature of iron oxide, nickel oxide, and cobalt oxide nanomaterials. The challenges for further development of these materials have also been presented to broaden their rapidly emerging applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 232)

Pages:

1-44

Citation:

Online since:

June 2015

Export:

Price:

[1] T.Y. Feng, H.S. Jun, Y.S. Shen, M.L. Mo, Oxide magnetic semiconductors: Materials, properties, and devices, China Phys. B 22 (2013) 088505 (1-19).

Google Scholar

[2] M. Calero, L. Gutiérrez, G. Salas, Y. Luengo, A. Lázaro, P. Acedo, M.P. Morales, R. Miranda, A. Villanueva, Efficient and safe internalization of magnetic iron oxide nanoparticles: Two fundamental requirements for biomedical applications, Nanomed-Nanotechnol. 10 (2014).

DOI: 10.1016/j.nano.2013.11.010

Google Scholar

[3] J.R. Petrie, K.A. Wieland, R.A. Burke, G.A. Newburgh, J.E. Burnette, G.A. Fischer, A.S. Edelstein, A non-erasable magnetic memory based on the magnetic permeability, J. Magn. Magn. Mater. 361 (2014) 262-266.

DOI: 10.1016/j.jmmm.2014.01.018

Google Scholar

[4] J. Gangwar, B.K. Gupta, P. Kumar, S.K. Tripathi, A.K. Srivastava, Time-resolved and photoluminescence spectroscopy of θ-Al2O3 nanowires for promising fast optical sensor applications, Dalton T. 43 (2014) 17034-17043.

DOI: 10.1039/c4dt01831a

Google Scholar

[5] S.C.N. Tang, I.M.C. Lo, Magnetic nanoparticles: Essential factors for sustainable environmental applications, Water Res. 47 (2013) 2613-2632.

DOI: 10.1016/j.watres.2013.02.039

Google Scholar

[6] V.M. Samsonov, N.Y. Sdobnyakov, A.N. Bazulev, On thermodynamic stability conditions for nanosized particles, Surf. Sci. 532 (2003) 526-530.

DOI: 10.1016/s0039-6028(03)00090-6

Google Scholar

[7] R. Hoffmann, Solids and Surfaces: A Chemist's View of Bonding in Extended Structures; VCH, New York, (1988).

Google Scholar

[8] U.B. Sontu, V. Yelasani, V.R.R. Musugu, Structural, electrical and magnetic characteristics of nickel substituted cobalt ferrite nano particles, synthesized by self-combustion method, J. Magn. Magn. Mater. 374 (2015) 376-380.

DOI: 10.1016/j.jmmm.2014.08.072

Google Scholar

[9] M. Rani, S.K. Tripathi, Effect of Eosin Y dye on electrical properties of ZnO film synthesized by sol-gel technique, J. Electron. Mater. 43 (2014) 426-434.

DOI: 10.1007/s11664-013-2925-0

Google Scholar

[10] M. Vadivel, R.R. Babu, K. Sethuraman, K. Ramamurthi, M. Arivanandhan, Synthesis, structural, dielectric, magnetic and optical properties of Cr substituted CoFe2O4 nanoparticles by co-precipitation method, J. Magn. Magn. Mater. 362 (2014) 122–129.

DOI: 10.1016/j.jmmm.2014.03.016

Google Scholar

[11] L. Franzel, M.F. Bertino, Z.J. Huba, E.E. Carpenter, Synthesis of magnetic nanoparticles by pulsed laser ablation, Appl. Surf. Sci. 261 (2012) 332-336.

DOI: 10.1016/j.apsusc.2012.08.010

Google Scholar

[12] D. Nordmeyer, P. Stumpf, D. Gröger, A. Hofmann, S. Enders, S.B. Riese, J. Dernedde, M. Taupitz, U. Rauch, R. Haag, E. Rühl, C. Graf, Iron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents, Nanoscale 6 (2014).

DOI: 10.1039/c3nr04793h

Google Scholar

[13] I.S. Lim, G.E. Jang, C.K. Kim, D.H. Yoon, Fabrication and gas sensing characteristics of pure and Pt-doped γ-Fe2O3 thin film, Sens. Actuators B 77 (2001) 215-220.

DOI: 10.1016/s0925-4005(01)00713-4

Google Scholar

[14] M. Wierucka, M. Biziuk, Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples, Trends Anal. Chem. 59 (2014) 50-58.

DOI: 10.1016/j.trac.2014.04.007

Google Scholar

[15] H. Shokrollahi, Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids, Mater. Sci. Eng. C 33 (2013) 2476-2487.

DOI: 10.1016/j.msec.2013.03.028

Google Scholar

[16] B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, second ed., Wiley, New Jersey, (2009).

Google Scholar

[17] S.P. Gubin, Y.A. Koksharov, G.B. Khomutov, G.Y. Yurkov, Magnetic nanoparticles: Preparation, structure and properties, Russ. Chem. Rev. 74 (2005) 489-520.

DOI: 10.1070/rc2005v074n06abeh000897

Google Scholar

[18] A.P. Guimarães, Principles of Nanomagnetism; Springer: Berlin/Heidelberg, Germany, (2009).

Google Scholar

[19] S. Bedanta, W. Kleemann, Supermagnetism, J. Phys. D 42 (2009) 013001 (1-28).

Google Scholar

[20] B. Issa, I.M. Obaidat, B.A. Albiss, Y. Haik, Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications, Int. J. Mol. Sci. 14 (2013) 21266-21305.

DOI: 10.3390/ijms141121266

Google Scholar

[21] R.H. Kodama, Magnetic nanoparticles, J. Magn. Magn. Mater. 200 (1999) 359-372.

Google Scholar

[22] M. Respaud, J.M. Broto, H. Rakoto, A.R. Fert, L. Thomas, B. Barbara, M. Verelst, E. Snoeck, P. Lecante, A. Mosset, J. Osuna, T.O. Ely, C. Amiens, B. Chaudret, Surface effects on the magnetic properties of ultrafine cobalt particles, Phys. Rev. B 57 (1998).

DOI: 10.1103/physrevb.57.2925

Google Scholar

[23] H. Iida, K. Takayanagi, T. Nakanishi, T. Osaka, Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis, J. Colloid Interface Sci. 314 (2007) 274-280.

DOI: 10.1016/j.jcis.2007.05.047

Google Scholar

[24] A.H. Lu, E.L. Salabas, F. Schüth, Magnetic nanoparticles: synthesis, protection, functionalization and application, Angew. Chem. Int. Ed. 46 (2007) 1222-1244.

DOI: 10.1002/anie.200602866

Google Scholar

[25] S. Sun, H. Zeng, Size-controlled synthesis of magnetite nanoparticles, J. Am. Chem. Soc. 124 (2002) 8204-8205.

DOI: 10.1021/ja026501x

Google Scholar

[26] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev. 108 (2008) 2064-2110.

DOI: 10.1021/cr068445e

Google Scholar

[27] R. Boistelle, J.P. Astier, Crystallization mechanisms in solutions, J. Cryst. Growth 90 (1988) 14-30.

Google Scholar

[28] T. Sugimoto, Formation of monodispersed nano and micro-particles controlled in size, shape and internal structure, Chem. Eng. Technol. 26 (2003) 313-321.

DOI: 10.1002/ceat.200390048

Google Scholar

[29] H.C. Schwarzer, W. Peukert, Tailoring particle size through nanoparticle precipitation, Chem. Eng. Commun. 191 (2004) 580-606.

DOI: 10.1080/00986440490270106

Google Scholar

[30] C.B. Murray, D.J. Noms, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites, J. Am. Chem. Soc. 115 (1993) 8706-8715.

DOI: 10.1021/ja00072a025

Google Scholar

[31] V.K. Lamer, R.H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols, J. Am. Chem. Soc. 72 (1950) 4847-4854.

DOI: 10.1021/ja01167a001

Google Scholar

[32] F. Davar, Z. Fereshteh, M.S. Niasari, Nanoparticles Ni and NiO: synthesis, characterization and magnetic properties, J. Alloys Compd. 476 (2009) 797-801.

DOI: 10.1016/j.jallcom.2008.09.121

Google Scholar

[33] W.W. Yu, J.C. Falkner, C.T. Yavuz, V.L. Colvin, Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts, Chem. Commun. (2004) 2306-2307.

DOI: 10.1039/b409601k

Google Scholar

[34] T. Hyeon, S.S. Lee, J. Park, Y. Chung, H.B. Na, Synthesis of Highly Crystalline and monodisperse maghemite nanocrystallites without a size-selection process, J. Am. Chem. Soc. 123 (2001) 12798-12801.

DOI: 10.1021/ja016812s

Google Scholar

[35] S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G. Li, Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles, J. Am. Chem. Soc. 126 (2004) 273-279.

DOI: 10.1021/ja0380852

Google Scholar

[36] Y. Chen, D.L. Peng, D. Lin, X. Luo, Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines, Nanotechnology 18 (2007) 505703 (1-6).

DOI: 10.1088/0957-4484/18/50/505703

Google Scholar

[37] K. Butter, K. Kassapidou, G.J. Vroege, A.P. Philipse, Preparation and properties of colloidal iron dispersions, J. Colloid Interface Sci. 287 (2005) 485-495.

DOI: 10.1016/j.jcis.2005.02.014

Google Scholar

[38] S. Lian, Z. Kang, E. Wang, M. Jiang, C. Hu, L. Xu, Convenient synthesis of single crystalline magnetic Fe3O4 nanorods, Solid State Commun. 127 (2003) 605-608.

DOI: 10.1016/s0038-1098(03)00580-5

Google Scholar

[39] B. Mao, Z. Kang, E. Wang, S. Lian, L. Gao, C. Tian, C. Wang, Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method, Mater. Res. Bull. 41 (2006) 2226-2231.

DOI: 10.1016/j.materresbull.2006.04.037

Google Scholar

[40] H. Zhu, D. Yang, L. Zhu, Hydrothermal growth and characterization of magnetite (Fe3O4) thin films, Surf. Coat. Technol. 201 (2007) 5870-5874.

DOI: 10.1016/j.surfcoat.2006.10.037

Google Scholar

[41] S. Giri, S. Samanta, S. Maji, S. Ganguli, A. Bhaumik, Magnetic properties of α-Fe2O3 nanoparticle synthesized by a new hydrothermal method, J. Magn. Magn. Mater. 285 (2005) 296-302.

DOI: 10.1016/j.jmmm.2004.08.007

Google Scholar

[42] J. Wang, J. Sun, Q. Sun, Q. Chen, One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties, Mater. Res. Bull. 38 (2003) 1113-1118.

DOI: 10.1016/s0025-5408(03)00129-6

Google Scholar

[43] J. Wang, F. Ren, R. Yi, A. Yan, G. Qiu, X. Liu, Solvothermal synthesis and magnetic properties of size-controlled nickel ferrite nanoparticles, J. Alloys Compd. 479 (2009) 791-796.

DOI: 10.1016/j.jallcom.2009.01.059

Google Scholar

[44] D. Chen, R. Xu, Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders, Mater. Res. Bull. 33 (1998) 1015-1021.

DOI: 10.1016/s0025-5408(98)00073-7

Google Scholar

[45] S. Komarneni, H. Katsuki, Nanophase materials by a novel microwave hydrothermal process, Pure Appl. Chem. 74 (2002) 1537-1543.

DOI: 10.1351/pac200274091537

Google Scholar

[46] L. Duraes, B.F.O. Costa, J. Vasques, J. Campos, A. Portugal, Phase investigation of as-prepared iron oxide/hydroxide produced by sol-gel synthesis, Mater. Lett. 59 (2005) 859-863.

DOI: 10.1016/j.matlet.2004.10.066

Google Scholar

[47] A.A. Ismail, Synthesis and characterization of Y2O3/Fe2O3/TiO2 nanoparticles by sol-gel method, Appl. Catal. B 58 (2005) 115-121.

DOI: 10.1016/j.apcatb.2004.11.022

Google Scholar

[48] M. Rani, S.J. Abbas, S.K. Tripathi, Influence of annealing temperature and organic dyes as sensitizers on sol–gel derived TiO2 films, Mater. Sci. Eng., B 187 (2014) 75-82.

DOI: 10.1016/j.mseb.2014.04.010

Google Scholar

[49] C. Cannas, D. Gatteschi, A. Musinu, G. Piccaluga, C. Sangregorio, Structural and magnetic properties of Fe2O3 nanoparticles dispersed over a silica matrix, J. Phys. Chem. 102 (1998) 7721-7726.

DOI: 10.1021/jp981355w

Google Scholar

[50] G. Ennas, A. Musinu, G. Piccaluga, D. Zedda, D. Gatteschi, C. Sangregorio, J.L. Stanger, G. Concas, G. Spano, Characterization of iron oxide nanoparticles in an Fe2O3-SiO2 composite prepared by a sol-gel method, Chem. Mater. 10 (1998) 495-502.

DOI: 10.1002/chin.199818019

Google Scholar

[51] G.M. da Costa, E. De Grave, P.M.A. de Bakker, R.E. Vandeberghe, Synthesis and characterization of some iron oxides by sol-gel method, J. Solid State Chem. 113 (1994) 405-412.

DOI: 10.1006/jssc.1994.1388

Google Scholar

[52] J.A.L. Perez, M.A.L. Quintela, J. Mira, J. Rivas, S.W. Charles, Advances in the preparation of magnetic nanoparticles by the microemulsion method, J. Phys. Chem. B 101 (1997) 8045-8047.

DOI: 10.1021/jp972046t

Google Scholar

[53] J.A.L. Perez, M.A.L. Quintela, J. Mira, J. Rivas, Preparation of Magnetic Fluids with Particles Obtained in Microemulsions, IEEE Trans. Magn. 33 (1997) 4359-4362.

DOI: 10.1109/20.620446

Google Scholar

[54] P.A. Dresco, V.S. Zaitsev, R.J. Gambino, B. Chu, Preparation and properties of magnetite and polymer magnetite nanoparticles, Langmuir 15 (1999) 1945-(1951).

DOI: 10.1021/la980971g

Google Scholar

[55] K.M. Lee, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, Synthesis and characterization of stable colloidal Fe3O4 particles in Water-In-Oil Microemulsions, IEEE Trans. Magn. 28 (1992) 3180-3182.

DOI: 10.1109/20.179751

Google Scholar

[56] C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites, J. Phys. Chem. B 104 (2000) 1141-1145.

DOI: 10.1021/jp993552g

Google Scholar

[57] S. Santra, R. Tapec, N. Theodoropoulou, J. Dobson, A. Hebard, W. Tan, Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants, Langmuir 17 (2001) 2900-2906.

DOI: 10.1021/la0008636

Google Scholar

[58] C.J.O. Connor, C. Seip, C. Sangregorio, E. Carpenter, S. Li, G. Irvin, V.T. John, Nanophase magnetic materials: synthesis and properties, Mol. Cryst. Liq. Cryst. 335 (1999) 423-442.

DOI: 10.1080/10587259908028885

Google Scholar

[59] M. Gobe, K.K. No, K. Kandori, A. Kitahara, Preparation and characterization of monodisperse magnetite sols in W/O microemulsion, J. Colloid Interface Sci. 93 (1983) 293-295.

DOI: 10.1016/0021-9797(83)90411-3

Google Scholar

[60] M.M. Stecker, G.B. Benedk, Theory of multicomponent micelles and microemulsions, J. Phys. Chem. 88 (1984) 6519-6544.

DOI: 10.1021/j150670a014

Google Scholar

[61] K. Kandori, M. Fukuoka, T. Ishikawa, Effects of citrate ions on the formation of ferric oxide hydroxide particles, J. Mater. Sci. 26 (1991) 3313-3319.

DOI: 10.1007/bf01124679

Google Scholar

[62] G.S.R. Krishnamurti, P.M. Huang, Influence of citrate on the kinetics of Fe(II) oxidation and the formation of iron oxyhydroxides, Clays Clay Miner. 39 (1991) 28-34.

DOI: 10.1346/ccmn.1991.0390104

Google Scholar

[63] G.T. Dimitrova, T. Tadros, P.F. Luckham, M.R. Kipps, Investigations into the phase behavior of nonionic ethoxylated surfactants using 2HNMR spectroscopy, Langmuir 12 (1996) 315-318.

DOI: 10.1021/la950352x

Google Scholar

[64] F. Fievet, J.P. Lagier, B. Blin, B. Beaudoin, M. Figlarz, Homogeneous and heterogenous nucleations in the polyol process for the preparation of micron and submicron size metal particles, Solid State Ionics 32 (1989) 198-205.

DOI: 10.1016/0167-2738(89)90222-1

Google Scholar

[65] V.K. Tzitzios, D. Petridis, I. Zafiropoulou, G. Hadjipanayis, D. Niarchos, Synthesis and characterization of L10 FePt nanoparticles from Pt-Fe3O4 core-shell nanoparticles J. Magn. Magn. Mater. 294 (2005) e95-e98.

DOI: 10.1016/j.jmmm.2005.03.061

Google Scholar

[66] G. Viau, F. Ravel, O. Acher, F.F. Vincent, F. Fievet, Preparation and microwave characterization of spherical and monodisperse Co20Ni80 particles, J. Appl. Phys. 76 (1994) 6570-6572.

DOI: 10.1063/1.358473

Google Scholar

[67] G. Viau, F.F. Vincent, F. Fievet, Monodisperse iron-based particles: precipitation in liquid polyols, J. Mater. Chem. 6 (1996) 1047-1053.

DOI: 10.1039/jm9960601047

Google Scholar

[68] D. Jezequel, J. Guenot, N. Jouini, F. Fievet, Submicrometer zinc oxide particles: Elaboration in polyol medium and morphological characteristics, J. Mater. Res. 10 (1995) 77-83.

DOI: 10.1557/jmr.1995.0077

Google Scholar

[69] L. Poul, S. Ammar, N. Jouini, F. Fievet, F. Villain, Synthesis of inorganic compounds (metal, oxide and hydroxide) in polyol medium: a versatile route related to the sol-gel process, J. Sol-Gel Sci. Technol. 26 (2003) 261-265.

DOI: 10.1023/a:1020763402390

Google Scholar

[70] C. Xu, K. Xu, H. Gu, X. Zhong, Z. Guo, R. Zheng, X. Zhang, B. Xu, Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins, J. Am. Chem. Soc. 126 (2004) 3392-3393.

DOI: 10.1021/ja031776d

Google Scholar

[71] C. Xu, K. Xu, H. Gu, R. Zheng, H. Liu, X. Zhang, Z. Guo, B. Xu, Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles, J. Am. Chem. Soc. 126 (2004) 9938-9939.

DOI: 10.1021/ja0464802

Google Scholar

[72] H.H. Hsiao, H.Y. Hsieh, C.C. Chou, S.Y. Lin, A.H.J. Wang, K.H. Khoo, Concerted experimental approach for sequential mapping of peptides and phosphopeptides using C18-functionalized magnetic nanoparticles, J. Proteome. Res. 6 (2007) 1313-1324.

DOI: 10.1021/pr0604817

Google Scholar

[73] T. Sen, A. Sebastianelli, I.J. Bruce, Mesoporous silica-magnetite nanocomposite: fabrication and applications in magnetic bio-separations, J. Am. Chem. Soc. 128 (2006) 7130-7131.

DOI: 10.1021/ja061393q

Google Scholar

[74] K.A. Melzak, C.S. Sherwood, R.F.B. Turner, C.A. Haynes, Driving forces for DNA adsorption to silica in perchlorate solutions, J. Colloid Interface Sci. 181 (1996) 635-644.

DOI: 10.1006/jcis.1996.0421

Google Scholar

[75] J.C. Liu, P.J. Tsai, Y.C. Lee, Y.C. Chen, Affinity capture of uropathogenic escherichia coli using pigeon ovalbumin-bound Fe3O4@Al2O3 magnetic nanoparticles, Anal. Chem. 80 (2008) 5425-5432.

DOI: 10.1021/ac800487v

Google Scholar

[76] A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26 (2005) 3995-4021.

DOI: 10.1016/j.biomaterials.2004.10.012

Google Scholar

[77] E.H. Kim, H.S. Lee, B.K. Kwak, B.K. Kim, Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent, J. Magn. Magn. Mater. 289 (2005) 328-330.

DOI: 10.1016/j.jmmm.2004.11.093

Google Scholar

[78] J. Wu, Z. Ye, G. Wang, J. Yuan, Multifunctional nanoparticles possessing magnetic, long-lived fluorescence and bio-affinity properties for time-resolved fluorescence cell imaging, Talanta 72 (2007) 1693-1697.

DOI: 10.1016/j.talanta.2007.03.018

Google Scholar

[79] D.C.F. Chan, D.B. Kirpotin, P.A. Bunn, Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radio frequency-induced hyperthermia of cancer, J. Magn. Magn. Mater. 122 (1993) 374-378.

DOI: 10.1016/0304-8853(93)91113-l

Google Scholar

[80] H. Yanagihara, M. Myoka, D. Isaka, T. Niizeki, K. Mibu, E. Kita, Corrigendum: Selective growth of Fe3O4 and γ-Fe2O3 films with reactive magnetron sputtering, J. Phys. D: Appl. Phys. 47 (2014) 129501 (1-3).

DOI: 10.1088/0022-3727/47/12/129501

Google Scholar

[81] T. Kado, Structural and magnetic properties of magnetite-containing epitaxial iron oxide films grown on MgO (001) substrates, J. Appl. Phys. 103 (2008) 043902 (1-4).

DOI: 10.1063/1.2840118

Google Scholar

[82] G.E. Sterbinsky, J. Cheng, P.T. Chiu, B.W. Wessels, D.J. Keavney, Investigation of heteroepitaxial growth of magnetite thin films, J. Vac. Sci. Technol. B 25 (2007) 1389-1392.

DOI: 10.1116/1.2757185

Google Scholar

[83] (a) R. Behrisch, Sputtering by particle bombardment; In: Applied Physics, Vol. 47, Berlin: Springer, 1981. (b) P.D. Townsend, J.C. Kelly, N.E.W. Hartley, Ion Implantation, Sputtering and their Applications; Academic Press, London, (1976).

Google Scholar

[84] S.M. Rossnagel, Sputter Deposition, in Opportunities for Innovation: Advanced Surface Engineering; Technomic Publishing Co., Switzerland, (1995).

Google Scholar

[85] M.N.E. Alam, M. Vasiliev, K. Alameh, V. Kotov, Synthesis of high-performance magnetic garnet materials and garnet-bismuth oxide nanocomposites using physical vapor deposition followed by high-temperature crystallization, Pure Appl Chem. 83 (2011).

DOI: 10.1351/pac-con-11-02-02

Google Scholar

[86] A. Kumar, D.K. Pandya, S. Chaudhary, Structural, electronic, and magnetic behavior of two dimensional epitaxial Fe3O4/TiN/Si (100) system, J. Appl. Phys. 112 (2012) 073909 (1-5).

DOI: 10.1063/1.4802235

Google Scholar

[87] M. Hong, F. Ren, W.S. Hobson, J.M. Kuo, J. Kwo, J.P. Mannaerts, J.R. Lothian, M.A. Marcus, C.T. Liu, A.M. Sergent, T.S. Lay, Y.K. Chen, Growth of Ga2O3(Gd2O3) using molecular beam epitaxy technique - Key to first demonstration of GaAs MOSFETs, IEEE Conf. Proc. (1998).

DOI: 10.1109/iscs.1998.711645

Google Scholar

[88] M. Zhou, F.L. Pasquale, P.A. Dowben, A. Boosalis, M. Schubert, V. Darakchieva, R. Yakimova, L. Kong, J.A. Kelber, Direct graphene growth on Co3O4(111) by molecular beam epitaxy, J. Phys.: Condens. Matter. 24 (2012) 1-12.

DOI: 10.1088/0953-8984/24/7/072201

Google Scholar

[89] X. Sun, A. Gutierrez, M.J. Yacaman, X. Dong, S. Jin, Investigations on magnetic properties and structure for carbon encapsulated nanoparticles of Fe, Co, Ni, Mater. Sci. Eng. A 286 (2000) 157-160.

DOI: 10.1016/s0921-5093(00)00628-6

Google Scholar

[90] W. Burgei, M.J. Pechan, H. Jaeger, A simple vibrating sample magnetometer for use in a materials physics course, Am. J. Phys. 71 (2003) 825-828.

DOI: 10.1119/1.1572149

Google Scholar

[91] K. Gramm, L. Lundgren, O. Beckman, SQUID magnetometer for mangetization Measurements, Phys. Scr. 13 (1976) 93-95.

DOI: 10.1088/0031-8949/13/2/004

Google Scholar

[92] N. Watanabe, Y. Miyato, M. Tachiki, T. Hayashi, D. He, H. Itozaki, High-resolution magnetic field measurement using an STM-SQUID, Physics Procedia 36 (2012) 300-305.

DOI: 10.1016/j.phpro.2012.06.163

Google Scholar

[93] R.I. Jsselsteijn, H. Elsner, W. Morgenroth, V. Schultze, H.G. Meyer, Bicrystal submicrometer Josephson junctions and dc SQUIDs, IEEE Trans. Appl. Supercond. 9 (1999) 3933-3936.

DOI: 10.1109/77.783888

Google Scholar

[94] T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, H. Koinuma, Magnetic properties of Mn-doped ZnO, Appl. Phys. Lett. 78 (2001) 958-960.

DOI: 10.1063/1.1348323

Google Scholar

[95] R. Nagendran, N. Thirumurugan, N. Chinnasamy, M.P. Janawadkar, C.S. Sundar, Development of high field SQUID magnetometer for magnetization studies up to 7 T and temperatures in the range from 4. 2 to 300 K, Rev. Sci. Instrum. 82 (2011).

DOI: 10.1063/1.3519017

Google Scholar

[96] A. Hubert, W. Rave, S.L. Tomlinson, Imaging magnetic charges with magnetic force microscopy, Phys. Status Solidi B 204 (1997) 817-828.

DOI: 10.1002/1521-3951(199712)204:2<817::aid-pssb817>3.0.co;2-d

Google Scholar

[97] C. Israel, W. Wu, A. Lozanne, High-field magnetic force microscopy as susceptibility imaging, Appl. Phys. Lett. 89 (2006) 032502 (1-3).

DOI: 10.1063/1.2221916

Google Scholar

[98] G. Cordova, S. Attwood, R. Gaikwad, F. Gu, Z. Leonenko, Magnetic force microscopy characterization of superparamagnetic iron oxide nanoparticles (SPIONs), Nano Biomed. Eng. 6 (2014) 31-39.

DOI: 10.5101/nbe.v6i1.p31-39

Google Scholar

[99] K. Ando, Seeking room-temperature ferromagnetic semiconductors, Science 312 (2006) 1883-1885.

DOI: 10.1126/science.1125461

Google Scholar

[100] J.R. Neal, A.J. Behan, R.M. Ibrahim, H.J. Blythe, M. Ziese, A.M. Fox, G.A. Gehring, Room-temperature magneto-optics of ferromagnetic transition-metal-doped ZnO thin films, Phys. Rev. Lett. 96 (2006) 197208 (1-4).

DOI: 10.1103/physrevlett.96.197208

Google Scholar

[101] J.R. Lindemuth, B.C. Dodrill, Anomalous hall-effect magnetometry studies of magnetization processes of thin films, J. Magn. Magn. Mater. 272 (2004) 2324-2325.

DOI: 10.1016/j.jmmm.2003.12.942

Google Scholar

[102] M. Gacic, G. Jakob, C. Herbort, H. Adrian, T. Tietze, S. Brck, E. Goering, Magnetism of Co-doped ZnO thin films, Phys. Rev. B 75 (2007) 205206 (1-8).

DOI: 10.1103/physrevb.75.205206

Google Scholar

[103] M.J. Chena, H. Shena, X. Li, H.F. Liu, Facile synthesis of oil-soluble Fe3O4 nanoparticles based on a phase transfer mechanism, Appl. Surf. Sci. 307 (2014) 306-310.

DOI: 10.1016/j.apsusc.2014.04.031

Google Scholar

[104] C. Hui, C. Shen, T. Yang, L. Bao, J. Tian, H. Ding, C. Li, H.J. Gao, Large-scale Fe3O4 nanoparticles soluble in water synthesized by a facile method, J. Phys. Chem. C 112 (2008) 11336-11339.

DOI: 10.1021/jp801632p

Google Scholar

[105] M. Tadic, M. Panjan, V. Damnjanovic, I. Milosevic, Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method, Appl. Surf. Sci. 320 (2014) 183-187.

DOI: 10.1016/j.apsusc.2014.08.193

Google Scholar

[106] O.M. Londono, M.S. Carriao, C.C. Castaneda, V. Bilovol, R.M. Sanchez, E.J. Lede, L.M. Socolovsky, R.M. Garcıa, One-step room temperature synthesis of very small γ-Fe2O3 nanoparticles, Mater. Res. Bull. 48 (2013) 3474-3478.

DOI: 10.1016/j.materresbull.2013.05.042

Google Scholar

[107] O. Margeat, M. Respaud, C. Amiens, P. Lecante, B. Chaudret, Ultrafine metallic Fe nanoparticles: synthesis, structure and magnetism, Beilstein J. Nanotechnol. 1 (2010) 108-118.

DOI: 10.3762/bjnano.1.13

Google Scholar

[108] M. Bystrzejewski, O. Łabędź, W. Kaszuwar, A. Huczko, H. Lange, Controlling the diameter and magnetic properties of carbon-encapsulated iron nanoparticles produced by carbon arc discharge, Powder Technol. 246 (2013) 7–15.

DOI: 10.1016/j.powtec.2013.04.052

Google Scholar

[109] H.L. Ding, Y.X. Zhang, S. Wang, J.M. Xu, S.C. Xu, G.H. Li, Fe3O4@SiO2 core/shell nanoparticles: The silica coating regulations with a single core for different core sizes and shell thicknesses, Chem. Mater. 24 (2012) 4572-4580.

DOI: 10.1021/cm302828d

Google Scholar

[110] R.V. Kumar, Y. Koltypin, Y.S. Cohen, Y. Cohen, D. Aurbach, O. Palchik, I. Felner, A. Gedanken, Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation, J. Mater. Chem. 10 (2000) 10 1125-1129.

DOI: 10.1039/b000440p

Google Scholar

[111] L. Wang, H.Y. Park, S.I. Lim, M.J. Schadt, D. Mott, J. Luo, X. Wang, C.J. Zhong, Core@shell nanomaterials: gold-coated magnetic oxide nanoparticles, J. Mater. Chem. 18 (2008) 2629-2635.

DOI: 10.1039/b719096d

Google Scholar

[112] S. Thota, J. Kumar, Sol-gel synthesis and anomalous magnetic behaviour of NiO nanoparticles, J. Phys. Chem. Solids 68 (2007) 1951-(1964).

DOI: 10.1016/j.jpcs.2007.06.010

Google Scholar

[113] N. Srivastava, P.C. Srivastava, Synthesis of NiO nanowires/nanorods and its magnetic characteristics, Mater. Focus 2 (2013) 1-8.

DOI: 10.1166/mat.2013.1112

Google Scholar

[114] Z. Chen, A. Xu, Y. Zhang, N. Gu, Preparation of NiO and CoO nanoparticles using M2+-oleate (M = Ni, Co) as precursor, Curr. Appl. Phys. 10 (2010) 967-970.

DOI: 10.1016/j.cap.2012.07.026

Google Scholar

[115] F. Moro, S.V.Y. Tang, F. Tuna, E. Lester, Magnetic properties of cobalt oxide nanoparticles synthesised by a continuous hydrothermal method, J. Magn. Magn. Mater. 348 (2013) 1-7.

DOI: 10.1016/j.jmmm.2013.07.064

Google Scholar

[116] R. Chander, Structural and magnetic properties of sol-gel synthesized Co doped ZnO nanocrystals, J. Optoelectron. Adv. Mater. 13 (2011) 409-411.

Google Scholar

[117] S. Yang, Y. Zhang, Structural, optical and magnetic properties of Mn-doped ZnO thin films prepared by sol-gel method, J. Magn. Magn. Mater. 334 (2013) 52-58.

DOI: 10.1016/j.jmmm.2013.01.026

Google Scholar

[118] M. Artu, L.B. Tahar, F. Herbst, L. Smiri, F. Villain, N. Yaacoub, J.M. Greneche, S. Ammar, F. Fievet, Size-dependent magnetic properties of CoFe2O4 nanoparticles prepared in polyol, J. Phys.: Condens. Matter 23 (2011) 506001 (1-9).

DOI: 10.1088/0953-8984/23/50/506001

Google Scholar

[119] J.P. Chen, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, E. Devlin, A. Kostikas, Size dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation, Phys. Rev. B 54 (1996) 9288-9296.

DOI: 10.1103/physrevb.54.9288

Google Scholar

[120] R. Malik, N. Sehdev, S. Lamba, P. Sharma, A. Makino, S. Annapoorni, Magnetic memory effects in nickel ferrite/polymer nanocomposites, Appl. Phys. Lett. 104 (2014) 122407 (1-5).

DOI: 10.1063/1.4869724

Google Scholar

[121] L. Li, G. Li, R.L. Smith, H. Inomata, Microstructural evolution and magnetic properties of NiFe2O4 nanocrystals dispersed in amorphous silica, Chem. Mater. 12 (2000) 3705-3714.

DOI: 10.1021/cm000481l

Google Scholar

[122] L. Yiping, Z.X. Tang, G.C. Hadjipanayis, C.M. Sorensen, K.J. Klabunde, Co-Pt-B particles prepared by chemical reduction, IEEE 29 (1993) 2646-2648.

DOI: 10.1109/20.280838

Google Scholar

[123] I. Shpetnyi, A.S. Kovalenko, M. Klimenkov, I.Y. Protsenko, S.V. Chernov, S.A. Nepijko, H.J. Elmers, G. Schonhense, Characterization and magnetic properties of nanoparticles based on FePt solid solution with an oxide shell, J. Magn. Magn. Mater. 373 (2015).

DOI: 10.1016/j.jmmm.2014.01.071

Google Scholar

[124] R. Rameshbabu, R. Ramesh, S. Kanagesan, A. Karthigeyan, S. Ponnusamy, Synthesis and study of structural, morphological and magnetic properties of ZnFe2O4 nanoparticles, J. Supercond. Nov. Magn. 27 (2014) 1499-1502.

DOI: 10.1007/s10948-013-2466-z

Google Scholar

[125] D.H. Chen, Y.Y. Chen, Synthesis of strontium ferrite ultrafine particles using microemulsion processing, J. Colloid Interface Sci. 236 (2001) 41–46.

DOI: 10.1006/jcis.2000.7389

Google Scholar

[126] T.O. Ely, C. Amiens, B. Chaudret, E. Snoeck, M. Verelst, M. Respaud, J.M. Broto, Synthesis of nickel nanoparticles: Influence of aggregation induced by modification of poly(vinylpyrrolidone) chain length on their magnetic properties, Chem. Mater. 11 (1999).

DOI: 10.1021/cm980675p

Google Scholar

[127] R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, properties, reactions, occurrences and uses, second ed., Wiley-VCH, Weinheim, (2003).

Google Scholar

[128] D. Ramimoghadam, S. Bagheri, S.B.A. Hamid, Progress in electrochemical synthesis of magnetic iron oxide nanoparticles, J. Magn. Magn. Mater. 368 (2014) 207-229.

DOI: 10.1016/j.jmmm.2014.05.015

Google Scholar

[129] P. Majewski, B. Thierry, Functionalized magnetite nanoparticles-synthesis, properties, and bio-applications, Crit. Rev. Solid State Mater. Sci. 32 (2007) 203-215.

DOI: 10.1080/10408430701776680

Google Scholar

[130] H. Qiu, L. Pan, L. Li, H. Zhu, X. Zhao, M. Xu, L. Qin, J.Q. Xiao, Microstructure and magnetic properties of magnetite thin films prepared by reactive sputtering, J. Appl. Phys. 102 (2007) 113913 (1-5).

DOI: 10.1063/1.2817644

Google Scholar

[131] D.T. Margulies, F.T. Parker, M.L. Rudee, F.E. Spada, J.N. Chapman, P.R. Aitchison, A.E. Berkowitz, Origin of the anomalous magnetic behavior in single crystal Fe3O4 Films, Phys. Rev. Lett. 79 (1997) 5162-5165.

DOI: 10.1109/intmag.1998.742121

Google Scholar

[132] A.S. Teja, P.Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles, Prog. Cryst. Growth Ch. 55 (2009) 22-45.

Google Scholar

[133] R.D. Zysler, D. Fiorani, A.M. Testa, Investigation of magnetic properties of interacting Fe2O3 nanoparticles, J. Magn. Magn. Mater. 224 (2001) 5-11.

DOI: 10.1016/s0304-8853(00)01328-7

Google Scholar

[134] R. Dronskowski, The little maghemite story: A classic functional material, Adv. Funct. Mater. 11 (2001) 27-29.

DOI: 10.1002/1616-3028(200102)11:1<27::aid-adfm27>3.0.co;2-x

Google Scholar

[135] O. Helgason, J.M. Greneche, F.J. Berry, F. Mosselmans, The influence of ruthenium on the magnetic properties of γ-Fe2O3 (maghemite) studied by Mössbauer spectroscopy, J. Phys.: Condens. Matter 15 (2003) 2907-2915.

DOI: 10.1088/0953-8984/15/17/338

Google Scholar

[136] T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann, B. von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater. 293 (2005) 483-496.

DOI: 10.1016/j.jmmm.2005.01.064

Google Scholar

[137] T. Kim, M. Shima, Reduced magnetization in magnetic oxide nanoparticles, J. Appl. Phys. 101 (2007) 09M516 (1-3).

Google Scholar

[138] A.L.D. Silva, J. Moreira, R. Neto, A.C. Estrada, A.M. Gil, T. Trindade, Impact of magnetic nanofillers in the swelling and release properties of k-carrageenan hydrogel nanocomposites, Carbohydr. Polym. 87 (2012) 328-335.

DOI: 10.1016/j.carbpol.2011.07.051

Google Scholar

[139] R. Cornell, U. Schertmann, Iron oxides in the laboratory; Preparation and characterization, Weinheim-VCH, Germany, (1991).

Google Scholar

[140] R. Rahimi, A. Maleki, S. Maleki, A. Morsali, M.J. Rahimi, Synthesis and characterization of magnetic dichromate hybrid nanomaterials with triphenylphosphine surface modified iron oxide nanoparticles (Fe3O4@SiO2@PPh3@Cr2O72-), Solid State Sci. 28 (2014).

DOI: 10.1016/j.solidstatesciences.2013.11.013

Google Scholar

[141] A. Maleki, R. Rahimi, S. Maleki, Synthesis, characterization and morphology of new magnetic fluorochromate hybrid nanomaterials with triethylamine surface modified iron oxide nanoparticles, Synthetic Met. 194 (2014) 11-18.

DOI: 10.1016/j.synthmet.2014.04.013

Google Scholar

[142] P. Zong, S. Wang, Y. Zhao, H. Wang, H. Pan, C. He, Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions, Chem. Eng. J. 220 (2013) 45-52.

DOI: 10.1016/j.cej.2013.01.038

Google Scholar

[143] P. Xu, G. Zeng, D. Huang, S. Hu, C. Feng, C. Lai, M. Zhao, C. Huang, N. Li, Z. Wei, G. Xie, Synthesis of iron oxide nanoparticles and their application in Phanerochaete chrysosporium immobilization for Pb(II) removal, Colloids Surf. A 419 (2013).

DOI: 10.1016/j.colsurfa.2012.10.061

Google Scholar

[144] Y. Izaki, Y. Mugikura, T. Watanabe, M. Kawase, J.R. Selman, Direct observation of the oxidation nickel in molten carbonate, J. Power Sources 75 (1998) 236-243.

DOI: 10.1016/s0378-7753(98)00117-7

Google Scholar

[145] Y. Ichiyanagi, N. Wakabayashi, J. Yamazaki, S. Yamada, Y. Kimishima, E. Komatsu, H. Tajima, Magnetic properties of NiO nanoparticles, Physica B 329 (2003) 862-863.

DOI: 10.1016/s0921-4526(02)02578-4

Google Scholar

[146] I. Hotovy, J. Huran, L. Spies, S. Hascik, V. Rehacek, Preparation of nickel oxide thin films for gas sensors applications, Sens Actuators. B. 57 (1999) 147-52.

DOI: 10.1016/s0925-4005(99)00077-5

Google Scholar

[147] J. Gangwar, K.K. Dey, S.K. Tripathi, M. Wan, R.R. Yadav, R.K. Singh, Samata, A.K. Srivastava, NiO-based nanostructures with efficient optical and electrochemical properties for high-performance nanofluids, Nanotechnology 24 (2013) 415705 (1-15).

DOI: 10.1088/0957-4484/24/41/415705

Google Scholar

[148] V. Kalsani, M. Schmittel, A. Listorti, G. Accorsi, N. Armaroli, Novel phenanthroline ligands and their kinetically locked copper(I) complexes with unexpected photophysical properties, Inorg. Chem. 45 (2006) 2061-(2067).

DOI: 10.1021/ic051828v

Google Scholar

[149] G. Rapenne, C.O.D. Buchecker, J.P. Sauvage, Copper(I)- or Iron(II)-templated synthesis of molecular knots containing two tetrahedral or octahedral coordination sites, J. Am. Chem. Soc. 121 (1999) 994-1001.

DOI: 10.1021/ja982239+

Google Scholar

[150] G. Wang, L. Zhang, J. Mou, Preparation and optical absorption of nanometer-sized NiO powder, Acta Phys. Chim. 13 (1997) 45-48.

Google Scholar

[151] T. Fukui, S. Ohara, H. Okawa, T. Hota, M. Naito, Properties of NiO cathode coated with lithiated Co and Ni solid solution oxide for MCFCs, J. Power Sources 86 (2000) 340-346.

DOI: 10.1016/s0378-7753(99)00416-4

Google Scholar

[152] H. Bi, S. Li, Y. Zhang, Y. Du, Feromagnetic-like behavior of ultrafine NiO nanocrystalites, J. Magn. Magn. Mater. 27 (2004) 363-367.

Google Scholar

[153] B. Zhao, X.K. Ke, J.H. Bao, C.L. Wang, L. Dong, Y.W. Chen, H.L. Chen, Synthesis of flower-like NiO and effects of morphology on its catalytic properties, J. Phys. Chem. C 113 (2009) 14440-14447.

DOI: 10.1021/jp904186k

Google Scholar

[154] X. Cao, Y.J. Xu, N. Wang, Facile synthesis of NiO nanoflowers and their electrocatalytic performance, Sens. Actuat. B 153 (2011) 434-438.

Google Scholar

[155] R.K. Joshi, J.J. Schneider, Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality, Chem. Soc. Rev. 41 (2012) 5285-5312.

DOI: 10.1039/c2cs35089k

Google Scholar

[156] H. Pang, Q. Lu, Y. Li, F. Gao, Facile synthesis of nickel oxide nanotubes and their antibacterial, electrochemical and magnetic properties, Chem. Commun. (2009) 7542-7544.

DOI: 10.1039/b914898a

Google Scholar

[157] Y.F. Yuan, X.H. Xia, J.B. Wu, J.L. Yang, Y.B. Chen, S.Y. Guo, Hierarchically ordered porous nickel oxide array film with enhanced electrochemical properties for lithium ion batteries, Electrochem. Comm. 12 (2010) 890-893.

DOI: 10.1016/j.elecom.2010.04.013

Google Scholar

[158] J.T. Richardson, D.I. Yiagas, B. Turk, K. Forster, M.V. Twigg, Origin of superparamagnetism in nickel oxide, J. Appl. Phys. 70 (1991) 6977-6982.

DOI: 10.1063/1.349826

Google Scholar

[159] J. Bahadur, D. Sen, S. Mazumder, S. Ramanathan, Effect of heat treatment on pore structure in nano-crystalline NiO: A small angle neutron scattering study, J. Solid State Chem. 181 (2008) 1227-1235.

DOI: 10.1016/j.jssc.2008.01.050

Google Scholar

[160] H. Sato, T. Minami, S. Takata, T. Yamada, Transparent conducting p-type NiO thin films prepared by magnetron sputtering, Thin Solid Films 236 (1993) 27-31.

DOI: 10.1016/0040-6090(93)90636-4

Google Scholar

[161] A.D. Khalaji, Preparation and characterization of NiO Nanoparticles via solid-state thermal decomposition of Ni(II) complex, J. Clust. Sci. 24 (2013) 189-195.

DOI: 10.1007/s10876-012-0542-3

Google Scholar

[162] R. Hada, A. Rani, V. Devra, S.S. Amritphale, A novel synthesis process for making nickel oxide nanoparticles, Int. Res. J. Pure Appl. Chem. 3 (2013) 11-17.

Google Scholar

[163] M.A. Wahab, F. Darain, Nano-hard template synthesis of pure mesoporous NiO and its application for streptavidin protein immobilization, Nanotechnology 25 (2014) 165701 (1-7).

DOI: 10.1088/0957-4484/25/16/165701

Google Scholar

[164] K. Sathishkumar, N. Shanmugam, N. Kannadasan, S. Cholan, G. Viruthagiri, Synthesis and characterization of nanocrystalline nickel oxide using NaOH and oxalic acid as oxide sources, Mater. Res. Express 1 (2014) 026104 (1-13).

DOI: 10.1088/2053-1591/1/2/026104

Google Scholar

[165] N. Dharmaraj, P. Prabu, S. Nagarajan, C.H. Kim, J.H. Park, H.Y. Kim, Synthesis of nickel oxide nanoparticles using nickel acetate and poly(vinyl acetate) precursor, Mater. Sci. Eng. B 128 (2006) 111-114.

DOI: 10.1016/j.mseb.2005.11.021

Google Scholar

[166] M.N. Rifaya, T. Theivasanthi, M. Alagar, Chemical Capping Synthesis of Nickel Oxide Nanoparticles and their Characterizations Studies, J. Nanosci. Nanotechnol. 2 (2012) 134-138.

DOI: 10.5923/j.nn.20120205.01

Google Scholar

[167] L.G. Teoh, K.D. Li, Synthesis and characterization of NiO nanoparticles by sol gel method, Mater Trans. 53 (2012) 2135- 2140.

DOI: 10.2320/matertrans.m2012244

Google Scholar

[168] B.B. Nayak, S. Vitta, A.K. Nigam, D. Bahadur, Ni and Ni–nickel oxide nanoparticles with different shapes and a core–shell structure, Thin Solid Films 505 (2006) 109-112.

DOI: 10.1016/j.tsf.2005.10.018

Google Scholar

[169] A. Barakat, M. Al-Noaimi, M. Suleiman, A.S. Aldwayyan, B. Hammouti, T.B. Hadda, S. F. Haddad, A. Boshaala, I. Warad, One step synthesis of NiO nanoparticles via solid-state thermal decomposition at low-temperature of novel aqua(2, 9-dimethyl-1, 10-phenanthroline) NiCl2 complex, Int. J. Mol. Sci. 14 (2013).

DOI: 10.3390/ijms141223941

Google Scholar

[170] S.R. Gawali, S. Pandit, J. Pant, Magnetic properties of Co3O4 nanoparticles, Int. J. Chem. Tech. Res. 6 (2014) 2178-2180.

Google Scholar

[171] L. Biao, G. Jian-guo, W. Qi, Z. Qing-jie, Preparation of nanometer cobalt particles by polyol reduction process and mechanism research, Mater. Trans. 46 (2005) 1865-1867.

DOI: 10.2320/matertrans.46.1865

Google Scholar

[172] R.M. Wang, C.M. Liu, H.Z. Zhang, C.P. Chen, L. Guo, H.B. Xu, S.H. Yang, Porous nanotubes of Co3O4: Synthesis, characterization, and magnetic properties, Appl. Phys. Lett. 85 (2004) 2080-(2082).

DOI: 10.1063/1.1789577

Google Scholar

[173] X. Liu, G. Qiu, X. Li, Shape-controlled synthesis and properties of uniform spinel cobalt oxide nanocubes, Nanotechnology 16 (2005) 3035-3040.

DOI: 10.1088/0957-4484/16/12/051

Google Scholar

[174] X.F. Zheng, G.F. Shen, Y. Li, H.N. Duan, X.Y. Yang, S.Z. Huang, H.E. Wang, C. Wang, Z. Deng, B.L. Su, Self-templated synthesis of microporous CoO nanoparticles with highly enhanced performance for both photocatalysis and lithium-ion batteries, J. Mater. Chem. A 1 (2013).

DOI: 10.1039/c2ta00536k

Google Scholar

[175] S. Guo, S. Zhang, L. Wu, S. Sun, Co/CoO nanoparticles assembled on graphene for electrochemical reduction of oxygen, Angew. Chem. Int. Ed. 51 (2012) 11770-11773.

DOI: 10.1002/anie.201206152

Google Scholar

[176] L. Sun, H. Li, L. Ren, C. Hu, Synthesis of Co3O4 nanostructures using a solvothermal approach, Solid State Sci 11 (2009) 108-112.

DOI: 10.1016/j.solidstatesciences.2008.05.013

Google Scholar

[177] Y. Chen, Y. Zhang, S. Fu, Synthesis and characterization of Co3O4 hollow spheres, Mater Lett 61 (2007) 701-705.

DOI: 10.1016/j.matlet.2006.05.046

Google Scholar

[178] T. Lai, Y. Lai, C. Lee, Y. Shu, C. Wang, Microwave-assisted rapid fabrication of Co3O4 nanorods and application to the degradation of phenol, Catal. Today 131 (2008) 105-110.

DOI: 10.1016/j.cattod.2007.10.039

Google Scholar

[179] W.W. Wang, Y.J. Zhu, Microwave-assisted synthesis of cobalt oxalate nanorods and their thermal conversion to Co3O4 rods, Mater. Res. Bull. 40 (2005) 1929-(1935).

DOI: 10.1016/j.materresbull.2005.06.004

Google Scholar

[180] L. Li, Y. Chu, Y. Liu, J.L. Song, D. Wang, X.W. Du, A facile hydrothermal route to synthesize novel Co3O4 nanoplates, Mater. Lett. 62 (2008) 1507-1510.

DOI: 10.1016/j.matlet.2007.09.012

Google Scholar

[181] J. Du, L. Chai, G. Wang, K. Li, Y. Qian, Controlled synthesis of one dimensional single-crystal Co3O4 nanowires, Aust. J. Chem. 61 (2008) 153-158.

DOI: 10.1071/ch07186

Google Scholar

[182] J.P. Cheng, X. Chen, J.S. Wu, F. Liu, X.B. Zhang, V.P. Dravid, Porous cobalt oxides with tunable hierarchical morphologies for supercapacitor electrodes, Cryst. Eng. Comm. 14 (2012) 6702-6709.

DOI: 10.1039/c2ce26057c

Google Scholar

[183] Y. Li, J. Zhao, Y. Dan, D. Ma, Y. Zhao, S. Hou, H. Lin, Z. Wang, Low temperature aqueous synthesis of highly dispersed Co3O4 nanocubes and their electrocatalytic activity studies, Chem. Eng. J. 166 (2011) 428-434.

DOI: 10.1016/j.cej.2010.10.080

Google Scholar

[184] H. Sun, M. Ahmad, J. Zhu, Morphology-controlled synthesis of Co3O4 porous nanostructures for the application as lithium-ion battery electrode, Electrochim. Acta 89 (2013) 199-205.

DOI: 10.1016/j.electacta.2012.10.116

Google Scholar

[185] M. Ren, S. Yuan, L. Su, Z. Zhou, Chrysanthemum-like Co3O4 architectures: hydrothermal synthesis and lithium storage performances, Solid State Sci. 14 (2012) 451-455.

DOI: 10.1016/j.solidstatesciences.2012.01.011

Google Scholar

[186] L.X. Yang, Y.J. Zhu, L. Li, L. Zhang, H. Tong, W.W. Wang, A facile hydrothermal route to flower-like cobalt hydroxide and oxide, Eur. J. Inorg. Chem. 23 (2006) 4787-4792.

DOI: 10.1002/ejic.200600553

Google Scholar

[187] X. Guo, W. Xu, S. Li, Y. Liu, M. Li, X. Qu, C. Mao, X. Cui, C. Chen, Surfactant-free scalable synthesis of hierarchically spherical Co3O4 superstructures and their enhanced lithium-ion storage performances, Nanotechnology 23 (2012) 465401 (1-7).

DOI: 10.1088/0957-4484/23/46/465401

Google Scholar

[188] W. Wen, J.M. Wu, J.P. Tu, A novel solution combustion synthesis of cobalt oxide nanoparticles as negative-electrode materials for lithium ion batteries, J. Alloys Compd. 513 (2012) 592-596.

DOI: 10.1016/j.jallcom.2011.11.019

Google Scholar

[189] C.W. Kung, C.Y. Lin, R. Vittal, K.C. Ho, Synthesis of cobalt oxide thin films in the presence of various anions and their application for the detection of acetaminophen, Sens. Actuators B 182 (2013) 429-438.

DOI: 10.1016/j.snb.2013.03.011

Google Scholar

[190] A.A. Athawale, M. Majumdar, H. Singh, K. Navinkiran, Synthesis of cobalt oxide nanoparticles/fibres in alcoholic medium using g-ray technique, Defence Sci J. 60 (2010) 507-513.

DOI: 10.14429/dsj.60.574

Google Scholar

[191] S.L. Sharifi, H.R. Shakur, A. Mirzaei, A. Salmani, M.H. Hosseini, Characterization of cobalt oxide Co3O4 nanoparticles prepared by various methods: Effect of calcination temperatures on size, dimension and catalytic decomposition of hydrogen peroxide, Int. J. Nanosci. Nanotechnol. 9 (2013).

Google Scholar

[192] K.D. Bhatte, B.M. Bhanage, Synthesis of cobalt oxide nanowires using a glycerol thermal route, Mater Lett. 96 (2013) 60-62.

DOI: 10.1016/j.matlet.2013.01.019

Google Scholar

[193] M.T. Makhlouf, B.M. Abu-Zied, T.H. Mansoure, Direct fabrication of cobalt oxide nanoparticles employing sucrose as a combustion fuel, J. Nanopart. 2013 (2013) 384350 (1-7).

DOI: 10.1155/2013/384350

Google Scholar

[194] G.A.M. Hussein, Formation, Characterization, and Catalytic Activity of Gadolinium Oxide. Infrared Spectroscopic Studies, J. Phys. Chem. 98 (1994) 9657-9664.

DOI: 10.1021/j100089a047

Google Scholar

[195] K. Takahashi, S. Tazaki, J. Miyahara, Y. Karasawa, N. Niimura, Imaging performance of imaging plate neutron detectors, Nucl. Instrum. Methods Phys. Res. A 377 (1996) 119-122.

DOI: 10.1016/0168-9002(96)00128-3

Google Scholar

[196] G. Gunduz, I. Uslu, Powder characteristics and microstructure of uranium dioxide and uranium dioxide-gadolinium oxide fuel, J. Nucl. Mater. 231 (1996) 113-120.

DOI: 10.1016/0022-3115(96)00349-2

Google Scholar

[197] S. Bhattacharyya, D.C. Agrawal, Preparation of tetragonal ZrO2-Gd2O3 powders, J. Mater. Sci. 30 (1995) 1495-1499.

DOI: 10.1007/bf00375254

Google Scholar

[198] Z. Chen, Effects of gadolinia and alumina addition on the densification and toughening of silicon carbide, J. Am. Ceram. Soc. 79 (1996) 530-532.

DOI: 10.1111/j.1151-2916.1996.tb08160.x

Google Scholar

[199] C.M. Wang, X. Pan, M.J. Hoffmann, R.M. Cannon, M. Ruehle, Grain Boundary Films in Rare-Earth-Glass-Based Silicon Nitride, J. Am. Ceram. Soc. 79 (1996) 788-792.

DOI: 10.1111/j.1151-2916.1996.tb07946.x

Google Scholar

[200] T. Tsuzuki, E. Pirault, P.G. McCormick, Mechanochemical synthesis of gadolinium oxide nanoparticles, Nanostruct Mater, 11 (1999) 125–131.

DOI: 10.1016/s0965-9773(99)00025-2

Google Scholar

[201] N. Sakai, L. Zhu, A. Kurokawa, H. Takeuchi, S. Yano, T. Yanoh, N. Wada, S. Taira, Y. Hosokai, A. Usui, Y. Machida, H. Saito, Y. Ichiyanagi, Synthesis of Gd2O3 nanoparticles for MRI contrast agents, J. Phys.: Conf. Ser. 352 (2012) 012008 (1-6).

DOI: 10.1088/1742-6596/352/1/012008

Google Scholar

[202] S.A. Khan, S. Gambhir, A. Ahmad, Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol, Beilstein J. Nanotechnol. 5 (2014) 249–257.

DOI: 10.3762/bjnano.5.27

Google Scholar

[203] F. Sonvico, S. Mornet, S. Vasseur, C. Dubernet, D. Jaillard, J. Degrouard, J. Hoebeke, E. Duguet, P. Colombo, P. Coureur, Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments, Bioconjugate Chem. 16 (2005).

DOI: 10.1021/bc050050z

Google Scholar

[204] L. Babes, B. Denizot, G. Tanguy, J.J. Le, P. Jallet, Synthesis of iron oxide nanoparticles used as MRI contrast agents: A parametric study, J. Colloid Interface Sci. 212 (1999) 474‐482.

DOI: 10.1006/jcis.1998.6053

Google Scholar

[205] V. Shubayev, R.T. Pisanic, S. Jin, Magnetic nanoparticles for theragnostics, Adv. Drug Deliv. Rev. 61 (2009) 467-477.

DOI: 10.1016/j.addr.2009.03.007

Google Scholar

[206] T. Hyeon, Chemical synthesis of magnetic nanoparticles, Chem. Commun. (2003) 927-934.

Google Scholar

[207] D.W. Elliott, W.X. Zhang, Field assesment of nanoscale bimetallic particles for groundwater, Environ. Sci. Technol. 35 (2001) 4922-4926.

DOI: 10.1021/es0108584

Google Scholar

[208] J. Philip, P.D. Shima, B. Raj, Nanofluid with tunable thermal properties, Appl Phys Lett. 92 (2008) 043108 (1-3).

Google Scholar

[209] J. Philip, T.J. Kumar, P. Kalyanasundaram, B. Raj, A tunable optical filter, Meas. Sci. Technol. 14 (2003) 1289-1294.

DOI: 10.1088/0957-0233/14/8/314

Google Scholar

[210] V. Mahendran, J. Philip, Nanofluid based optical sensor for rapid visual inspection of defects in ferromagnetic materials, Appl. Phys. Lett. 100 (2012) 073104 (1-3).

DOI: 10.1063/1.3684969

Google Scholar

[211] S.H. Huilin, J.Y. Tae, L. Monty, W. Ralph, L. Hakho, Magnetic nanoparticles for biomedical NMR-based diagnostics, Beilstein J. Nanotechnol. 1 (2010) 142-154.

Google Scholar

[212] R.K. Gupta, K. Ghosh, P.K. Kahol, Room temperature ferromagnetic multilayer thin film based on indium oxide and iron oxide for transparent spintronic applications, Mater Lett. 64 (2010) 2022-(2024).

DOI: 10.1016/j.matlet.2010.06.026

Google Scholar

[213] Q. Sun, Y. Zeng, K. Zuo, Different magnetic properties of rhombohedral and cubic Ni2+ doped indium oxide nanomaterials, AIP adv. 1 (2011) 042102 (1-6).

DOI: 10.1063/1.3650788

Google Scholar

[214] R. Saravanan, K. Santhi, N. Sivakumar V. Narayanan, A. Stephen, Synthesis and characterization of ZnO and Ni doped ZnO nanorods by thermal decomposition method for spintronics application, Mater Charact. 67 (2012) 10-16.

DOI: 10.1016/j.matchar.2012.02.015

Google Scholar

[215] B.I. Nandapure, S.B. Kondawar, M.Y. Salunkhe, A.I. Nandapure, Magnetic and transport properties of conducting polyaniline/nickel oxide nanocomposites, Adv. Mat. Lett. 4 (2013) 134-140.

DOI: 10.5185/amlett.2014.amwc.1035

Google Scholar

[216] Z.J. Min, G. Dan, X.U.K. Wei, The structural, electronic and magnetic properties of the 3d TM (V, Cr, Mn, Fe, Co, Ni and Cu) doped ZnO nanotubes: A first-principles study, Sci China. Phys Mech Astron. 55 (2012) 428-435.

DOI: 10.1007/s11433-012-4657-1

Google Scholar

[217] A. Regtmeier, A. Weddemann, I. Ennen, A. Hütten, Magnetic nanoparticles for novel granular spintronic devices, COMSOL Conference, (2012).

Google Scholar

[218] S. Datta, B. Das, Electronic analog of the electro‐optic modulator, Appl. Phys. Lett. 56 (1990) 665-667.

DOI: 10.1063/1.102730

Google Scholar

[219] B. Huang, D.J. Monsma, I. Appelbaum, Experimental realization of a silicon spin field-effect transistor, Appl. Phys. Lett. 91 (2007) 072501-3.

DOI: 10.1063/1.2770656

Google Scholar

[220] Z. Liao, Y. Li, J. Xu, J. Zhang, K. Xia, D. Yu, Spin-Filter Effect in Magnetite Nanowire, Nano Lett. 6 (2006) 1087-1091.

DOI: 10.1021/nl052199p

Google Scholar

[221] A. Parekh, Use of magnetic nanoparticles for waste water treatment, Ph. D Thesis, Massachusetts Institiute of Technology, Cambridge, United States, June (2013).

Google Scholar

[222] F.H. Wang, W. Jiang, Y. Fang, C.W. Cheng, A preparation of Fe3O4 magnetic porous microspheres (MPMs) and their application in treating mercury-containing wastewater from the polyvinyl chloride industry by calcium carbide method, Chem. Eng. J. 259 (2015).

DOI: 10.1016/j.cej.2014.08.009

Google Scholar

[223] S. Kong, Y. Wang, Q. Hu, A.K. Olusegun, Magnetic nanoscale Fe-Mn binary oxides loaded zeolite for arsenicremoval from synthetic groundwater, Colloids Surf. A 457 (2014) 220-227.

DOI: 10.1016/j.colsurfa.2014.05.066

Google Scholar

[224] H. Wang, Y.G. Liua, G.M. Zeng, X.J. Hu, X. Hu, T.T. Li, H.Y. Li, Y.Q. Wang, L.H. Jiang, Grafting of β-cyclodextrin to magnetic graphene oxide via ethylenediamine and application for Cr(VI) removal, Carbohyd Polym. 113 (2014) 166-173.

DOI: 10.1016/j.carbpol.2014.07.014

Google Scholar

[225] S.D. Pan, L.X. Zhou, Y.G. Zhao, X.H. Chen, H.Y. Shen, M.Q. Cai, M.C. Jin, Amine-functional magnetic polymer modified graphene oxide asmagnetic solid-phase extraction materials combined with liquid chromatography-tandem mass spectrometry for chlorophenols analysis in environmental water, J Chromatogr A. 1362 (2014).

DOI: 10.1016/j.chroma.2014.08.027

Google Scholar

[226] H. Parham, B. Zargar, M. Rezazadeh, Removal, preconcentration and spectrophotometric determination of picric acid in water samples using modified magnetic iron oxide nanoparticles as an efficient adsorbent, Mat Sci Eng. 32 (2012) 2109-2114.

DOI: 10.1016/j.msec.2012.05.044

Google Scholar

[227] R. Lakshmanan, C. Okoli, M. Boutonnet, S. Järås, G.K. Rajarao, Effect of magnetic iron oxide nanoparticles in surface water treatment: Trace minerals and microbes, Bioresource Technol 129 (2013) 612-615.

DOI: 10.1016/j.biortech.2012.12.138

Google Scholar

[228] A.K. Gupta, R.R. Naregalkar, V.D. Vaidya, M. Gupta, Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications, Nanomedicine 2 (2007) 23-39.

DOI: 10.2217/17435889.2.1.23

Google Scholar

[229] T. Dey, Polymer-coated magnetic nanoparticles: surface modification and end functionalization, J Nanosci Nanotechnol. 6 (2006) 2479-2483.

DOI: 10.1166/jnn.2006.534

Google Scholar

[230] C. Corot, P. Robert, J.M. Idee, M. Port, Recent Advances in Iron Oxide Nanocrystal Technology for Medical Imaging, Adv. Drug Del. Rev. 58 (2006) 1471-1504.

DOI: 10.1016/j.addr.2006.09.013

Google Scholar

[231] Y.X.J. Wang, S.M. Hussain, G.P. Krestin, Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging, Eur. Radiol. 11 (2001) 2319-2331.

DOI: 10.1007/s003300100908

Google Scholar

[232] J. Dobson, Gene therapy progress and prospects: magnetic nanoparticle- based gene delivery, Gene Ther. 13 (2006) 283-287.

DOI: 10.1038/sj.gt.3302720

Google Scholar

[233] H.S. Choi, W. Liu, P. Misra, E. Tanaka, J.P. Zimmer, B.I. Ipe, M.G. Bawendi, J.V. Frangioni, Renal clearance of quantum dots, Nat Biotechnol 25 (2007) 1165-1170.

DOI: 10.1038/nbt1340

Google Scholar

[234] X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Shape control of CdSe nanocrystals, Nature 404 (2000) 59-61.

DOI: 10.1038/35003535

Google Scholar

[235] V.F. Puntes, K.M. Krishnan, A.P. Alivisatos, Colloidal nanocrystal shape and size control: the case of cobalt, Science 291 (2001) 2115-2117.

DOI: 10.1126/science.1058495

Google Scholar

[236] J. Park, E. Lee, N.M. Hwang, M.S. Kang, S.C. Kim, Y. Hwang, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, T. Hyeon, One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles, Angew Chem Int Ed. 44 (2005).

DOI: 10.1002/anie.200461665

Google Scholar

[237] N. Nitin, L.E.W.L. Conte, O. Zurkiya, X. Hu, G. Bao, Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent, J Biol Inorg Chem. 9 (2004) 706-712.

DOI: 10.1007/s00775-004-0560-1

Google Scholar

[238] H. Duan, M. Kuang, X. Wang, Y.A. Wang, H. Mao, S. Nie, Re examining the effects of particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals: New insights into spin disorder and proton relaxivity, J Phys Chem C. 112 (2008).

DOI: 10.1021/jp8029083

Google Scholar

[239] C. Schweiger, C. Pietzonka, J. Heverhagen, T. Kissel, Novel magnetic iron oxide nanoparticles coated with poly(ethylene-imine)-g-poly(ethylene glycol) for potential biomedical application: Synthesis, stability, cytotoxicity and MR imaging, Int. J. Pharm 408 (2011).

DOI: 10.1016/j.ijpharm.2010.12.046

Google Scholar

[240] J. Li, Y. He, W. Sun, Y. Luo, H. Cai, Y. Pan, M. Shen, J. Xia, X. Shi, Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging, Biomaterials 35 (2014) 3666-3677.

DOI: 10.1016/j.biomaterials.2014.01.011

Google Scholar

[241] A. Khan, Preparation and characterization of magnetic nanoparticles embedded in microgels, Mater Lett. 62 (2008) 898-902.

DOI: 10.1016/j.matlet.2007.07.011

Google Scholar

[242] G. Yang, B. Zhang, J. Wang, S. Xie, X. Li, Preparation of polylysine-modified superparamagnetic iron oxide nanoparticles, J. Magn. Magn. Mater. 374 (2015) 205-208.

DOI: 10.1016/j.jmmm.2014.08.040

Google Scholar

[243] B. Zapotoczny, N. Guskos, J.J. Kozioł, M.R. Dudek, Preparation of the narrow size distribution USPIO in mesoporous silica for magnetic field guided drug delivery and release, J. Magn. Magn. Mater. 374 (2015) 96-102.

DOI: 10.1016/j.jmmm.2014.08.035

Google Scholar

[244] B. Zapotoczny, M.R. Dudek, J.J. Koziol, J. Mleczko, Nanobuffering property of Fe3O4 magnetic nanoparticles in aqueous solution, Phys. A 392 (2013) 1493-1499.

DOI: 10.1016/j.physa.2012.12.002

Google Scholar

[245] M.M. Yallapu, S.F. Othman, E.T. Curtis, B.K. Gupta, M. Jaggi, S.C. Chauhan, Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy, Biomaterials 32 (2011) 1890-(1905).

DOI: 10.1016/j.biomaterials.2010.11.028

Google Scholar

[246] T.K. Jain, M.A. Morales, S.K. Sahoo, D.L.L. Pelecky, V. Labhasetwar, Iron oxide nanoparticles for sustained delivery of anticancer agents, Mol Pharm. 2 (2005) 194-205.

DOI: 10.1021/mp0500014

Google Scholar

[247] T.K. Jain, M.K. Reddy, M.A. Morales, D.L.L. Pelecky, V. Labhasetwar, Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats, Mol Pharm. 5 (2008) 316-327.

DOI: 10.1021/mp7001285

Google Scholar

[248] D.T.K. Dung, T.H. Hai, L.H. Phuc, B.D. Long, L.K. Vinh, P.N. Truc, Preparation and characterization of magnetic nanoparticles with chitosan coating, JPCS. 187 (2009) 012036 (1-5).

DOI: 10.1088/1742-6596/187/1/012036

Google Scholar

[249] R. de Lima, J.L. de Oliveira, A. Ludescher, M.M. Molina, R. Itri, A.B. Seabra, P.S. Haddad, Nitric oxide releasing iron oxide magnetic nanoparticles for biomedical applications: cell viability, apoptosis and cell death evaluations, JPCS. 429 (2013).

DOI: 10.1088/1742-6596/429/1/012034

Google Scholar

[250] B.H. Lai, C.C. Yeh, D.H. Chen, Surface modification of iron oxide nanoparticles with polyarginine as a highly positively charged magnetic nano-adsorbent for fast and effective recovery of acid proteins, Process Biochem 47 (2012) 799-805.

DOI: 10.1016/j.procbio.2012.02.010

Google Scholar

[251] V. Sundaresan, J.U. Menon, M. Rahimi, K.T. Nguyen, A.S. Wadajkar, Dual-responsive polymer-coated iron oxide nanoparticles for drug delivery and imaging applications, Int. J. Pharm 466 (2014) 1-7.

DOI: 10.1016/j.ijpharm.2014.03.016

Google Scholar

[252] G.R. Bardajee, Z. Hooshyar, One-pot synthesis of biocompatible superparamagnetic iron oxide nanoparticles/hydrogel based on salep: Characterization and drug delivery, Carbohydr. Polym. 101 (2014) 741- 751.

DOI: 10.1016/j.carbpol.2013.10.028

Google Scholar

[253] R. Costo, V. Bello, C. Robic, M. Port, J.F. Marco, M.P. Morales, S.V. Verdaguer, Ultrasmall Iron Oxide nanoparticles for biomedical applications: improving the colloidal and magnetic properties, Langmuir 28 (2012) 178-185.

DOI: 10.1021/la203428z

Google Scholar

[254] B. Rajan, S. Sathish, S. Jayakumar, A. Madankumar, K. Gokuladhas, T. Premkumar, R. Elamaran, M. Gopikrishnan, T. Devaki, Synthesis and in vitro anticancer evaluation of 2-isopropyl-5-methylphenol loaded PLGA based iron oxide nanoparticles, Br J Nutr. 4 (2014).

DOI: 10.1016/j.bionut.2013.12.004

Google Scholar

[255] H.M. Yang, C.W. Park, T. Ahn, B. Jung, B.K. Seo, J.H. Park, J.D. Kim, A direct surface modification of iron oxide nanoparticles with various poly(amino acid)s for use as magnetic resonance probes, J Colloid Interf Sci. 391 (2013) 158-167.

DOI: 10.1016/j.jcis.2012.09.044

Google Scholar

[256] Z. Zhou, Y. Sun, J. Shen, J. Wei, C. Yu, B. Kong, W. Liu, H. Yang, S. Yang, W. Wang, Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy, Biomaterials 35 (2014) 7470-7478.

DOI: 10.1016/j.biomaterials.2014.04.063

Google Scholar

[257] J. Chen, M. Shi, P. Liu, A. Ko, W. Zhong, W. J Liao, M.M.Q. Xing, Reducible polyamidoamine-magnetic iron oxide self-assembled nanoparticles for doxorubicin delivery, Biomaterials 35 (2014) 1240-1248.

DOI: 10.1016/j.biomaterials.2013.10.057

Google Scholar

[258] M.G. Krukemeyer, V. Krenn, M. Jakobs, W. Wagner, Mitoxantrone-Iron Oxide biodistribution in blood, tumor, spleen, and liver-Magnetic nanoparticles in cancer treatment, J Surg Res. 175 (2012) 35-43.

DOI: 10.1016/j.jss.2011.01.060

Google Scholar

[259] C. Wang, H. Xu, C. Liang, Y. Liu, Z. Li, G. Yang, L. Cheng, Y. Li, Z. Liu, Iron Oxide @ Polypyrrole Nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect, ACS Nano. 7 (2013).

DOI: 10.1021/nn4017179

Google Scholar

[260] A. Amarjargal, L.D. Tijing, C.H. Park, I.T. Im, C.S. Kim, Controlled assembly of superparamagnetic iron oxide nanoparticles on electrospun PU nanofibrous membrane: A novel heat-generating substrate for magnetic hyperthermia application, Eur Polym J 49 (2013).

DOI: 10.1016/j.eurpolymj.2013.08.026

Google Scholar

[261] L.A. Tai, P.J. Tsai, Y.C. Wang, Y.J. Wang, L.W. Lo, C.S. Yang, Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release, Nanotechnology 20 (2009) 135101 (1-9).

DOI: 10.1088/0957-4484/20/13/135101

Google Scholar

[262] G. Kaur, S.K. Tripathi, Investigation of trypsin–CdSe quantum dot interactions via spectroscopic methods and effects on enzymatic activity, Spectrochim. Acta, Part A 134 (2015) 173–183.

DOI: 10.1016/j.saa.2014.05.064

Google Scholar

[263] X. Li, X. Wang, L. Li, H. Duan, C. Luo, Electrochemical sensor based on magnetic graphene oxide@gold nanoparticles-molecular imprinted polymers for determination of dibutyl phthalate, Talanta 131 (2015) 354-360.

DOI: 10.1016/j.talanta.2014.07.028

Google Scholar

[264] J. Wu, L. Zhou, H. Zhang, J. Guo, X. Mei, C. Zhang, J. Yuan, X.H. Xing, Direct affinity immobilization of recombinant heparinase I fused to maltose binding protein on maltose-coated magnetic nanoparticles, Biochem. Eng. J. 90 (2014) 170-177.

DOI: 10.1016/j.bej.2014.05.021

Google Scholar

[265] E. Carenz, V. Barceló, A. Morancho, J. Montaner, A. Rosell, A. Roig, Rapid synthesis of water-dispersible superparamagnetic iron oxide nanoparticles by a microwave-assisted route for safe labeling of endothelial progenitor cells, Acta Biomaterialia 10 (2014).

DOI: 10.1016/j.actbio.2014.04.010

Google Scholar

[266] A.J. Cole, A.E. David, J. Wang, C.J. Galbán, H.L. Hill, V.C. Yang, Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumour targeting, Biomaterials 32 (2011) 2183-2193.

DOI: 10.1016/j.biomaterials.2010.11.040

Google Scholar

[267] F. Yu, Y. Huang, A.J. Cole, V.C. Yang, The artificial peroxidase activity of magnetic iron oxide nanoparticles and its application to glucose detection, Biomaterials 30 (2009) 4716-4722.

DOI: 10.1016/j.biomaterials.2009.05.005

Google Scholar

[268] D. Wang, J. He, N. Rosenzweig, Z. Rosenzweig, Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation, Nano Lett. 4 (2004) 409-413.

DOI: 10.1021/nl035010n

Google Scholar