Biosynthesis of Silver Nanoparticles from Eucalyptus corymbia Leaf Extract at Optimized Conditions

Article Preview

Abstract:

This study reports the biosynthesis of narrow range diameter silver nanoparticles at optimum conditions using Eucalyptus corymbia as a reducing and stabilizing agent. Optimal conditions for biosynthesis of silver nanoparticles (AgNPs) were found to be; an extraction temperature of 90°C, pH of 5.7 a Silver Nitrate concentration of 1mM and AgNO3 to plant extract ratio of 4:1. UV-Visible spectroscopy monitored the formation of colloidal AgNPs. The UV-Visible spectrum showed a peak around 425 nm corresponding to the Plasmon absorbance of the AgNPs. The size and shape characterization of the AgNPs was done using Transmission Electron Microscopy (TEM) techniques which revealed narrow range diameter (18-20 nm), almost monodispersed AgNPs, spherical in nature and with minimal agglomeration. Energy Dispersive X-ray (EDX) results showed the presence of two peaks at 3.0 and 3.15 keV in the silver region. The Fourier Transform Infrared-Spectra (FTIR) of the plant extract and the AgNPs gave rise to vibrational peaks at 3260 and 1634 wavenumbers which are due to the presence of OH and –C=C-functional groups respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

32-45

Citation:

Online since:

April 2019

Export:

Price:

* - Corresponding Author

[1] E. Roduner, Size matters: why nanomaterials are different, Chem. Soc. Rev. 35 (2003) 583-592.

Google Scholar

[2] A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, I. M. Khan, R. Kumar, M. Sastry, Extracellular biosynthesis of silver nanoparticles using the Fungus Fusarium oxysporum, Colloids and Surf. B: Biointerfaces 28 (2003) 313-318.

DOI: 10.1016/s0927-7765(02)00174-1

Google Scholar

[3] O. Choi, K.K. Deng, N.J. Kim, L. Ross Jr, R.Y. Surampalli, and Z. Hu, the inhibitory effects of silver nanoparticles, silver ions and silver chloride colloids on microbial growth, Water Research 42 (12) (2008) 3066-3074.

DOI: 10.1016/j.watres.2008.02.021

Google Scholar

[4] S. Pal, Y. K. Pal, J. M. Song, Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the nanoparticle, Appl. Environ. Microbiol. (2007) 1712–1720.

DOI: 10.1128/aem.02218-06

Google Scholar

[5] Z. Qiang, Y-M. Chen, B. Gurkan, Y. Guo, M. Cakmak, K. A. Cavicchi, Y. Zhu, B. D. Vogt, Cooperatively assembled, nitrogen-doped, ordered mesophorous carbon/iron oxide nanocomposites for low-cost, long cycle sodium ion batteries, Carbon 116 (2017)286-293.

DOI: 10.1016/j.carbon.2017.01.093

Google Scholar

[6] Z. Qiang, X. Liu, F. Zou, K. A. Cavicchi, Y. Zhu, B. D. Vogt, Bimodal porous carbon-silica nanocomposites for Li-Ion batteries, J. Phys. Chem. C 121 (2017) 31 16702-16709.

DOI: 10.1021/acs.jpcc.7b03795

Google Scholar

[7] C. Daraio, S. Jin, Synthesis and pattening methods for nanostructures useful for biological application, Nanotechnology for biology and medicine (2012) 3-11.

Google Scholar

[8] M. Dubey, S. Bhadauria, and B. S. Kushwah, Green synthesis of nanosilver particles from extract of Eucalyptus hydrida leaf, Dig. J. Nanomat. Bios., 4 (3), (2009) 537-543.

Google Scholar

[9] Information on http://sabotin.ung.si/~sstanic/teaching/Seminar/2009/20091214_Dragomir_MetNP.pdf.

Google Scholar

[10] R. Shumaila, Z. H. Syed, H. Irshad, T. Bien, Design and Utility of Metal/Metal Oxide Nanoparticles Mediated by Thioether End-Functionalized Polymeric Ligands, Polymers (2016) 3-5.

DOI: 10.3390/polym8040156

Google Scholar

[11] S. Aryal, C-M. Hu, V. Fu, L. Zhang, Nanoparticles drug delivery enhances the cytotoxicity of hydrophobic-hydrophilic drug conjugates, J. Mater. Chem., 22 (2012) 994-999.

DOI: 10.1039/c1jm13834k

Google Scholar

[12] M.S. Akhtar, J. Panwar, and Y.S. Yun, Biogenic synthesis of metallic nanoparticles by plant extracts, ACS Sustain. Chem. Eng., 1 (6), (2013) 591-602.

DOI: 10.1021/sc300118u

Google Scholar

[13] K. Kalishwaralal, V. Deepak, R. K. Pandian, B. S. Kottaisamy, K. S. Kartikeyan, Biosynthesis of silver and gold nanoparticles using Brevibacterium casei, Elsevier (2010) 257-262.

DOI: 10.1016/j.colsurfb.2010.02.007

Google Scholar

[14] S. Garima, R.B. K. Kasariya, A. R. Sharma, R. P. Singh, Biosynthesis of silver nanoparticles using Ocimum sanctum leaf extract and screening its antimicrobial activity, JNR, 13 (2011) 2981-2988.

DOI: 10.1007/s11051-010-0193-y

Google Scholar

[15] Shankar, S. S., Ahmad, A., & Sastry, M., Geranium leaf assisted biosynthesis of silver nanoparticles, Biotechnol. Progr. , 19 (6), (2003) 1627-1631.

DOI: 10.1021/bp034070w

Google Scholar

[16] P.A.A. Mukherjee, D. S. Mandal, S. Senapati, R. Sainkar, M.I. Khan, R. Parishcha, P. V. Ajaykumar, M. Alam, R. Kumar, M. Sastry, Fungus mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix:A novel biological approach to nanoparticle synthesis, Nano. Lett. (2001) 515-519.

DOI: 10.1021/nl0155274

Google Scholar

[17] M. B. Ahmad, K. Shameli, Y. W. Wan, N. A. Ibrahim, Synthesis and characterization of silver bionanocomposites by green method, j. Basic appl. Sci. (2014) 2158-2165.

Google Scholar

[18] S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, M. Sastry, Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract, Biotechnol. progr. , 22 (2), (2006) 577-583.

DOI: 10.1021/bp0501423

Google Scholar

[19] M. E. Barbinta-Patrascu, C. Ungureanu, S. M. Iordache, A. M., Iordache, I. R. Bunghez, M. Ghiurea, Eco-designed biohybrids based on liposomes, mint–nanosilver and carbon nanotubes for antioxidant and antimicrobial coating, Mater. Sci. Eng. C Mater. Biol. Appl. , 39 (2014) 177-185.

DOI: 10.1016/j.msec.2014.02.038

Google Scholar

[20] W. J. Foley, E. V. Lassak, The potential of bioactive constituents of Eucalyptus foliage as non-wood products from plantations. Kingston: ACT: Rural Industries Research and Development Corporation (2004).

Google Scholar

[21] M. P. Pileni, Magnetic Fluids, Fabrication, Magnetic Properties, and Organization of Nanocrystals, Adv. Funct. Mater. (2001)323–336.

DOI: 10.1002/1616-3028(200110)11:5<323::aid-adfm323>3.0.co;2-j

Google Scholar

[22] Y. Matsumura, K. Yoshikata, S. Kunisaki, and T. Tsuchido, mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate, Appl. and Environ. Microbiol. (2003) 4278–4281.

DOI: 10.1128/aem.69.7.4278-4281.2003

Google Scholar

[23] Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, and P. J. Alvarez, Negligible particle specific antibacterial activity of silver nanoparticles, Nano lett. 12 (8), (2012) 4271-4275.

DOI: 10.1021/nl301934w

Google Scholar

[24] H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, H. Xu, Quantum dot-based local field imaging reveals plasmon based interferometric logic in silver nanowire networks, Nano Lett. 11 (2011) 471-475.

DOI: 10.1021/nl103228b

Google Scholar

[25] N. Tamilselvi, P. Krishnamoorthy, R. Dhamotharan, P. Arumugam, and E. Sagadevan, Analysis of total and screening of phytocomponents in indigofera aspalathoides, J. Chem. Pharm. Res. (2012) 3259-3262.

Google Scholar

[26] Prameela Kandra, Hemalatha Padma and Jyoti Kalangi, Appl. Microbiol. Biotechnol. 99:2055–2064 (2015).

Google Scholar

[27] M. A. Lobo W. Toma, S., M. P. de Oliveira Silva, N. S. Yakamoto, L. L Guimaraes, Evaluation of antifungal activity in vitro of semi-purified fractions obtained from rhizome Typha domingensis pers (Typhaceae), 2(1) Unisanta BioScience, 2 (1) (2013) 42-51.

Google Scholar

[28] C. Mohandass, A. S. Vijayaraj, R. Rajasabapathy, S. Satheeshbabu, S. V. Rao, C. Shiva, Biosynthesis of silver nanoparticles from marine seaweed Sargassum cinereum and their antibacterial activity, Indian j. Pharm. Sci. (2013) 606-610.

Google Scholar

[29] S. S. Shankar, A. Rai, A. Ahmad, M. Sastry, M., Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem leaf broth, J. colloid interface sci. 275 (2) (2004) 496.

DOI: 10.1016/j.jcis.2004.03.003

Google Scholar

[30] S. Iravani, green synthesis of nanoparticles using plant extracts, Green Chem., 13 (10), (2011) 2638-2650.

Google Scholar

[31] T. C. Prathna, N. Chandrasekaran, A. M. Raichur, A. Mukherjee, Biomimetic synthesis of silver nanoparticles by aqueous lemon extract and theoretical prediction of particle size, Colloids and Surf. B: Biointerfaces, 82 (1) (2011) 152-159.

DOI: 10.1016/j.colsurfb.2010.08.036

Google Scholar

[32] N. H. Chou, X. Ke, P. Schiffer, R. E. Shaak, Room-temperature chemical synthesis of shape-controlled indium nanoparticles, J. A C S, 130 (26) (2008) 8140-8141.

DOI: 10.1021/ja801949c

Google Scholar

[33] M. H. Mostafa, H. I. Eman, K. Z. El-Baghdady, D. Mohamed, Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity, Arabian J. Chem. (2013) 5-6.

DOI: 10.1016/j.arabjc.2013.04.007

Google Scholar

[34] M. B. Ahmad, K. Shameli, Y. W. Wan, N. A. Ibrahim, J. Basic appl. Sci. (2014) 2158-2165.

Google Scholar

[35] J. Dai, R. J. Mumper, Plant phenolics: extraction, analysis and their antioxidant and anticancer properties, Molecules (2010) 7320-7330.

DOI: 10.3390/molecules15107313

Google Scholar

[36] S. Hamedi, S. M. Ghaseminezhad, S. A. Shojaosadati, S. Shokrollahzadeh, Controlled green synthesis of silver nanoparticles using culture supernatant of filamentous fungus, Iranian J. Biotechnol, (2012) 6-7.

Google Scholar

[37] J. M. Sila, I. N. Michira, D. Abongo, G. N. Kamau, F. B. Mwaura, I. K. Kiio, E. Iwouha, Green synthesis of silver nanoparticles using eucalyptus corymbia leaf extract and its antimicrobial application, J. biochemiphysics, (2014) 21-30.

Google Scholar

[38] A. Mahfoudhil, F. P. Prencipe, Z. Mighri, F. Pellati, J. Pharm. Biomed. Anal., (2014) 61-63.

Google Scholar