Magnetic Iron Oxide Nanoparticles as Contrast Agents: Hydrothermal Synthesis, Characterization and Properties

Article Preview

Abstract:

Superparamagnetic Iron oxide nanoparticles (SPIONs) have fascinated researchers due to their vast applications in biomedical fields such as magnetic resonance imaging, cell sorting, hyperthermia, drug delivery etc. The special properties of SPIONs depend on the method of synthesis and surface modification. Among various synthetic protocols, hydrothermal method has attracted much attention due to simplicity, uniformity and excellent magnetic properties of iron oxide nanoparticles. Magnetic properties of SPIONs could be tuned by controlling the size and shape of the particles as well as by the surface modification. Low colloidal stability and high hydrophobic nature of SPIONs result in aggregation of the particles which could be avoided by surface modification of the SPIONs using various capping agents. The size, shape and surface environment of SPIONs can also be controlled by the surface coating. SPIONs are promising contrast agents due to their non-poisonous nature, biocompatibility and large surface area. The biocompatibility of SPIONs is enhanced by the surface coating/modification. The present review focuses on the hydrothermal synthesis of SPIONs and their characterization using various techniques and the applications of SPIONs in the MRI.Table of Contents

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 232)

Pages:

111-145

Citation:

Online since:

June 2015

Export:

Price:

[1] G. A. Ozin, Nanochemistry: Synthesis in diminishing dimensions, Adv. Mater. 4 (1992) 612-649.

DOI: 10.1002/adma.19920041003

Google Scholar

[2] M. A. Shah, T. Ahmad, Principles of Nanoscience and Nanotechnology, Narosa Publishing House, New Delhi, India (2010).

Google Scholar

[3] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition metal oxides as negative-electrode materials for lithium-ion batteries, Nature 407 (2000) 496-499.

DOI: 10.1038/35035045

Google Scholar

[4] A. Tari, R.W. Chantrell, S.W. Charles, J. Popplewell, Magnetic-properties and stability of a ferrofluid containing Fe3O4particles, Physica B & C 97 (1979) 57-64.

DOI: 10.1016/0378-4363(79)90007-x

Google Scholar

[5] M. Mahmoudi, A. Simchi, M. Imani, P. Stroeve, A. Sohrabi, Templated growth of superparamagnetic iron oxide nanoparticles by temperature programming in the presence of poly(vinyl alcohol), Thin Solid Films 518 (2010) 4281-4289.

DOI: 10.1016/j.tsf.2009.12.112

Google Scholar

[6] M. Mahmoudi, S. Sant, B. Wang, S. Laurent, T. Sen, Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy, Adv. Drug Deliver. Rev. 63 (2011) 24-46.

DOI: 10.1016/j.addr.2010.05.006

Google Scholar

[7] C. N. R. Rao, G. V. S. Rao, Transition Metal Oxides: Crystal Chemistry, phase Transition and Related Aspects, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S. ) 49 (1974) 138 pages.

DOI: 10.6028/nbs.nsrds.49

Google Scholar

[8] T. Schroeder, Review Article Imaging stem-cell-driven regeneration in mammals, Nature 453 (2008) 345-351.

DOI: 10.1038/nature07043

Google Scholar

[9] H. R. Herschman, Molecular imaging: looking at problems, seeing solutions, Science 302 (2003) 605-608.

DOI: 10.1126/science.1090585

Google Scholar

[10] J. W. Bulte, D. L. Kraitchman, Iron oxide MR contrast agents for molecular and cellular imaging, NMR Biomed. 17 (2004) 484-499.

DOI: 10.1002/nbm.924

Google Scholar

[11] R. Weissleder, U. Mahmood, Molecular imaging, Radiology 219 (2001) 316-333.

Google Scholar

[12] W.J.M. Mulder, G.J. Strijkers, G.A.F. van Tilborg, A.W. Griffioen, K. Nicolay, Lipid based nanoparticles for contrast-enhanced MRI and molecular imaging, NMR Biomed. 19 (2006) 142-164.

DOI: 10.1002/nbm.1011

Google Scholar

[13] C. Wilhelm, F. Gazeau, Universal cell labelling with anionic magnetic nanoparticles, Biomaterials 29 (2008) 3161-3174.

DOI: 10.1016/j.biomaterials.2008.04.016

Google Scholar

[14] R. L. Magin, S. M. Wright, M. R. Niesman, H. C. Chan, H. M. Swartz, Liposome delivery of NMR contrast agents for improved tissue imaging, Magnet. Reson. Med. 3 (1986) 440-447.

DOI: 10.1002/mrm.1910030309

Google Scholar

[15] A. Ito, M. Shinkai, H. Honda, T. Kobayashi, Medical application of functionalized magnetic nanoparticles, J. Biosci. Bioeng. 100 (2005) 1-11.

Google Scholar

[16] A. K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26 (2005) 3995-4021.

DOI: 10.1016/j.biomaterials.2004.10.012

Google Scholar

[17] J. Yang, T. Lee, J. Lee, E. K. Lim, W. Hyung, C. H. Lee, Y. J. Song, J. S. Suh, H. G. Yoon, Y. M. Huh, S. Haam, synthesis of ultrasensitive magnetic resonance contrast agents for cancer imaging using PEG-fatty acid Chem. Mater. 19 (2007).

DOI: 10.1021/cm070495s

Google Scholar

[18] J. Yang, S. B. Park, H.G. Yoon, Y. M. Huh, S. Haam, Preparation of poly ɛ-caprolactone nanoparticles containing magnetite for magnetic drug carrier, Int. J. Pharm. 324 (2006) 185-190.

DOI: 10.1016/j.ijpharm.2006.06.029

Google Scholar

[19] R. B. Lauffer, Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design, Chem. Rev. 87 (1987) 901-927.

DOI: 10.1021/cr00081a003

Google Scholar

[20] A. E. Merbach, L. Helm, E. Toth, The chemistry of contrast agents in medical magnetic resonance imaging; Wiley (2001) 1-489.

Google Scholar

[21] S. Aime, L. Frullano, S. G. Crich, Compartmentalization of a gadolinium complex in the apoferritin cavity: a route to obtain high relaxivity contrast agents for magnetic resonance imaging, Angew. Chem. Int. Ed. 41 (2002) 1017-1019.

DOI: 10.1002/1521-3773(20020315)41:6<1017::aid-anie1017>3.0.co;2-p

Google Scholar

[22] P. Caravan, J. Ellison, T. J. McMurry, R. B. Lauffer, Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications, Chem. Rev. 99 (1999) 2293-2352.

DOI: 10.1021/cr980440x

Google Scholar

[23] P. A. Rinck, R. N. Muller, Field strength and dose dependence of contrast enhancement by gadolinium-based MR contrast agents, Eur. Radiol. 9 (1999) 998-1004.

DOI: 10.1007/s003300050781

Google Scholar

[24] L. Josephson, J. Lewis, P. Jacobs, P. F. Hahn, D. D. Stark, The effects of iron oxides on proton relaxivity, Magn. Reson. Imaging 6 (1988) 647-653.

DOI: 10.1016/0730-725x(88)90088-4

Google Scholar

[25] R. Weissleder, G. Elizondo, J. Wittenberg, C. A. Rabito, H. Bengele, L. Josephson, Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging, Radiology 175 (1990) 489-493.

DOI: 10.1148/radiology.175.2.2326474

Google Scholar

[26] R. N. Muller, L. Vander Elst, A. Roch, J. A. Peters, E. Csajbok, P. Gillis, Y. Gossuin, Relaxation by metal-containing nanosystems, Adv. Inorg. Chem. 57 (2005) 239-292.

DOI: 10.1016/s0898-8838(05)57005-3

Google Scholar

[27] S. Laurent, C. Nicotra, Y. Gossuin, A. Roch, A. Ouakssim, L. Vander Elst, M. Cornant, P. Soleil, R. N. Muller, Influence of the length of the coating molecules on the nuclear magnetic relaxivity of superparamagnetic colloids, Phys. Stat. Sol. (c) 1 (2004).

DOI: 10.1002/pssc.200405524

Google Scholar

[28] M. Kresse, S. Wagner, D. Pfefferer, R. Lawaczeck, V. Elste, W. Semmler, Targeting Of Ultrasmall Superparamagnetic Iron Oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways, Magn. Reson. Med. 40 (1998) 236-242.

DOI: 10.1002/mrm.1910400209

Google Scholar

[29] W. S. Enochs, G. Harsh, F. Hochberg, R. Weissleder, Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent, J. Magn. Reson. Im. 9 (1999) 228-232.

DOI: 10.1002/(sici)1522-2586(199902)9:2<228::aid-jmri12>3.0.co;2-k

Google Scholar

[30] C. H. Dodd, C-H. Hsu, W-J. Chu, P. Yang, H-G. Zhang, J. D. Mountz, K. Zinn, J. Forder, L. Josephson, R. Weissleder, J. M. Mountz, J. D. Mountz, Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J. Immunol. Methods, 256 (2001).

DOI: 10.1016/s0022-1759(01)00433-1

Google Scholar

[31] M. E. Kooi, V. C. Cappendijk, K. B. J. M. Cleutjens, A. G. H. Kessels, P. J. E. H. M. Kitslaar, M. Borgers, P. M. Frederik, M. J. A. P. Daemen, J. M. A. van Engelshoven, Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging, Circulation 107 (2003).

DOI: 10.1161/01.cir.0000068315.98705.cc

Google Scholar

[32] D. Artemov, N. Mori, B. Okollie, Z. M. Bhujwalla, MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn. Reson. Med. 49 (2003) 403-408.

DOI: 10.1002/mrm.10406

Google Scholar

[33] C. Corot, K. G. Petry, R. Trivedi, A. Saleh, C. Jonkmanns, B. J. -F. Le, E. Blezer, M. Rausch, B. Brochet, P. Foster-Gareau, D. Baleriaux, S. Gaillard, V. Dousset, Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. InVest. Radiol. 39 (2004).

DOI: 10.1097/01.rli.0000135980.08491.33

Google Scholar

[34] N. Nitin, L. E. W. LaConte, O. Zurkiya, X. Hu, G. Bao, Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J. Biol. Inorg. Chem. 9 (2004) 706-712.

DOI: 10.1007/s00775-004-0560-1

Google Scholar

[35] L. Josephson, C. -H. Tung, A. Moore, R. Weissleder, High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjugate Chem. 10 (1999) 186-191.

DOI: 10.1021/bc980125h

Google Scholar

[36] M. Lewin, N. Carlesso, C. -H. Tung, X. -W. Tang, D. Cory, D. T. Scadden, R. Weissleder, Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells, Nat. Biotechnol. 18 (2000) 410-414.

DOI: 10.1038/74464

Google Scholar

[37] L. Josephson, J. M. Perez, R. Weissleder, Magnetic nanosensors for the detection of oligonucleotide sequences, Angew. Chem. Int. Ed. 40 (2001) 3204-3206.

DOI: 10.1002/1521-3773(20010903)40:17<3204::aid-anie3204>3.0.co;2-h

Google Scholar

[38] S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. X. Li, Monodisperse MFe2O4 (M) Fe, Co, Mn) nanoparticles, J. Am. Chem. Soc. 126 (2004) 273-279.

DOI: 10.1021/ja0380852

Google Scholar

[39] Butterworth, M. D.; Illum, L.; Davis, S. S., Preparation of ultrafine silica- and PEG-coated magnetite particles, Colloid Surface A 179 (2001) 93-102.

DOI: 10.1016/s0927-7757(00)00633-6

Google Scholar

[40] D. V. Szabo, D. Vollath, Nanocomposites from Coated Nanoparticles, Adv. Mater. 11 (1999) 1313-1316.

Google Scholar

[41] L. N. Donselaar, A. P. Philipse, J. Suurmond, Concentration-dependent sedimentation of dilute magnetic fluids and magnetic silica dispersions, Langmuir 13 (1997) 6018-6025.

DOI: 10.1021/la970359+

Google Scholar

[42] Q. Liu, Z. Xu, J. A. Finch, R. Egerton, A novel two-step silica-coating process for engineering magnetic nanocomposites, Chem. Mater. 10 (1998) 3936-3940.

DOI: 10.1021/cm980370a

Google Scholar

[43] M. A. Correa-Duarte, M. Giersig, N. A. Kotov, L. M. Liz-Marzán, Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO2coating by microwave irradiation, Langmuir 14 (1998) 6430-6435.

DOI: 10.1021/la9805342

Google Scholar

[44] A. Ulman, Formation and structure of self-assembled monolayers, Chem. Rev. 96 (1996) 1533-1554.

DOI: 10.1021/cr9502357

Google Scholar

[45] R. E. Rosensweig, Ferrohydrodynamics; Cambridge University Press: Cambridge, (1985).

Google Scholar

[46] M. Ozaki, Preparation and properties of well-defined magnetic particles, MRS Bull. 14 (1989) 35-40.

DOI: 10.1557/s0883769400060942

Google Scholar

[47] L. Babes, B. Denizot, G. Tanguy, J. J. L. Jeune, P. Jallet, Synthesis of iron oxide nanoparticles used as MRI contrast agents a parametric study, J. Colloid Interface Sci. 212 (1999) 474-482.

DOI: 10.1006/jcis.1998.6053

Google Scholar

[48] P. K. Gupta, C. T. Hung, Magnetically controlled targeted micro-carrier systems, Life Sci. 44 (1989) 175-186.

DOI: 10.1016/0024-3205(89)90593-6

Google Scholar

[49] T. Fukushima, K. Sekizaqa, Y. Jin, M. Yamaya, H. Sasaki, T. Takishima, Effects of beta-adrenergic receptor activation on alveolar macrophage cytoplasmic motility, Am. J. Physiol. 265 (1993) L67-L72.

DOI: 10.1152/ajplung.1993.265.1.l67

Google Scholar

[50] Y. R. Chemla, H. L. Crossman, Y. Poon, R. McDermott, R. Stevens, M. D. Alper, J. Clarke, Ultrasensitive magnetic biosensor for homogeneous immunoassay, Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 14268-14272.

DOI: 10.1073/pnas.97.26.14268

Google Scholar

[51] G. M. Whitesides, R. Kazlauskas, L. Josephson, Magnetic separations in biotechnology, Trends Biotechnol. 1 (1983) 144-148.

DOI: 10.1016/0167-7799(83)90005-7

Google Scholar

[52] J. Ugelstad, A. Berge, T. Ellingsen, R. Schmid, T. -N. Nilsen, P. C. Mork, P. Stenstad, E. Hornes, O. Olsvik, Preparation and application of new monosized polymer particles, Prog. Polym. Sci. 17 (1992) 87-161.

DOI: 10.1016/0079-6700(92)90017-s

Google Scholar

[53] Y. X. Wang, S. M. Hussain, G. P. Krestin, Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging, Eur. Radiol. 11 (2001) 2319-2331.

DOI: 10.1007/s003300100908

Google Scholar

[54] D. L. Thorek, A. K. Chen, J. Czupryna, A. Tsourkas, Superparamagnetic iron oxide nanoparticle probes for molecular imaging, Ann. Biomed. Eng. 34 (2006) 23-38.

DOI: 10.1007/s10439-005-9002-7

Google Scholar

[55] B. Chertok, B. A. Moffat, A. E. David, F. Yu, C. Bergemann, B. D. Ross, V. C. Yang, Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors, Biomaterials 29 (2008) 487-496.

DOI: 10.1016/j.biomaterials.2007.08.050

Google Scholar

[56] T. K. Jain, J. Richey, M. Strand, D. L. Leslie-Pelecky, C. A. Flask, V. Labhasetwar, Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging, Biomaterials 29 (2008) 4012-4021.

DOI: 10.1016/j.biomaterials.2008.07.004

Google Scholar

[57] I. K. Park, C. P. Ng, J. Wang, B. Chu, C. Yuan, S. Zhang, S. H. Pun, Determination of nanoparticle vehicle unpackaging by MR imaging of a T2 magnetic relaxation switch, Biomaterials 29 (2008) 724-732.

DOI: 10.1016/j.biomaterials.2007.10.018

Google Scholar

[58] D. L. Thorek, A. Tsourkas, Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells, Biomaterials 29 (2008) 3583-3583.

DOI: 10.1016/j.biomaterials.2008.05.015

Google Scholar

[59] N. Nasongkla, E. Bey, J. Ren, H. Ai, C. Khemtong, J. S. Guthi, S. -F. Chin, A. D. Sherry, D. A. Boothman, J. Gao, multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems, Nano Lett. 6 (2006) 2427-2430.

DOI: 10.1021/nl061412u

Google Scholar

[60] J. W. M. Bulte, T. Douglas, B. Witwer, S. C. Zhang, E. Strable, B. K. Lewis, H. Zywicke, B. Miller, P. van Gelderen, B. M. Moskowitz, I. D. Duncan, J. A. Frank, Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells, Nat. Biotechnol. 19 (2001).

DOI: 10.1038/nbt1201-1141

Google Scholar

[61] I. J. M. de Vries, W. J. Lesterhuis, J. O. Barentsz, P. Verdijk, J. H. van Krieken, O. C. Boerman et al., Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy, Nat. Biotechnol. 23 (2005).

DOI: 10.1038/nbt1154

Google Scholar

[62] R. Van Eldik, I. Bertini (Eds. ), Relaxometry of water-metal ion interactions, Adv. Inorg. Chem. Elsevier: San Diego, CA 57 (2005).

Google Scholar

[63] J. L. Campbell, J. Arora, S. F. Cowell, A. Garg, P. Eu, S. K. Bhargava, V. Bansal, Qasi-cubic magnetite/silica core-shell nanoparticles as enhanced MRI contrast agents for cancer imaging, PLoS One 6 (2011) e21857(1-8).

DOI: 10.1371/journal.pone.0021857

Google Scholar

[64] H. B. Na, G. Palui, J. T. Rosenberg, X. Ji, S. C. Grant, H. Mattoussi, Multidentate catechol-based polyethylene glycol oligomers provide enhanced stability and biocompatibility to iron oxide nanoparticles, ACS Nano 6 (2012) 389-399.

DOI: 10.1021/nn203735b

Google Scholar

[65] A. Roch, R. N. Muller, Theory of proton relaxation induced by superparamagnetic particles. J. Chem. Phys. 110 (1999) 5403-5411.

DOI: 10.1063/1.478435

Google Scholar

[66] N. Noginova, T. Weaver, M. King, A. B. Bourlinos, E. P. Giannelis, V. A. Atsarkin, NMR and spin relaxation in systems with magnetic nanoparticles, J. Phys.: Condens. Matter 19 (2007) 076210(1-10).

DOI: 10.1088/0953-8984/19/7/076210

Google Scholar

[67] R. Weissleder, K. Kelly, E. Y. Sun, T. Shtatland, L. Josephson, Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol. 23 (2005) 1418-1423.

DOI: 10.1038/nbt1159

Google Scholar

[68] A. Tsourkas, O. Hofstetter, H. Hofstetter, R. Weissleder, L. Josephson, Magnetic relaxation switch immunosensors detect enantiomeric impurities, Angew. Chem., Int. Ed. 43 (2004) 2395-2399.

DOI: 10.1002/anie.200352998

Google Scholar

[69] C. Kaittanis, S. Santra, J. M. Perez, Role of nanoparticle valency in the nondestructive magnetic-relaxation-mediated detection and magnetic isolation of cells in complex media. J. Am. Chem. Soc. 131 (2009) 12780-12791.

DOI: 10.1021/ja9041077

Google Scholar

[70] U. I. Tromsdorf, N. C. Bigall, M. G. Kaul, O. T. Bruns, M. S. Nikolic, B. Mollwitz, R. A. Sperling, R. Reimer, H. Hohenberg, W. J. Parak et al., Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents, Nano Lett. 7 (2007).

DOI: 10.1021/nl071099b

Google Scholar

[71] H. Ai, C. Flask, B. Weinberg, X. Shuai, M. D. Pagel, D. Farrell, J. Duerk, J. Gao, Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes, Adv. Mater. 17 (2005) 1949-(1952).

DOI: 10.1002/adma.200401904

Google Scholar

[72] E. Toth, L. Helm, A. E. Merbach, Relaxivity of MRI contrast agents, Contrast Agents I 221 (2002) 61-101.

DOI: 10.1007/3-540-45733-x_3

Google Scholar

[73] H. B. Na, J. H. Lee, K. J. An, Y. I. Park, M. Park, I. S. Lee, D. H. Nam, S. T. Kim, S. H. Kim, S. W. Kim, K. H. Lim, K. S. Kim, S. O. Kim, T. Hyeon, Development of a T1contrast agent for magnetic resonance imaging using MnO nanoparticles, Angew. Chem. Int. Ed. 46 (2007).

DOI: 10.1002/anie.200790130

Google Scholar

[74] E. Schellenberger, J. Schnorr, C. Reutelingsperger, L. Ungethum, W. Meyer, M. Taupitz, B. Hamm, Linking proteins with anionic nanoparticles via protamine: ultrasmall protein-coupled probes for magnetic resonance imaging of apoptosis, Small 4 (2008).

DOI: 10.1002/smll.200700847

Google Scholar

[75] J. Kim, J. E. Lee, S. H. Lee, J. H. Yu, J. H. Lee, T. G. Park, T. Hyeon, Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer- targeted imaging and magnetically guided drug delivery, Adv. Mater. 20 (2008).

DOI: 10.1002/adma.200701726

Google Scholar

[76] J. -H. Lee, Y. -M. Huh, Y. -W. Jun, J. -W. Seo, J. -T. Jang, H. -T. Song, S. Kim, E. -J. Cho, H. -G. Yoon, J. -S. Suh, J. Cheon, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging, Nat. Med. 13 (2007) 95-99.

DOI: 10.1038/nm1467

Google Scholar

[77] E. Taboada, E. Rodriguez, A. Roig, J. Oro, A. Roch, R. N. Muller, Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. evaluation as potential T1 magnetic resonance imaging contrast agents for molecular imaging, Langmuir 23 (2007).

DOI: 10.1021/la063415s

Google Scholar

[78] S. Wagner, J. Schnorr, H. Pilgrimm, B. Hamm, M. Taupitz, Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging: preclinical in vivo characterization, InVest. Radiol. 37 (2002) 167-177.

DOI: 10.1097/00004424-200204000-00002

Google Scholar

[79] M. Taupitz, S. Wagner, J. Schnorr, I. Kravec, H. Pilgrimm, H. Bergmann-Fritsch, B. Hamm, Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging, Invest. Radiol. 39 (2004).

DOI: 10.1097/01.rli.0000129472.45832.b0

Google Scholar

[80] J. G. Penfield, R. F. Reilly, What nephrologists need to know about gadolinium, Nat. Clin. Pract. Nephrol. 3 (2007) 654-668.

DOI: 10.1038/ncpneph0660

Google Scholar

[81] T. Ahmad. K. V. Ramanujachary, S. E. Lofland, A. K. Ganguli, Nanorods of manganese oxalate: a single source precursor to different manganese oxide nanoparticles (MnO, Mn2O3, Mn3O4), J. Mater. Chem. 14 (2004) 3406-3410.

DOI: 10.1039/b409010a

Google Scholar

[82] T. Ahmad, S. Vaidya, N. Sarkar, S. Ghosh, A. K. Ganguli, Zinc oxalate nanorods: A convenient precursor to uniform nanoparticles of ZnO, Nanotechnology 17 (2006) 1236-1240.

DOI: 10.1088/0957-4484/17/5/012

Google Scholar

[83] T. Ahmad, K. V. Ramanujachary, S. E. Lofland, A. K. Ganguli, Magnetic and electrochemical properties of nickel oxide nanoparticles obtained by the reverse-micellar route, Solid State Sciences 8 (2006) 425-430.

DOI: 10.1016/j.solidstatesciences.2005.12.005

Google Scholar

[84] T. Ahmad, R. Chopra, K. V. Ramanujachary, S. E. Lofland, A. K. Ganguli, Canted antiferromagnetism in CuO nanoparticles synthesized by the reverse-micellar route, Solid State Sciences 7 (2005) 891-895.

DOI: 10.1016/j.solidstatesciences.2004.11.029

Google Scholar

[85] A. Ganguly, P. Tring, K. V. Ramanujachary, T. Ahmad, A. Mugweru, A. K Ganguli, Reverse micellar based synthesis of ultrafine MgO nanoparticles (8-10nm): characterization and catalytic properties, J. Colloid Interface Sci. 353 (2011) 137-142.

DOI: 10.1016/j.jcis.2010.09.041

Google Scholar

[86] J. Ahmed, S. Vaidya, T. Ahmad, P. Sujatha Devi, D. Das, A. K. Ganguli, Tin dioxide nanoparticles: reverse micellar synthesis and gas sensing properties, Mater. Res. Bull. 43 (2008) 264-271.

DOI: 10.1016/j.materresbull.2007.03.013

Google Scholar

[87] J. Ahmed, T. Ahmad, K. V. Ramanujachary, S. E. Lofland, A. K. Ganguli, Development of microemulsion-based process for pure cobalt (Co) and cobalt oxide (Co3O4) nanoparticles from sub-micron rods of cobalt oxalate, J. Colloid Interface Sci. 321 (2008).

DOI: 10.1016/j.jcis.2008.01.052

Google Scholar

[88] S. Khatoon, T. Ahmad, Synthesis, optical and magnetic properties of Ni-doped ZnO nanoparticles, J. Mater. Sci. Engg. B 2 (2012) 325-333.

Google Scholar

[89] T. Ahmad, S. Khatoon, K. Coolahan, S. E. Lofland, Structural characterization, optical and magnetic properties of Ni-doped CdO dilute magnetic semiconductor nanoparticles, J. Mater. Res. 28 (2013) 1245-1253.

DOI: 10.1557/jmr.2013.69

Google Scholar

[90] S. Khatoon, K. Coolahan, S. E. Lofland, T. Ahmad, Optical and magnetic properties of solid solutions of In2-xMnxO3 (0. 05, 0. 10 and 0. 15) nanoparticles, J. Alloy Compd. 545 (2012) 162-167.

DOI: 10.1016/j.jallcom.2012.08.038

Google Scholar

[91] O. A. Al-Hartomy, M. Ubaidullah, S. Khatoon, J. H. Madani, T. Ahmad, Synthesis, characterization and dielectric properties of nanocrystalline Ba1-xPbxZrO3 (0 ≤ x ≤ 0. 75) by polymeric citrate precursor route, J. Mater. Res. 27 (2012) 2479-2488.

DOI: 10.1557/jmr.2012.242

Google Scholar

[92] O. A. Al-Hartomy, M. Ubaidullah, D. Kumar, J. H. Madani, T. Ahmad, Dielectric properties of Ba1-xSrxZrO3 (0 ≤ x ≤ 1) nanoceramics developed by citrate precursor route, J. Mater. Res. 28 (2013) 1070-1077.

DOI: 10.1557/jmr.2013.40

Google Scholar

[93] A. Kalam, A. G. Al-Sehemi, A. S. Al-Shihri, G. Du, T. Ahmad, Synthesis and characterization of NiO nanoparticles by thermal decomposition of nickel linoleate and their optical properties, Mater. Charact. 68 (2012) 77-81.

DOI: 10.1016/j.matchar.2012.03.011

Google Scholar

[94] A. Ganguly, T. Ahmad, A. K Ganguli, Silica mesostructures: control of pore size and surface area using a surfactant template hydrothermal process, Langmuir 26 (2010) 14901-14908.

DOI: 10.1021/la102510c

Google Scholar

[95] P. Kaushik, S. Vaidya, T. Ahmad, A. K. Ganguli, Optimizing the hydrodynamic radii and polydispersity of reverse- micelles in the Triton X-100- water- cyclohexane system using dynamic light scattering and other studies, Coll. Surf. A-Physicochem. Eng. Aspects 293 (2007).

DOI: 10.1016/j.colsurfa.2006.07.024

Google Scholar

[96] T. Ahmad, A. K. Ganguli, Synthesis of nanometer-sized particles of barium orthotitanate prepared through a modified reverse micellar route: structural characterization, phase stability and dielectric properties, J. Mater. Res. 19 (2004).

DOI: 10.1557/jmr.2004.0406

Google Scholar

[97] A. K. Ganguli, S. Vaidya, T. Ahmad, Synthesis of nanocrystalline materials through reverse micelles: A versatile methodology for synthesis of complex metal oxides, Bull. Mater. Sci. 31 (2008) 415-419.

DOI: 10.1007/s12034-008-0065-6

Google Scholar

[98] S. Vaidya, S. Agarwal, T. Ahmad, A. K. Ganguli, Nanocrystalline oxalate/carbonate precursors of Ce and Zr and their decompositions to CeO2 and ZrO2 nanoparticles, J. Amer. Ceram. Soc. 90 (2007) 863-869.

DOI: 10.1111/j.1551-2916.2007.01484.x

Google Scholar

[99] T. Ahmad, A. K. Ganguli, Reverse micellar route to nanocrystalline titanates (SrTiO3, Sr2TiO4 and PbTiO3): Structural aspects and dielectric properties, J. Am. Ceram. Soc. 89 (2006) 1326-1332.

DOI: 10.1111/j.1551-2916.2005.00886.x

Google Scholar

[100] K. Raj, R. J. Moskowitz, Commercial applications of ferrofluids, J. Magn. Magn. Mater. 85 (1990) 233-245.

Google Scholar

[101] S. Mornet, S. Vasseur, F. Grasset, E. Duguet, Magnetic nanoparticle design for medical diagnosis and therapy, J. Mater. Chem. 14 (2004) 2161-2175.

DOI: 10.1039/b402025a

Google Scholar

[102] M. Shinkai, Functional magnetic particles for medical application, J. Biosci. Bioeng. 94 (2002) 606-613.

Google Scholar

[103] D. L. Leslie-Pelecky, R. D. Rieke, Magnetic Properties of Nanostructured Materials, Chem. Mater. 8 (1996) 1770-1783.

DOI: 10.1021/cm960077f

Google Scholar

[104] L. S. Darken, P. W. Gurry, The System Iron-Oxygen. II. Equilibrium and Thermodynamics of Liquid Oxide and Other Phases, J. Am. Chem. Soc. 68 (1946) 798-816.

DOI: 10.1021/ja01209a030

Google Scholar

[105] V. Osterhout, In Magnetic Oxides, D. S. Craik (Ed. ), Wiley: New York (1975) 700.

Google Scholar

[106] L. Shen, P. E. Laibinis, T. A. Hatton, Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces, Langmuir 15 (1999) 447-453.

DOI: 10.1021/la9807661

Google Scholar

[107] T. Sugimoto, E. Matijevic, Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels, J. Colloid Interface Sci. 74 (1980) 227-243.

DOI: 10.1016/0021-9797(80)90187-3

Google Scholar

[108] Y. S. Kang, S. Risbud, J. F. Rabolt, P. Stroeve, Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 Particles, Chem. Mater. 8 (1996) 2209-2211.

DOI: 10.1002/chin.199702030

Google Scholar

[109] T. Fried, G. Shemer, G. Markovich, Ordered two-dimensional arrays of ferrite nanoparticles, Adv. Mater. 13 (2001) 1158-1161.

DOI: 10.1002/1521-4095(200108)13:15<1158::aid-adma1158>3.0.co;2-6

Google Scholar

[110] G. Visalakshi, G. Venkateswaran, S. K. Kulshreshtha, P. N. Moorthy, Compositional characteristics of magnetite synthesised from aqueous solutions at temperatures up to 523K, Mater. Res. Bull. 28 (1993) 829-836.

DOI: 10.1016/0025-5408(93)90024-8

Google Scholar

[111] S. Wang, H. Xin, Y. Qian, Preparation of nanocrystalline Fe3O4 by γ-ray radiation, Mater. Lett. 33 (1997) 113-116.

Google Scholar

[112] D. Vollath, D. V. Szabó, R. D. Taylor, J. O. Willis, Synthesis and magnetic properties of nanostructured maghemite, J. Mater. Res. 12 (1997) 2175-2182.

DOI: 10.1557/jmr.1997.0291

Google Scholar

[113] C. Feldmann, H. -O. Jungk, Polyol-mediated preparation of nanoscale oxide particles, Angew. Chem. Int. Ed. 40 (2001) 359-36.

DOI: 10.1002/1521-3773(20010119)40:2<359::aid-anie359>3.0.co;2-b

Google Scholar

[114] R. Vijaya Kumar, Y. Koltypin, Y. S. Cohen, Y. Cohen, D. Aurbach, O. Palchik, I. Felner, A. Gedanken, Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation, J. Mater. Chem. 10 (2000) 1125-1129.

DOI: 10.1039/b000440p

Google Scholar

[115] Z. H. Zhou, J. Wang, X. Liu, H. S. O. Chan, Synthesis of Fe3O4 nanoparticles from emulsions, J. Mater. Chem. 11 (2001) 1704-1709.

DOI: 10.1039/b100758k

Google Scholar

[116] A. K. Ganguli, T. Ahmad, Nanorods of iron oxalate synthesized using reverse micelles: facile route for Fe2O3 and Fe3O4 nanoparticles, J. Nanosci. Nanotechnol. 7 (2007) 2029-(2035).

DOI: 10.1166/jnn.2007.763

Google Scholar

[117] Y. B. Khollam, S. R. Dhage, H. S. Potdar, S. B. Deshpande, P. P. Bakare, S. D. Kulkarni, S. K. Date, Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders, Mater. Lett. 56 (2001) 571-577.

DOI: 10.1016/s0167-577x(02)00554-2

Google Scholar

[118] S. R. Dhage, Y. B. Khollam, H. S. Potadar, S. B. Deshpande, P. P. Bakare, S. R. Sainkar, S. K. Date, Effect of variation of molar ratio (pH) on the crystallization of iron oxide phases in microwave hydrothermal synthesis, Mater. Lett. 57 (2002).

DOI: 10.1016/s0167-577x(02)00811-x

Google Scholar

[119] S. Sun, H. J. Zeng, Size-controlled synthesis of magnetite nanoparticles, J. Am. Chem. Soc. 124 (2002) 8204-8205.

DOI: 10.1021/ja026501x

Google Scholar

[120] N. Pinna, S. Grancharov, P. Beato, P. Bonville, M. Antonietti, M. Niederberger, Magnetite nanocrystals:  nonaqueous synthesis, characterization, and solubility, Chem. Mater. 17 (2005) 3044-3049.

DOI: 10.1021/cm050060+

Google Scholar

[121] Z. Li, H. Chen, H. Bao, M. Gao, One-pot reaction to synthesize water-soluble magnetite nanocrystals, Chem. Mater. 16 (2004) 1391-1393.

DOI: 10.1021/cm035346y

Google Scholar

[122] G. F. Goya, T. S. Berquo, F. C. Fonseca, M. P. Morales, Static and dynamic magnetic properties of spherical magnetite nanoparticles, J. Appl. Phys. 94 (2003) 3520-3528.

DOI: 10.1063/1.1599959

Google Scholar

[123] O. N. Shebanova, P. Lazor, Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum, J. Solid State Chem. 174 (2003) 424-430.

DOI: 10.1016/s0022-4596(03)00294-9

Google Scholar

[124] T. Belin, N. Guigue-Millot, T. Caillot, D. Aymes, J. C. Niepce, Influence of grain size, oxygen stoichiometry, and synthesis conditions on the γ-Fe2O3 vacancies ordering and lattice parameters, J. Solid State Chem. 163 (2002) 459-465.

DOI: 10.1006/jssc.2001.9426

Google Scholar

[125] X. Wang, J. Zhuang, Q. Peng, Y. Li, A general strategy for nano-crystal synthesis, Nature 437 (2005) 121-124.

Google Scholar

[126] T. Hyeon, S. S. Lee, J. Park, Y. Chung, H. B. Na, Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process, J. Am. Chem. Soc. 123 (2001) 12798-12801.

DOI: 10.1021/ja016812s

Google Scholar

[127] K. Butter, K. Kassapidou, G. J. Vroege, A. P. Philipse, Preparation and properties of colloidal iron dispersions, J. Colloid Interface Sci. 287 (2005) 485-495.

DOI: 10.1016/j.jcis.2005.02.014

Google Scholar

[128] B. Mao, Z. Kang, E. Wang, S. Lian, L. Gao, C. Tian, C. Wang, Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method, Mater. Res. Bull. 41 (2006) 2226-2231.

DOI: 10.1016/j.materresbull.2006.04.037

Google Scholar

[129] H. Zhu, D. Yang, L. Zhu, Hydrothermal growth and characterization of magnetite (Fe3O4) thin films, Surf. Coat. Technol. 201 (2007) 5870-5874.

DOI: 10.1016/j.surfcoat.2006.10.037

Google Scholar

[130] S. Giri, S. Samanta, S. Maji, S. Ganguli, A. Bhaumik, Magnetic properties of α-Fe2O3 nanoparticle synthesized by a new hydrothermal method, J. Magn. Magn. Mater. 285 (2005) 296-302.

DOI: 10.1016/j.jmmm.2004.08.007

Google Scholar

[131] J. Wang, J. Sun, Q. Sun, Q. Chen, One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties, Mater. Res. Bull. 38 (2003) 1113-1118.

DOI: 10.1016/s0025-5408(03)00129-6

Google Scholar

[132] S. Lian, Z. Kang, E. Wang, M. Jiang, C. Hu, L. Xu, Convenient synthesis of single crystalline magnetic Fe3O4 nanorods, Solid State Commun. 127 (2003) 605-608.

DOI: 10.1016/s0038-1098(03)00580-5

Google Scholar

[133] M. A. Willard, L. K. Kurihara, E. E. Carpenter, S. Calvin, V. G. Harris, Encyclopaedia of nanoscience and nanotechnology; Nalwa, H. S., Ed.; American Scientific Publishers: Valencia, CA (2004) Vol. 1, 815.

Google Scholar

[134] D. Chen, R. Xu, Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders, Mater. Res. Bull. 33 (1998)1015-1021.

DOI: 10.1016/s0025-5408(98)00073-7

Google Scholar

[135] Y. -H. Zheng, Y. Cheng, F. Bao, Y. -S. Wang, Synthesis and magnetic properties of Fe3O4 nanoparticles, Mater. Res. Bull. 41 (2006) 525-529.

Google Scholar

[136] K. Woo, J. Hong, J. -P. Ahn, Synthesis and surface modification of hydrophobic magnetite to processible magnetite@silica-propylamine, J. Magn. Magn. Mater. 293 (2005) 177-181.

DOI: 10.1016/j.jmmm.2005.01.058

Google Scholar

[137] J. Park, E. Lee, N. -M. Hwang, M. Kang, S. C. Kim, Y. Hwang, J. -G. Park, H. -J. Noh, J. -Y. Kim, J. -H. Park, T. Hyeron, One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles Angew. Chem., Int. Ed. 44 (2005).

DOI: 10.1002/anie.200461665

Google Scholar

[138] N. R. Jana, Y. Chen, X. Peng, Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach, Chem. Mater. 16 (2004) 3931-3935.

DOI: 10.1021/cm049221k

Google Scholar

[139] J. Park, K. An, Y. Hwang, J. -G. Park, H. -J. Noh, J. -Y. Kim, J. -H. Park, N. -M. Hwang, T. Hyeron, Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. Mater. 3 (2004) 891-895.

DOI: 10.1038/nmat1251

Google Scholar

[140] D. Li, C. J. Choi, J. H. You, B. Kim, Z. D. Zhang, Nanocrystalline α-Fe and ε-Fe3N particles prepared by chemical vapor condensation process, J. Magn. Magn. Mater. 283 (2004) 8-15.

DOI: 10.1016/j.jmmm.2004.05.005

Google Scholar

[141] Z. Li, Q. Sun, M. Gao, M., Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: mechanism leading to Fe3O4, Angew. Chem. Int. Ed. 44 (2004) 123-126.

DOI: 10.1002/anie.200460715

Google Scholar

[142] J. Wan, W. Cai, J. Feng, X. Meng, E. Liu, In situ decoration of carbon nanotubes with nearly monodisperse magnetite nanoparticles in liquid polyols, J. Mater. Chem. 17 (2007) 1188-1192.

DOI: 10.1039/b615527h

Google Scholar

[143] Z. Li, L. Wei, M. Gao, H. Lei, One-pot reaction to synthesize biocompatible magnetite nanoparticles, Adv. Mater. 8 (2005) 1001-1005.

DOI: 10.1002/adma.200401545

Google Scholar

[144] F. Hu, L. Wei, Z. Zhou, Y. Ran, Z. Li, M. Gao, Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer, Adv. Mater. 18 (2006) 2553-2556.

DOI: 10.1002/adma.200600385

Google Scholar

[145] Y. -W. Jun, Y. -M. Huh, J. -S. Choi, J. -H. Lee, H. -T. Song, S. Kim, S. Yoon, K. -S. Kim, J. -S. Shin, J. -S. Suh, J. Cheon, Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging, J. Am. Chem. Soc. 2005, 127 (16), 5732-5733.

DOI: 10.1021/ja0422155

Google Scholar

[146] X. Hu, J.C. Yu, J. Gong, Fast production of self-assembled hierarchical α-Fe2O3nanoarchitectures, J. Phys. Chem. C 111 (2007) 11180-11185.

DOI: 10.1021/jp073073e

Google Scholar

[147] Z. Jing, S. Wu, Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach, Mater. Lett. 58 (2004) 3637-3640.

DOI: 10.1016/j.matlet.2004.07.010

Google Scholar

[148] X. Liu, G. Qiu, A. Yan, Z. Wang, X. Li, Hydrothermal synthesis and characterization of α-FeOOH and α-Fe2O3 uniform nanocrystallines, J. Alloy Compd. 433 (2007) 216-220.

DOI: 10.1016/j.jallcom.2006.06.029

Google Scholar

[149] T.J. Daou, G. Pourroy, S. Bégin-Colin, J.M. Grenèche, C. Ulhaq-Bouillet, P. Legaré et. al., Hydrothermal synthesis of monodisperse magnetite nanoparticles, Chem. Mater. 18 (2006) 4399-4404.

DOI: 10.1021/cm060805r

Google Scholar

[150] S. -B. Wang, Y. -L. Min, S. -H. Yu, Synthesis and magnetic properties of uniform hematite nanocubes, J. Phys. Chem. C 111 (2007) 3551-3554.

DOI: 10.1021/jp068647e

Google Scholar

[151] M.M. Titirici, M. Antonietti, A. Thomas, A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach, Chem. Mater. 18 (2006) 3808-3812.

DOI: 10.1021/cm052768u

Google Scholar

[152] S. Ge, X. Shi, K. Sun, C. Li, C. Uher, J. R. Baker, M. M. Banaszak Holl, B. G. Orr, Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties, J. Phys. Chem. C 2009, 113, 13593-13599.

DOI: 10.1021/jp902953t

Google Scholar

[153] W. Qin, C. Yang, R. Yi, G. Gao, Hydrothermal synthesis and characterization of single-crystalline α-Fe2O3nanocubes, J. Nano. Mat. 2011 Article ID 159259 5 pages.

Google Scholar

[154] X. Lou, J. Huang, T. Li, H. Hu, B. Hu, Y. Zhang, Hydrothermal synthesis of Fe3O4 and α-Fe2O3 nanocrystals as anode electrode materials for rechargeable Li-ion batteries, J Mater Sci: Mater Electron 25 (2014) 1193-1196.

DOI: 10.1007/s10854-014-1708-6

Google Scholar

[155] M. Zhu, Y. Wang, D. Meng, X. Qin, G. Diao, Hydrothermal synthesis of hematite nanoparticles and their electrochemical properties, J. Phys. Chem. C 116 (2012) 16276-16285.

DOI: 10.1021/jp304041m

Google Scholar

[156] M. Lin, L. Tng, T. Lim, M. Choo, J. Zhang, H. R. Tan, S. Bai, Hydrothermal synthesis of octadecahedral hematite (α-Fe2O3) nanoparticles: an epitaxial growth from goethite (α-FeOOH) J. Phys. Chem. C 118 (2014) 10903-10910.

DOI: 10.1021/jp502087h

Google Scholar

[157] X. Sun, C. Zheng, F. Zhang, Y. Yang, G. Wu, A. Yu, N. Guan, Size-controlled synthesis of magnetite (Fe3O4) nanoparticles coated with glucose and gluconic acid from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method, J. Phys. Chem. C 113 (2009).

DOI: 10.1021/jp9038682

Google Scholar

[158] H. Cai, X. An, J. Cui, J. Li, S. Wen, K. Li, M. Shen, L. Zheng, G. Zhang, X. Shi, Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications, ACS Appl. Mater. Interfaces 5 (2013).

DOI: 10.1021/am302883m

Google Scholar

[159] A. Demir, R. Topkaya, A. Baykal, Green synthesis of superparamagnetic Fe3O4 nanoparticles with maltose: Its magnetic investigation, Polyhedron 65 (2013) 282-287.

DOI: 10.1016/j.poly.2013.08.041

Google Scholar

[160] T. Taniguchi, K. Nakagawa, T. Watanabe, N. Matsushita, M. Yoshimura, Hydrothermal growth of fatty acid stabilized iron oxide nanocrystals, J. Phys. Chem. C 113 (2009) 839-843.

DOI: 10.1021/jp8062433

Google Scholar

[161] E. V. Groman, L. Josephson, J. M. Lewis, Biologically degradable superparamagnetic materials for use in clinical applications, PCT Int. Appl. WO 8800060, 1988; Chem. Abstr. 109 (1989) 69622.

Google Scholar

[162] C. C. Berry, S. Wells, S. Charles, A. S. G. Curtis, Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro, Biomaterials 24 (2003) 4551-4557.

DOI: 10.1016/s0142-9612(03)00237-0

Google Scholar

[163] K. M. Lee, S. -G. Kim, W. -S. Kim, S. S. Kim, Properties of iron oxide particles prepared in the presence of dextran, Korean J. Chem. Eng. 19 (2002) 480-485.

DOI: 10.1007/bf02697160

Google Scholar

[164] L. F. Gamarra, G. E. S. Brito, W. M. Pontuschka, E. Amaro, A. H. C. Parma, G. F. Goya, Biocompatible superparamagnetic iron oxide nanoparticles used for contrast agents: a structural and magnetic study, J. Magn. Magn. Mater. 289 (2005) 439-441.

DOI: 10.1016/j.jmmm.2004.11.123

Google Scholar

[165] R. S. Molday, D. J. MacKenzie, Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells, Immunol. Methods 52 (1982) 353-367.

DOI: 10.1016/0022-1759(82)90007-2

Google Scholar

[166] Y. Junejo, A. Baykal, H. Sözeri, Simple hydrothermal synthesis of Fe3O4-PEG nanocomposites, Cent. Eur. J. Chem. 11 (2013) 1527-1532.

DOI: 10.2478/s11532-013-0281-9

Google Scholar

[167] A.K. Gupta, S. Wells, Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies, IEEE Trans. Nanobioscience 3 (2004) 66-73.

DOI: 10.1109/tnb.2003.820277

Google Scholar

[168] J. Zhang, S. Xu, E. Kumacheva, Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles, J. Am. Chem. Soc. 126 (2004) 7908-7914.

DOI: 10.1021/ja031523k

Google Scholar

[169] B.L. Frankamp, A. K. Boal, M.T. Tuominen, V.M. Rotello, Direct control of the magnetic interaction between iron oxide nanoparticles through dendrimer-mediated self-assembly, J. Am. Chem. Soc. 127 (2005) 9731-9735.

DOI: 10.1021/ja051351m

Google Scholar

[170] A.K. Boal, K. Das, M. Gray, V.M. Rotello, Monolayer exchange chemistry of γ-Fe2O3 nanoparticles, Chem. Mater. 14 (2002) 2628-2636.

DOI: 10.1021/cm011689p

Google Scholar

[171] R. Kaiser, G. Miskolczy, Magnetic properties of stable dispersions of subdomain magnetite Particles, J. Appl. Phys. 41 (1970) 1064-1072.

DOI: 10.1063/1.1658812

Google Scholar

[172] D. K. Kim, Y. Zhang, W. Voit, K. V. Rao, M. Muhammed, Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles, J. Magn. Magn. Mater. 225 (2001) 30-36.

DOI: 10.1016/s0304-8853(00)01224-5

Google Scholar

[173] G. Thomas, A. Hutten, Characterization of nano-magnetic structures, Nanostruct. Mater. 9 (1997) 271-280.

Google Scholar

[174] J. A. Ascencio, C. Gutıérrez-Wing, M. E. Espinosa, M. Marín, S. Tehuacanero, C. Zorrilla, M. José-Yacamán, Structure determination of small particles by HREM imaging: theory and experiment, Surf. Sci. 396 (1998) 349-368.

DOI: 10.1016/s0039-6028(97)00689-4

Google Scholar

[175] X. -F. Qu, G. -T. Zhou, Q. -Z. Yao, S. -Q. Fu, Aspartic-acid-assisted hydrothermal growth and properties of magnetite octahedrons, J. Phys. Chem. C 114 (2010) 284-289.

DOI: 10.1021/jp909175s

Google Scholar

[176] L. Wang, L. Gao, Morphology-controlled synthesis and magnetic property of pseudocubic iron oxide nanoparticles, J. Phys. Chem. C 113 (2009) 15914-15920.

DOI: 10.1021/jp9051243

Google Scholar

[177] K. Inouye, R. Endo, Y. Otsuka, K. Miyashiro, K. Kaneko, T. Ishikawa, Oxygenation of ferrous ions in reversed micelle and reversed microemulsion, J. Phys. Chem. 1982, 86, 1465.

DOI: 10.1021/j100397a051

Google Scholar

[178] S. Calvin, E. E. Carpenter, V. G. Harris, Characterization of passivated iron nanoparticles by x-ray absorption spectroscopy, Phys. Rev. B: Condens. Matter Mater. Phys. 68 (2003) 033411(1-4).

DOI: 10.1103/physrevb.68.033411

Google Scholar

[179] S. Calvin, M. M. Miller, R. Goswami, S. -F. Cheng, S. P. Mulvaney, L. J. Whitman, V. G. Harris, Determination of crystallite size in a magnetic nanocomposite using extended x-ray absorption fine structure, J. Appl. Phys. 94 (2003) 778-783.

DOI: 10.1063/1.1581344

Google Scholar

[180] M. Di Marco, I. Guilbert, M. Port, C. Robic, P. Couvreur, C. Dubernet, Colloidal stability of ultrasmall superparamagnetic iron oxide (USPIO) particles with different coatings, Int. J. Pharm. 331 (2007) 197-203.

DOI: 10.1016/j.ijpharm.2006.11.002

Google Scholar

[181] M. H. Mendonca Dias, P. C. Lauterbur, Ferromagnetic particles as contrast agents for magnetic resonance imaging of liver and spleen, Magn. Reson. Med. 3 (1986) 328-330.

DOI: 10.1002/mrm.1910030218

Google Scholar

[182] S. Laurent, L. V. Elst, R. N. Muller, Superparamagnetic iron oxide nanoparticles for MRI, Chapter-10, 427-444, A. E. Merbach, L. Helm, E. Toth, The chemistry of contrast agents in medical magnetic resonance imaging, Wiley (2001) 1-489.

DOI: 10.1002/9781118503652.ch10

Google Scholar

[183] D. W. McRobbie, E. A. Moore, M. J. Graves, M. R. Prince, MRI from picture to proton, Cambridge University Press, II edition (2006) 406.

Google Scholar

[184] J. P. Hornak, The basics of MRI, Interactive Learning Software, Henietta, NY, (1996).

Google Scholar

[185] A. P.S. Kirkhama, M. Embertonb, C. Allena, How good is mri at detecting and characterising cancer within the prostate?, Eur. Urol. 50 (2006) 1163-1175.

DOI: 10.1016/j.eururo.2006.06.025

Google Scholar

[186] A. Bjornerud, L. Johansson, The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system, NMR Biomed. 17 (2004) 465-477.

DOI: 10.1002/nbm.904

Google Scholar

[187] U. I. Tromsdorf, O. T. Bruns, S. C. Salmen, U. Beisiegel, H. Weller, A highly effective, nontoxic T1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles, Nano Lett. 9 (2009) 4434-4440.

DOI: 10.1021/nl902715v

Google Scholar

[188] H. -M. Yang, C. W. Park, M. -A. Woo, M. Kim, Y. M. Jo, H. G. Park, J. -D. Kim, HER2/neu antibody conjugated poly(amino acid)-coated iron oxide nanoparticles for breast cancer MR imaging, Biomacromolecules 11 (2010) 2866-2872.

DOI: 10.1021/bm100560m

Google Scholar

[189] B. H. Kim, N. Lee, H. Kim, K. An, Y. Park, Y. Choi, K. Shin et al., Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents, J. Am. Chem. Soc. 133 (2011).

DOI: 10.1021/ja203340u

Google Scholar

[190] C.Y. Haw, F. Mohamed, C.H. Chia, S. Radiman, S. Zakaria, N.M. Huang, H. N. Lim, Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents, Ceramics International 36 (2010) 1417-1422.

DOI: 10.1016/j.ceramint.2010.02.005

Google Scholar

[191] B. Basly, D. Felder-Flesch, P. Perriat, C. Billotey, J. Taleb, G. Pourroya, S. Begin-Colin, Dendronized iron oxide nanoparticles as contrast agents for MRI, Chem. Commun. 46 (2010) 985-987.

DOI: 10.1039/b920348f

Google Scholar

[192] L. Lartigue, P. Hugounenq, D. Alloyeau, S. P. Clarke, M. Lévy, J. -C. Bacri, R. Bazzi, D. F. Brougham, C. Wilhelm, F. Gazeau, Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents, ACS Nano 6 (2012).

DOI: 10.1021/nn304477s

Google Scholar

[193] J. Huang, L. Bu, J. Xie, K. Chen, Z. Cheng, X. Li, X. Chen, Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles, ACS nano 4 (2010) 7151-7160.

DOI: 10.1021/nn101643u

Google Scholar

[194] S. Tong, S. Hou, Z. Zheng, J. Zhou, G. Bao, Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity, Nano Lett. 10 (2010) 4607-4613.

DOI: 10.1021/nl102623x

Google Scholar

[195] K. Ohno, C. Mori, T. Akashi, S. Yoshida, Y. Tago, Y. Tsujii, Y. Tabata, Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization, Biomacromolecules 14 (2013).

DOI: 10.1021/bm400770n

Google Scholar

[196] J. M. Perez, L. Josephson, R. Weissleder, Use of magnetic nanoparticles as nanosensors to probe for molecular interactions, Chem Bio Chem. 5 (2004), 261-264.

DOI: 10.1002/cbic.200300730

Google Scholar

[197] J. M. Perez, T. O'Loughin, F. J. Simeone, R. Weissleder, L. Josephson, DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents, J. Am. Chem. Soc. 124 (2002) 2856-2857.

DOI: 10.1021/ja017773n

Google Scholar

[198] J. M. Perez, L. Josephson, T. O'Loughlin, D. Hogemann, R. Weissleder, Magnetic relaxation switches capable of sensing molecular interactions, Nat. Biotechnol. 20 (2002) 816-820.

DOI: 10.1038/nbt720

Google Scholar

[199] M. Zhao, L. Josephson, Y. Tang, R. Weissleder, Magnetic Sensors for protease assays, Angew. Chem. Int. Ed. 42 (2003) 1375-1378.

DOI: 10.1002/anie.200390352

Google Scholar

[200] J. M. Perez, F. J. Simeone, Y. Saeki, L. Josephson, R. Weissleder, Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media, J. Am. Chem. Soc. 125 (2003) 10192-10193.

DOI: 10.1021/ja036409g

Google Scholar

[201] J. Grimm, J. M. Perez, L. Josephson, R. Weissleder, Novel nanosensors for rapid analysis of telomerase activity, Cancer Res. 64 (2004) 639-643.

DOI: 10.1158/0008-5472.can-03-2798

Google Scholar

[202] T. J. Harris, G. von Maltzahn, A. M. Derfus, E. Ruoslahti, S. N. Bhatia, Proteolytic actuation of nanoparticle self-assembly, Angew. Chem., Int. Ed. 45 (2006) 3161-3165.

DOI: 10.1002/anie.200600259

Google Scholar

[203] Atanasijevic, M. Shusteff, P. Fam, A. Jasanoff, Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin, Proc. Natl. Acad. Sci. U.S.A. 103 (2006) 14707-14712.

DOI: 10.1073/pnas.0606749103

Google Scholar

[204] E. Y. Sun, R. Weisseleder, L. Josephson, Continuous analyte sensing with magnetic nanoswitches, Small 2 (2006) 1144-1147.

DOI: 10.1002/smll.200600204

Google Scholar

[205] J. Fan, J. Lu, R. Xu, R. Jiang, Y. Gao, Use of water-dispersible Fe2O3 nanoparticles with narrow size distributions in isolating avidin, J. Colloid Interface Sci. 266 (2003) 215-218.

DOI: 10.1016/s0021-9797(03)00570-8

Google Scholar

[206] C. Xu, K. Xu, H. Gu, R. Zheng, H. Liu, X. Zhang, Z. Guo, B. Xu, Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles, J. Am. Chem. Soc. 126 (2004) 9938-9939.

DOI: 10.1021/ja0464802

Google Scholar

[207] H. Gu, P. -L. Ho, K. W. T. Tsang, L. Wang, B. Xu, Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration, J. Am. Chem. Soc. 125 (2003) 15702-15703.

DOI: 10.1021/ja0359310

Google Scholar

[208] D. W. Chen, M. H. Liao, Preparation and characterization of YADH-bound magnetic nanoparticles, J. Mol. Catal. B: Enzym. 16 (2002) 283-291.

Google Scholar

[209] C. S. Kumar, C. Leuschner, E. E. Doomes, L. Henry, M. Juban, J. Hormes, Efficacy of lytic peptide-bound magnetite nanoparticles in destroying breast cancer cells, J. Nanosci. Nanotechol. 4 (2004) 245-249.

Google Scholar

[210] K. -C. Ho, P. -J. Tsai, Y. -S. Lin, Y. -C. Chen, Using biofunctionalized nanoparticles to probe pathogenic bacteria, Anal. Chem. 76 (2004) 7162-7168.

DOI: 10.1021/ac048688b

Google Scholar

[211] A. B. Bourlinos, A. Bakandritos, V. Georgakilas, D. Petridis, Surface modification of ultrafine magnetic iron oxide particles, Chem. Mater. 14 (2002) 3226-3228.

DOI: 10.1021/cm020404l

Google Scholar

[212] J. Lu, J. Fan, R. Xu, S. Roy, N. Ali, Y. Gao, Synthesis of alkyl sulfonate/alcohol-protected γ -Fe2O3 nanocrystals with narrow size distributions, J. Colloid Interface Sci. 258 (2003) 427-431.

DOI: 10.1016/s0021-9797(02)00152-2

Google Scholar

[213] D. Portet, B. Denizot, E. Rump, J. -J. Lejeune, P. Jallet, Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents, J. Colloid Interface Sci. 238 (2001) 37-42.

DOI: 10.1006/jcis.2001.7500

Google Scholar

[214] Y. Wang, J. F. Wong, X. Teng, X. Z. Lin, H. Yang, Pulling, nanoparticles into water: phase transfer of oleic acid stabilized monodisperse nanoparticles into aqueous solutions of α-cyclodextrin, Nano Lett. 3 (2003) 1555-1559.

DOI: 10.1021/nl034731j

Google Scholar