Potential of Nanomaterials as Movers and Packers for Drug Molecules

Article Preview

Abstract:

As the development of nanotechnology has extended to the world of biomolecules, a revolution has occurred in the design and assembly of nanomaterials for drug delivery with a significant potential to impact drug efficacy and patient outcomes. Currently a number of nanomaterials are under investigation for their suitability as sustained, controlled and targeted drug carriers. Leading edge of the rapidly developing nanosciences is the development and assessment of these nanomaterials, with specific physicochemical properties different from their larger/ bulk counterparts, as vehicles for transport of small and large drug molecules. The characteristics such as size, shape, chemical composition, surface structure and charge, aggregation and agglomeration, and solubility, can greatly influence interactions of these nanostructured systems or carriers with biomembranes and cells. The selectivity and reactivity achieved due to the very small size assigns these systems with a wide spectrum of applications. In this review, nanomaterials are considered in terms of the physical attributes or pharmaceutical effects allocated by them to the all-inclusive carrier or vehicle system (s). However we will limit our discussion to lipidic and polymeric nanomaterials, the two most commonly promoted, and safe nanosystems for delivery of both, the chemical or small molecular entities (SME) and the macromolecules including genes and siRNA.Contents of Paper

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 222)

Pages:

159-178

Citation:

Online since:

November 2014

Export:

Price:

* - Corresponding Author

[1] B.E. Barry, J. Shatkin, Nanomaterials for drug delivery: Potential benefits and risks. http: /www. ispeboston. org/technical_articles/boston_area_nanomaterials_for_drug_delivery_potential_benefits_and_risks. html. Accesed on 12/8/2014 (2006).

Google Scholar

[2] W.H. De Jong, P.J.A. Borm, Drug delivery and nanoparticles: Applications and hazards, Int. J. Nanomedicine 3 (2008) 133-149.

Google Scholar

[3] W.B. Weber, Physicochemical Process for Wastewater Control, Wiley, New York (1992).

Google Scholar

[4] E.I. Rabea, M.E. Badawy, C.V. Stevens, G. Smagghe, W. Steurbaut, Chitosan as antimicrobial agent: applications and mode of action, Biomacromolecules 4 (2003) 1457-1465.

DOI: 10.1021/bm034130m

Google Scholar

[5] Y.C. Chung, H.L. Wang, Y.M. Chen, S.L. Li, Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens, Bioresour. Technol. 88 (2003) 179-184.

DOI: 10.1016/s0960-8524(03)00002-6

Google Scholar

[6] L. Qi, Z. Xu, X. Jiang, C. Hu, X. Zou, Preparation and antibacterial activity of chitosan nanoparticles, Carbohydr. Res. 339 (2004) 2693-2700.

DOI: 10.1016/j.carres.2004.09.007

Google Scholar

[7] S. Tin, K.R. Sakharkar, C.S. Lim, M.K. Sakharkar, Activity of chitosans in combination with antibiotics in Pseudomonas aeruginosa, Int. J. Biol. Sci. 5 (2009) 153-160.

DOI: 10.7150/ijbs.5.153

Google Scholar

[8] J. Chen, L. Huang, H. Lai, C. Lu, M. Fang, Q. Zhang, X. Luo, Methotrexate-loaded PEGylated chitosan nanoparticles: Synthesis, characterization, and in vitro and in vivo antitumoral activity, Mol. Pharm. 11 (2013) 2213-2223.

DOI: 10.1021/mp400269z

Google Scholar

[9] S.J. Lee, A. Lee, S.R. Hwang, J.S. Park, J. Jang, M.S. Huh, D.G. Jo, S.Y. Yoon, Y. Byun, S.H. Kim, I.C. Kwon, I. Youn, K. Kim, TNF-α gene silencing using polymerized siRNA/thiolated glycol chitosan nanoparticles for rheumatoid arthritis, Mol. Ther. 22(2) (2014).

DOI: 10.1038/mt.2013.245

Google Scholar

[10] P. Mukhopadhyaya, R. Mishrab, D. Ranac, P.P. Kundu, Strategies for effective oral insulin delivery with modified chitosan nanoparticles: A review, Prog. Polym. Sci. 37 (2012) 1457-1475.

DOI: 10.1016/j.progpolymsci.2012.04.004

Google Scholar

[11] K. Nagpal, S.K. Singh, D.N. Mishra, Chitosan nanoparticles: A promising system in novel drug delivery, Chem. Pharm. Bull. 58 (2010) 1423-1430.

DOI: 10.1248/cpb.58.1423

Google Scholar

[12] M.P. Patel, R. Ravi, J.K. Patel, Chitosan mediated targeted drug delivery system: A review, J. Pharm. Pharmaceut. Sci. 13 (2010) 536-557.

DOI: 10.18433/j3jc7c

Google Scholar

[13] J.R. Joshi, R.P. Patel, Role of biodegradable polymers in drug delivery, Int. J. Curr. Pharm. Res. 4(4) (2012) 74-81.

Google Scholar

[14] F. Wu, Z. Zhou, J. Su, L. Wei, W. Yuan, T. Jin, Development of dextran nanoparticles for stabilizing delicate proteins, Nanoscale Res. Lett. (2013) 1-8.

DOI: 10.1186/1556-276x-8-197

Google Scholar

[15] H. Wang, M. Roman, Formation and properties of chitosan—cellulose nanocrystal polyelectrolyte−macroion complexes for drug delivery applications, Biomacromolecules 12 (2011) 1585-1593.

DOI: 10.1021/bm101584c

Google Scholar

[16] A.O. Elzoghby, Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research, J. Control. Release 172 (2013) 1075-1091.

DOI: 10.1016/j.jconrel.2013.09.019

Google Scholar

[17] R.C. Oppenhiem, Paclitaxel loaded gelatin nanoparticles for intravesical bladder cancer therapy, Int. J. Pharm. 8 (1981) 217.

Google Scholar

[18] M.F. Zambaux, F. Bonneaux, R. Gref, E. llacherie, C. Gneron, Preparation and characterization of protein C-loaded PLA nanoparticles, J. Control. Release 60 (1999) 179-188.

DOI: 10.1016/s0168-3659(99)00073-5

Google Scholar

[19] Z. Lu, T.K. Yeh, M. Tsai, J.L. Au, M.G. Wientjes, Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy, Clin. Cancer Res. 10 (2004) 7677-7679.

DOI: 10.1158/1078-0432.ccr-04-1443

Google Scholar

[20] G. Kaul, M. Amiji, Long-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery, Pharm. Res. 19 (2002) 1062-1068.

Google Scholar

[21] G. Kaul, M. Amiji, Cellular interactions and in vitro DNA transfection studies with poly(ethylene glycol)-modified gelatin nanoparticles, J. Pharm. Sci. 94 (2005) 184-198.

DOI: 10.1002/jps.20216

Google Scholar

[22] A. Kumari, S.K. Yadav, S.C. Yadav, Biodegradable polymeric nanoparticles based drug delivery systems, Colloids Surf., B. 75 (2010) 1-18.

DOI: 10.1016/j.colsurfb.2009.09.001

Google Scholar

[23] K.S. Soppimath, T.M. Aminabhav, A.R. Kulkarni, W.E. Rudzinski, Biodegradable polymeric nanoparticles as drug delivery devices, J. Control. Release 70 (2001) 1-20.

DOI: 10.1016/s0168-3659(00)00339-4

Google Scholar

[24] L. Nobs, F. Buchegger, R. Gurny, E. Allémann, Poly(lactic acid) nanoparticles labeled with biologically active neutravidin for active targeting, Eur. J. Pharm. Biopharm. 58 (2004) 483-490.

DOI: 10.1016/j.ejpb.2004.04.006

Google Scholar

[25] V.P. Torchillin, Multifunctional nanocarriers, Adv. Drug Deliv. Rev. 58 (2006) 1532-1555.

Google Scholar

[26] K. Derakhshandeh, M. Erfan, S. Dadashzadeh, Encapsulation of 9-nitrocamptothecin, a novel anticancer drug, in biodegradable nanoparticles: factorial design, characterization and release kinetics, Eur. J. Pharm. Biopharm. 66 (2007) 34-41.

DOI: 10.1016/j.ejpb.2006.09.004

Google Scholar

[27] W. Hasan, K. Chu, A. Gullapalli, S.S. Dunn, E.M. Enlow, J.C. Luft, S. Tian, M.E. Napier, P.D. Pohlhaus, J.P. Rolland, J.M. DeSimone, Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer, Nano. Lett. 12 (2011).

DOI: 10.1021/nl2035354

Google Scholar

[28] C.P. Reis, R.J. Neufeld, A.J. Ribeiro, F. Veiga, Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles, NBM 2 (2006) 8-21.

DOI: 10.1016/j.nano.2005.12.003

Google Scholar

[29] J. Matsumoto, Y. Nakada, K. Sakurai, T. Nakamura, Y. Takahashi, Preparation of nanoparticles consisted of poly(lactide)–poly(ethylene glycol)–poly(l-lactide) and their evaluation in vitro, Int. J. Pharm. 185 (1999) 93-101.

DOI: 10.1016/s0378-5173(99)00153-2

Google Scholar

[30] W. Zou, C. Liu, Z. Chen, N. Zhang, Preparation and characterization of cationic PLA-PEG nanoparticles for delivery of plasmid DNA, Nanoscale Res. Lett. 4 (2009) 982-989.

DOI: 10.1007/s11671-009-9345-3

Google Scholar

[31] C. Choi, S.Y. Chae, J.W. Nah, Thermosensitive poly(N-isopropylacrylamide)-b-poly([epsilon]-caprolactone) nanoparticles for efficient drug delivery system, Polymer 47 (2006) 4571-4580.

DOI: 10.1016/j.polymer.2006.05.011

Google Scholar

[32] M.S. Espuelas, P. Legrand, P.M. Loiseau, C. Bories, G. Barratt, J.M. Irache, In vitro antileishmanial activity of amphotericin B loaded in poly(epsilon-caprolactone) nanospheres, J. Drug Target. 10 (2002) 593-599.

DOI: 10.1080/1061186021000060738

Google Scholar

[33] Y. Rosiaux, V. Jannin, S. Hughes, D. Marchaud, Solid lipid excipients — Matrix agents for sustained drug delivery, J. Control. Release 188 (2014) 18-30.

DOI: 10.1016/j.jconrel.2014.06.004

Google Scholar

[34] K. Mitri, R. Shegokar, S. Gohla, C. Anselmi, R.H. Müller, Lipid nanocarriers for dermal delivery of lutein: Preparation, characterization, stability and performance, Int. J. Pharm. 414 (2011) 267-275.

DOI: 10.1016/j.ijpharm.2011.05.008

Google Scholar

[35] A.L. Weiner, Encyclopedia of pharmaceutical technology, New York, 2001, pp.1659-1673.

Google Scholar

[36] G.N. Fetih, Formulation and characterization of gelucire pellets for sustained release of Ibuprofen, Bull. Pharm. Sci. 33 (2010) 217-224.

DOI: 10.21608/bfsa.2010.64767

Google Scholar

[37] M.R. Rao, A.A. Ranpise, K.C. Thanki, S.G. Borate, G.N. Parikh, Effect of processing and sintering on controlled release wax matrix tablets of ketorolac tromethamine, Indian J. Pharm. Sci. 71 (2009) 538-544.

DOI: 10.4103/0250-474x.58188

Google Scholar

[38] H.G. Schroeder, A. Dakkuri, P.P. DeLuca, Sustained release from inert wax matrixes I: drug–wax combinations, J. Pharm. Sci. 67 (1978) 350-353.

DOI: 10.1002/jps.2600670320

Google Scholar

[39] P.C. Christophersen, L. Zhang, A. Müllertz, H.M. Nielsen, M. Yang, H. Mu, Solid lipid particles for oral delivery of peptide and protein drugs II – The digestion of trilaurin protects desmopressin from proteolytic degradation. doi10. 1007/s11095-014-1337-z, Pharm. Res. (2014).

DOI: 10.1007/s11095-014-1337-z

Google Scholar

[40] J. Sun, C. Bi, H.M. Chan, S. Sun, Q. Zhang, Y. Zheng, Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability, Colloids Surf., B. 111 (2013) 367-375.

DOI: 10.1016/j.colsurfb.2013.06.032

Google Scholar

[41] A. Leonardia, C. Bucolob, L.G. Romanob, C.B.M. Plataniab, F. Dragob, G. Puglisia, R. Pignatelloa, Influence of different surfactants on the technological properties and in vivo ocular tolerability of lipid nanoparticles, Int. J. Pharm. (2014).

Google Scholar

[42] S. Das, W. Kiong Ng, R.B.H. Tan, Sucrose ester stabilized solid lipid nanoparticles and nanostructured lipid carriers: I. Effect of formulation variables on the physicochemical properties, drug release and stability of clotrimazole-loaded nanoparticles, Nanotechnology 25 (2014).

DOI: 10.1088/0957-4484/25/10/105101

Google Scholar

[43] P. Chattopadhyay, B.Y. Shekunov, D. Yim, D. Cipolla, B. Boyd, S. Farr, Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system, Adv. Drug Deliv. Rev. 59 (2007).

DOI: 10.1016/j.addr.2007.04.010

Google Scholar

[44] M. Schoenitza, S. Josephb, A. Nitza, H. Bunjesb, S. Scholla, Controlled polymorphic transformation of continuously crystallized solid lipid nanoparticles in a microstructured device: A feasibility study, Eur. J. Pharm. Biopharm 86 (2014) 324-331.

DOI: 10.1016/j.ejpb.2013.08.009

Google Scholar

[45] E.B. Souto, S.A. Wissing, C.M. Barbosa, R.H. Muller, Comparative study between the viscoelastic behaviors of different lipid nanoparticle formulations, J. Cosmet. Sci 55 (2004) 463-471.

DOI: 10.1111/j.1467-2494.2004.00252_4.x

Google Scholar

[46] P.O. Nnamania, E.C. Ibezima, A.A. Attamaa, M.U. Adikwua, Surface modified solid lipid microparticles based on homolipids and Softisan® 142: preliminary characterization, Asian Pac. J. Trop. Med. 3 (2010) 205-210.

DOI: 10.1016/s1995-7645(10)60010-7

Google Scholar

[47] A. Nagi, R. Abdullah, S. Ibrahim, A. Bustamam, Tamoxifen drug loading solid lipid nanoparticles prepared by hot high pressure homogenization techniques, Am. J. Pharmacol. Toxicol. 3 (2008) 219-224.

DOI: 10.3844/ajptsp.2008.219.224

Google Scholar

[48] G. Abdelbary, R.H. Fahmy, Diazepam-loaded solid lipid nanoparticles: Design and characterization, AAPS PharmSci. Tech. 10 (2009) 211-219.

DOI: 10.1208/s12249-009-9197-2

Google Scholar

[49] Y.C. Kuo, C.Y. Chung, Solid lipid nanoparticles comprising internal Compritol 888 ATO, tripalmitin and cacao butter for encapsulating and releasing stavudine, delavirdine and saquinavir, Colloids Surf., B. 88 (2011) 682-690.

DOI: 10.1016/j.colsurfb.2011.07.060

Google Scholar

[50] V. Kakkar, A.K. Mishra, K. Chuttani, K. Chopra, I.P. Kaur, Delivery of sesamol loaded solid lipid nanoparticles to brain for menopause related emotional and cognitive central nervous system derangements, Rejuvenation Res. 14 (2011) 597-604.

DOI: 10.1089/rej.2011.1193

Google Scholar

[51] E. Zimmermann, E.B. Souto, R.H. Müller, Physicochemical investigations on the structure of drug-free and drug-loaded solid lipid nanoparticles (SLN) by means of DSC and 1H NMR., Pharmazie. 60 (2005) 508-513.

Google Scholar

[52] J. Pardeike, S. Weber, T. Haber, J. Wagner, H.P. Zarfl, H. Plank, Development of an Itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application, Int. J. Pharm. 419 (2011) 329-338.

DOI: 10.1016/j.ijpharm.2011.07.040

Google Scholar

[53] A.R. Radomska-Soukharev, Stability of lipid excipients in solid lipid nanoparticles, Adv. Drug Deliv. Rev. 59 (2007) 411-418.

DOI: 10.1002/chin.200748265

Google Scholar

[54] C.H. Liu, C.T. Wu, Optimization of nanostructured lipid carriers for lutein delivery, Colloids and Surfaces A: Physicochem. Eng. Aspects 353 (2010) 149-156.

DOI: 10.1016/j.colsurfa.2009.11.006

Google Scholar

[55] M. Fathi, J. Varshosaz, M. Mohebbi, F. Shahidi, Hesperetin-loaded solid lipid nanoparticles and nanostructure lipid carriers for food fortification: Preparation, characterization, and modeling, Food Process Biotechnol. 6 (2013) 1464-1475.

DOI: 10.1007/s11947-012-0845-2

Google Scholar

[56] C. Guo, C. Yanga, Q. Li, Q. Tan, Y. Xi, W. Liud, Z. Guang, Development of a Quercetin-loaded nanostructured lipid carrier formulation for topical delivery, Int. J. Pharm. 430 (2012) 292-298.

DOI: 10.1016/j.ijpharm.2012.03.042

Google Scholar

[57] F.Q. Hu, S.P. Jiang, Y.Z. Du, H. Yuan, Y.Q. Ye, S. Zeng, Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system, Colloids Surf., B. 45 (2005) 167-173.

DOI: 10.1016/j.colsurfb.2005.08.005

Google Scholar

[58] S. Xie, L. Zhu, Z. Dong, X. Wang, Y. Wang, X. Li, W. Zhou, Preparation, characterization and pharmacokinetics of enrofloxacin-loaded solid lipid nanoparticles: influences of fatty acids., Colloids Surf., B. 83 (2011) 382-387.

DOI: 10.1016/j.colsurfb.2010.12.014

Google Scholar

[59] J. Liu, T. Gong, H. Fu, C. Wang, X. Wang, Q. Chen, Q. Zhang, Q. He, Z. Zhang, Solid lipid nanoparticles for pulmonary delivery of insulin, Int. J. Pharm. 356 (2008) 333-344.

DOI: 10.1016/j.ijpharm.2008.01.008

Google Scholar

[60] P.R. Zhang, Y.F. Tu, S. Wang, Y.H. Wang, Y. Xie, M. Li, Y.G. Jin, Preparation and characterization of budesonide-loaded solid lipid nanoparticles for pulmonary delivery, J. Chin. Pharm. Sci. 20 (2011) 390-396.

DOI: 10.5246/jcps.2011.04.049

Google Scholar

[61] R.M. Khalil, A. Abd-Elbary, M.A. Kassem, M.M. Ghorab, M. Basha, Nanostructured lipid carriers (NLCs) versus solid lipid nanoparticles (SLNs) for topical delivery of meloxicam, Pharm. Dev. Technol. 19 (2014) 304-314.

DOI: 10.3109/10837450.2013.778872

Google Scholar

[62] J. Shen, M. Sun, Q. Ping, Z. Ying, W. Liu, Incorporation of liquid lipid in lipid nanoparticles for ocular drug delivery enhancement, Nanotechnology 15 (2010) 1-23.

DOI: 10.1088/0957-4484/21/2/025101

Google Scholar

[63] E.B. Souto, R.H. Müller, SLN and NLC for topical delivery of ketoconazole, J. Microencapsulation 22 (2005) 501-510.

DOI: 10.1080/02652040500162436

Google Scholar

[64] M.J. Tsai, P.C. Wu, Y.B. Huang, J.S. Chang, C.L. Lin, T.H. Tsai, J.Y. Fang, Baicalein loaded in tocol nanostructured lipid carriers (tocol NLCs) for enhanced stability and brain targeting, Int. J. Pharm. 423 (2012) 461-470.

DOI: 10.1016/j.ijpharm.2011.12.009

Google Scholar

[65] A. Chinsriwongkul, P. Chareanputtakhun, T. Ngawhirunpat, T. Rojanarata, W. Sila-on, U. Ruktanonchai, P. Opanasopit, Nanostructured lipid carriers (NLC) for parenteral delivery of an anticancer drug, AAPS Pharm. Sci. Tech. 13 (2011) 150-158.

DOI: 10.1208/s12249-011-9733-8

Google Scholar

[66] Y.C. Kuo, J.F. Chung, Physicochemical properties of nevirapine-loaded solid lipid nanoparticles and nanostructured lipid carriers, Colloids Surf., B. 83 (2011) 299-300.

DOI: 10.1016/j.colsurfb.2010.11.037

Google Scholar

[67] J. Varshosaz, S. Eskandari, M. Tabakhian, Production and optimization of valproic acid nanostructured lipid carriers by the Taguchi design, Pharm. Dev. Technol. 15 (2010) 89-96.

DOI: 10.3109/10837450903013568

Google Scholar

[68] J. Varshosaz, S. Eskandari, M. Tabbakhian, Freeze-drying of nanostructure lipid carriers by different carbohydrate polymers used as cryoprotectants, Carbohydr. Polym. 88 (2012) 1157-1163.

DOI: 10.1016/j.carbpol.2012.01.051

Google Scholar

[69] S. Kheradmandnia, E. Vasheghani-Farahani, M. Nosrati, F. Atyabi, Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax, Nanomedicine: Nanotechnology, Biology and Medicine 6 (2010).

DOI: 10.1016/j.nano.2010.06.003

Google Scholar

[70] G.D. Quintanar, Z.M. Zambrano, C.A. Alvarez, S.E. Mercado, Composition of solid lipid nanoparticles for the long-term conservation of fruits, vegetables, seeds, cereals and/or fresh foodstuffs using a coating EP2698066 A2, (2014).

Google Scholar

[71] H.M. Nguyen, I.C. Hwang, J.W. Park, H.J. Park, Photoprotection for deltamethrin using chitosan-coated beeswax solid lipid nanoparticles, Pest. Manag. Sci. 68 (2012a) 1062-1068.

DOI: 10.1002/ps.3268

Google Scholar

[72] A.A. Attama, C.C. Muller-Goymann, Effect of beeswax modification on the lipid matrix and solid lipid nanoparticle crystallinity, Colloids and Surfaces A: Physicochem. Eng. Aspects 315 (2008) 189-195.

DOI: 10.1016/j.colsurfa.2007.07.035

Google Scholar

[73] S. Eskandari, J. Varshosaz, M. Minaiyan, M. Tabbakhian, Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model, Int. J. Nanomedicine 6 (2011).

DOI: 10.2147/ijn.s15881

Google Scholar

[74] H. Ali, K. El-Sayed, P.W. Sylvester, S. Nazzal, Molecular interaction and localization of tocotrienol-rich fraction (TRF) within the matrices of lipid nanoparticles: Evidence studies by Differential Scanning Calorimetry (DSC) and Proton Nuclear Magnetic Resonance spectroscopy (1H NMR), Colloids Surf., B. 77 (2010).

DOI: 10.1016/j.colsurfb.2010.02.003

Google Scholar

[75] W.M. Obeidat, K. Schwabe, R.H. Müller, C.M. Keck, Preservation of nanostructured lipid carriers (NLC), Eur. J. Pharm. Biopharm. 76 (2010) 56-67.

DOI: 10.1016/j.ejpb.2010.05.001

Google Scholar

[76] T. Delmas, A. Fraichard, P.A. Bayle, I. Texier, M. Bardet, J. Baudry, J. Bibette, A.C. Couffin, Encapsulation and release behavior from lipid nanoparticles: Model study with nile red fluorophore, Journal of Colloid Science and Biotechnology 1 (2012).

DOI: 10.1166/jcsb.2012.1010

Google Scholar

[77] P. Charoenputtakhun, P. Opanasopit, T. Rojanarata, T. Ngawhirunpat, All-trans retinoic acid-loaded lipid nanoparticles as a transdermal drug delivery carrier, Pharm. Dev. Technol. 19 (2014) 164-172.

DOI: 10.3109/10837450.2013.763261

Google Scholar

[78] T. Zhang, J. Chen, Y. Zhang, Q. Shen, W. Pan, Characterization and evaluation of nanostructured lipid carrier as a vehicle for oral delivery of etoposide, Eur. J. Pharm. Sci. 43 (2011) 174-179.

DOI: 10.1016/j.ejps.2011.04.005

Google Scholar

[79] R. Abbasalipourkabir, A. Salehzadeh, R. Abdullah, Characterization and stability of nanostructured lipid carriers as drug delivery system, Pak. J. Biol. Sci. 15 (2012) 141-146.

DOI: 10.3923/pjbs.2012.141.146

Google Scholar

[80] S. Xie, B. Pan, M. Wang, L. Zhu, F. Wang, Z. Dong, X. Wang, W. Zhou, Formulation, characterization and pharmacokinetics of praziquantel-loaded hydrogenated castor oil solid lipid nanoparticles, Nanomedicine 5 (2010) 693-701.

DOI: 10.2217/nnm.10.42

Google Scholar

[81] S. Xie, F. Wang, Y. Wang, L. Zhu, Z. Dong, X. Wang, X. Li, W. Zhou, Acute toxicity study of tilmicosin-loaded hydrogenated castor oil-solid lipid nanoparticles, Part. Fibre Toxicol. 8 (2011) 1-11.

DOI: 10.1186/1743-8977-8-33

Google Scholar

[82] H.M. Nguyen, I.C. Hwang, J.W. Park, H.J. Park, Enhanced payload and photo-protection for pesticides using nanostructured lipid carriers with corn oil as liquid lipid, J. Microencapsulation 29 (2012b) 596-604.

DOI: 10.3109/02652048.2012.668960

Google Scholar

[83] G.L. Hasenhuettl, Overview of food emulsifiers, Food emulsifiers and their applications (2008) 1-10.

DOI: 10.1007/978-0-387-75284-6_1

Google Scholar

[84] D.J. McClements, Food emulsions: principles, practice, and techniques, CRC Press, London, (2005).

Google Scholar

[85] S. Doktorovová, J. Araújo, M.L. Garcia, E. Rakovsky, E.B. Souto, Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC), Colloids Surf., B 75 (2010) 538-542.

DOI: 10.1016/j.colsurfb.2009.09.033

Google Scholar

[86] J.Y. Fang, C.L. Fang, C.H. Liu, Y.H. Su, Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC), Eur. J. Pharm. Biopharm. 70 (2008) 633–640.

DOI: 10.1016/j.ejpb.2008.05.008

Google Scholar

[87] M. Fathi, M.R. Mozafari, M. Mohebbi, Nanoencapsulation of food ingredients using lipid based delivery systems, Trends Food Sci. Tech. 23 (2012) 13–27.

DOI: 10.1016/j.tifs.2011.08.003

Google Scholar

[88] F. Han, S. Li, R. Yin, H. Liu, L. Xu, Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: Nanostructured lipid carriers, Colloids and Surfaces A: Physicochem. Eng. Aspects 315(1–3) (2008).

DOI: 10.1016/j.colsurfa.2007.08.005

Google Scholar

[89] X. Huang, Y.J. Chen, D.Y. Peng, Q.L. Li, X.S. Wang, D.L. Wang, Solid lipid nanoparticles as delivery systems for Gambogenic acid, Colloids Surf. B 102 (2013) 391–397.

DOI: 10.1016/j.colsurfb.2012.08.058

Google Scholar

[90] I. Lacatusu, N. Badea, O. Ovidiu, D. Bojin, A. Meghea, Highly antioxidant carotene-lipid nanocarriers: Synthesis and antibacterial activity, J. Nanopart. Res. 14 (2012) 1-16.

DOI: 10.1007/s11051-012-0902-9

Google Scholar

[91] F. Li, Y. Weng, L. Wang, H. He, J. Yang, X. Tang, The efficacy and safety of bufadienolides-loaded nanostructured lipid carriers, Int. J. Pharm. 393 (2010) 203–211.

DOI: 10.1016/j.ijpharm.2010.04.005

Google Scholar

[92] K. Zheng, A. Zou, X. Yang, F. Liu, Q. Xia, R. Ye, The effect of polymer surfactant emulsifying agent on the formation and stability of a-lipoic acid loaded nanostructured lipid carriers (NLC), Food Hydrocolloids 32(1) (2013) 72–78.

DOI: 10.1016/j.foodhyd.2012.11.006

Google Scholar

[93] I.P. Kaur, R. Bhandari, S. Bhandari, V. Kakkar, Potential of solid lipid nanoparticles in brain targeting, J. Control. Release 127 (2008) 97-109.

DOI: 10.1016/j.jconrel.2007.12.018

Google Scholar

[94] C.C. Trujillo, A.J. Wright, Properties and stability of solid lipid particle dispersions based on canola stearin and Poloxamer 188, J. Am. Oil Chem. Soc. 87 (2010) 715–730.

DOI: 10.1007/s11746-010-1553-6

Google Scholar

[95] T. Henning, Polyethylene glycols (PEGs) and the pharmaceutical industry, Fine, Speciality & Performance Chemicals (2002) 57-59.

Google Scholar

[96] O. Chambin, V. Jannin, Interest of multifunctional lipid excipients: Case of Gelucire® 44/14, Drug Dev. Ind. Pharm. 31(6) (2005) 527–534.

DOI: 10.1080/03639040500215750

Google Scholar

[97] S. Kumar, J. Kaur, Effect of surfactant on temperature stability of solid lipid nanoparticles studied by dynamic light scattering, AIP Conf. Proc. 163 (2013) 1536.

DOI: 10.1063/1.4810151

Google Scholar

[98] C.C. Chen, T.H. Tsai, Z.R. Huang, J.Y. Fang, Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: Physicochemical characterization and pharmacokinetics, Eur. J. Pharm. Biopharm. 74 (2010).

DOI: 10.1016/j.ejpb.2009.12.008

Google Scholar

[99] K. Cholkar, S. Hariharan, S. Gunda, A.K. Mitra, Optimization of dexamethasone mixed nanomicellar formulation doi: 10. 1208/s12249-014-0159-y, AAPS PharmSci. Tech. (2014).

DOI: 10.1208/s12249-014-0159-y

Google Scholar

[100] M.T. Sheu, S.Y. Chen, L.C. Chen, Influence of micelle solubilization by tocopheryl polyethylene glycol succinate (TPGS) on solubility enhancement and percutaneous penetration of estradiol, J. Control. Release 88 (2003) 355–368.

DOI: 10.1016/s0168-3659(02)00492-3

Google Scholar

[101] T. Madheswaran, R. Baskaran, C.S. Yong, B.K. Yoo, Enhanced topical delivery of finasteride using glyceryl monooleate-based liquid crystalline nanoparticles stabilized by cremophor surfactants doi: 10. 1208/s12249-013-0034-2, AAPS Pharm Sci. Tech. 15(1) (2014).

DOI: 10.1208/s12249-013-0034-2

Google Scholar

[102] Y. Chen, D. Liu, J. Liu, T. Chang, H. Ho, M. Sheu, Development of terbinafine solid lipid nanoparticles as a topical delivery system, Int. J. Nanomedicine 7 (2012) 4409–4418.

DOI: 10.2147/ijn.s33682

Google Scholar

[103] F. Mickler, L. Mockl, N. Ruthardt, M. Ogris, E. Wagner, C. Bräuchle, Tuning nanoparticle uptake: live-cell imaging reveals two distinct endocytosis mechanisms mediated by natural and artificial EGFR targeting ligand, Nano Lett. 12 (2012).

DOI: 10.1021/nl300395q

Google Scholar

[104] A. Babu, A.K. Templeton, A. Munshi, R. Ramesh, Nanoparticle-based drug delivery for therapy of lung cancer: Progress and challenges, J. Nanomater. 2013 (2013) 1-12.

DOI: 10.1155/2013/863951

Google Scholar

[105] L.B. Peppas, J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy, Adv. Drug Deliv. Rev. 64 (2012) 206-212.

DOI: 10.1016/j.addr.2012.09.033

Google Scholar

[106] Y. Zheng, H. Chen, X. Zeng, Z. Liu, X. Xiao, Y. Zhu, D. Gu, L. Mei, Surface modification of TPGS-b-(PCL-ran-PGA) nanoparticles with polyethyleneimine as a co-delivery system of TRAIL and endostatin for cervical cancer gene therapy doi: 10. 1186/1556-276X-8-161, Nanoscale Res. Lett. 8 (2013).

DOI: 10.1186/1556-276x-8-161

Google Scholar

[107] Y. Meihua, J. Siddharth, T. Peter, C. Jiezhong, G. Wenyi, Y. Chengzhong, Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells doi: 10. 1039/c2nr32145a, Nanoscale 5 (2013).

DOI: 10.1039/c2nr32145a

Google Scholar

[108] I.P. Kaur, S. Kakkar, M. Yadav, K. Jindal, I. Sharma, Autoclavable nanovesicular composition 700/Del/2014, (2014).

Google Scholar

[109] I.P. Kaur, H. Singh, Preparation of solid lipid nanoparticles of rifampicin to improve bioavailability and limiting drug interaction with isoniazid, India Patent, 17/01/2013, (2013).

Google Scholar