Physical, and Thermal Properties of Wood Impregnated with a Mixture of Furfuryl Alcohol, Styrene, and Nanoclay

Article Preview

Abstract:

In this study, raw wood (RW) samples were impregnated with a mixture of furfural alcohol (FA), styrene (ST), and nanoclay of varying concentration of FA and ST. These impregnated wood and RWsamples were then subjected to FTIR, water uptake (WU), and thermal studies. The FT-IR results at 1600-1800 cm-1 showed that the ST/FA/clay-WPNCs had different peak numbers with different positions compared with the RW. So, there was an interaction between RW, FA, ST and clay. The WU of ST/FA/clayimpregnated wood is lower than RW. In thermo gravematric result, below 100 °C the impregnated wood samples had less weight lost compared to RW.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-36

Citation:

Online since:

June 2020

Export:

Price:

* - Corresponding Author

[1] R.M. Rowell, Chemical modification of wood: A short review. Wood Material Scienceand Engineering 1, (2006) 29–33.

Google Scholar

[2] M. Deka, C.N. Saikia, Chemical modification of wood with thermosetting resin:Effect on dimensional stability and strength property. Bioresource Technology 73(2) (2000) 179-181.

DOI: 10.1016/s0960-8524(99)00167-4

Google Scholar

[3] S. Lande, M. Eikenes, M. Westin, and M. Schneider, Furfurylation of wood: chemistry, properties and commercialization,, in:Development of Commercial Wood Preservatives, ACS Symposium Series 982 (2008) 337-355.

DOI: 10.1021/bk-2008-0982.ch020

Google Scholar

[4] B.M. Esteves, H.M. Pereira,Wood modification by heat treatment: A review. BioResources 4 (2009) 370-404.

Google Scholar

[5] K.K. Pandey, Jayashree, H.C Nagaveni, Study of dimensional stability, decay resistance, and light stability of phenylisothiocyanate modified rubberwood. BioResources 4 (2009) 257-267.

Google Scholar

[6] N.S. Cetin, N. Ozmen, E. Birinci , Acetylation of wood with various catalysts. J. Wood Chemical Technology 31 (2011) 142-153.

Google Scholar

[7] R.E Ibach, W.D. Ellis, Lumen Modifications. In Hand book of Wood Chemistry and Wood composites (Rowell, R. M., ed.) CRC Press Taylor and Francis Group.600-625, (2013).

Google Scholar

[8] K. Brebner, M. Schneider, Wood-polymer combinations: bonding of alkoxysilane coupling agents to wood, Wood Science and Technology 19 (1985.) 75-8l.

DOI: 10.1007/bf00354755

Google Scholar

[9] A. Stamm, Dimensional stabilization of wood with furfuryl alcohol, In: Goldstein I (ed) Wood technology; Chemical aspects. ACS symposium series, American Chemical Society, Washington 43 (1977) 141–149.

DOI: 10.1021/bk-1977-0043.ch009

Google Scholar

[10] A.P. Dunlop, F.N. Peters, The Furans" Reinhold Publishing Co.: New York, NY, USA, (1953).

Google Scholar

[11] K. Kandola, J.R. Ebdon, K.P. Chowdhury, Flame Retardance and Physical Properties of Novel Cured Blends of Unsaturated Polyester and Furan Resins, Polymers, 7 (2015) 298-315 .

DOI: 10.3390/polym7020298

Google Scholar

[12] L. Nordstierma, S. Lande, M Westin, O. Karlsson, I. Furo, Towards novel woodbased materials: Chemical bonds between lignin-like model molecules and poly furfuryl alcohol) studied by NMR," Holzforschung, 62 (2008) 709-713.

DOI: 10.1515/hf.2008.110

Google Scholar

[13] H. Epmeier, M. Westin, A. Rapp, Differently modified wood:comparison of some selected properties, Scanddinavian journal of forest Research 19 (2004) 31 37 doi.org/10.1080/02827580410017825).

DOI: 10.1080/02827580410017825

Google Scholar

[14] L.Gobakken, M. Westin, Surface mould growth on five modified wood substrates coated with three different coating systems when exposed outdoors, Int. Biodeterior Biodegrad 62 (2008) 397-402.

DOI: 10.1016/j.ibiod.2008.03.004

Google Scholar

[15] M. Westin, P.L. Larsson-Brelid, T. Nilsson, A. Rapp, J. P. Dickerson, S. Lande, S. Cragg, Marine borer resistance of acetylated and furfurylated wood – Results from up to 16 years of field exposure, in: Proceedings of the 47th Annual Meeting of the International Research Group (IRG) on Wood Protection, Lisbon, Portugal, 15-19 May 2016, IRG/WP 16-40756, Section 4(2016) 1-9.

Google Scholar

[16] Y.S. Hadi, M. Westin, E. Rasyid, Resistance of furfurylated wood to termite attack, Forest Products Journal 55 (2005) 85-88.

Google Scholar

[17] N. Herold, T. Dietrich, W.J. Grigsby, R.A. Franich, A.Winkler, B. Buchelt, A. Pfriem, Effect of maleic anhydride content and ethanol dilution on the polymerization of furfuryl alcohol in wood veneer studied by differential scanning calorimetry, BioResources 8 (2013) 1064-1075.

DOI: 10.15376/biores.8.1.1064-1075

Google Scholar

[18] M. Choura, N.M. Belgacem, A. Gandini, Acidcatalyzed polycondensation of furfuryl alcohol: mechanisms of chromophore formation and cross-linking, Macromolecules 29 (1996) 3839-3850. http://dx.doi.org/10.1021/ma951522f.

DOI: 10.1021/ma951522f

Google Scholar

[19] L. Nordstierma, S. Lande, M. Westin, O. Karlsson, I. Furo, Towards novel woodbased materials: Chemical bonds between lignin-like model molecules and poly (furfuryl alcohol) studied by NMR, Holzforschung 62, (2008) 709-713.

DOI: 10.1515/hf.2008.110

Google Scholar

[20] Y. Dong, Y. Yan, S. Zhang, Z. Li, Wood/Polymer Nanocomposites Prepared by Impregnation with Furfuryl Alcohol and Nano-SiO2, BioResources 9 (2013) 6028-6040.

DOI: 10.15376/biores.9.4.6028-6040

Google Scholar

[21] A. Hazarika, T.K. Maji, Effect of different crosslinkers on properties of melamine formaldehyde-furfuryl alcohol copolymer/montmorillonite impregnated softwood (Ficus hispida), Polymer Engineering Science 53 (2013) 1394-1407.

DOI: 10.1002/pen.23391

Google Scholar

[22] M.T. Sultan, M.R. Rahman, S. Hamdan, J.C.H. Lai, Z.A. Talib, Clay dispersed styrene-co-glycidylmethacrylate impregnated kumpangwood polymer nanocomposites: Impact on mechanical and morphological properties, BioResources 11 (2016) 6649-6662.

DOI: 10.15376/biores.11.3.6649-6662

Google Scholar

[23] Internatioal, ASTM. (2002). ASTM D570 Standard test methods for water absorption of plastics. West Conshohocken, PA: ASTM Internatioal.

Google Scholar

[24] M.C. Popescu, J. Froidevaux, P. Navi, C.M. Popescu, Structural modifications of Tiliacordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy, Journal of Molecular Structure 1033 (2013)176–186.

DOI: 10.1016/j.molstruc.2012.08.035

Google Scholar

[25] M.R., Rahman, S. Hamdan, A.S. Ahmed, M.S. Islam, Z.A. Talib, W.F.W. Abdullah, Thermogravimetric analysis and dynamic Young's modulus measurement of N, N-dimethylacetamide-impregnated wood polymer composites, Journal of Vinyl and Additive Technology 17 (2011) 177–183.

DOI: 10.1002/vnl.20275

Google Scholar

[26] R.W. Parker R.L. Frost, The application of drift spectroscopy to the multicomponent analysis of organic chemicals adsorbed on montmorillonite, Clay Mineral 44 (1996) 32–40.

DOI: 10.1346/ccmn.1996.0440103

Google Scholar

[27] T. Kondo, C. Sawatari, A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose, Polymer 37(3) (1996) 393–399.

DOI: 10.1016/0032-3861(96)82908-9

Google Scholar

[28] B. Monika, D. Beata, S. Sławomir, Modification of wood with furfuryl alcohol catalysed by a mixture of acidanhydrides, Forestry and Wood Technology 92 (2015) 26-29.

Google Scholar

[29] Y. Dong, Y. Yan, S. Zhang, Z. Li, Wood/Polymer Nanocomposites Prepared by Impregnation with Furfuryl Alcohol and Nano-SiO2, BioResources 9 (2014) 6028- 6040.

DOI: 10.15376/biores.9.4.6028-6040

Google Scholar

[30] M.R. Rahman, S. Hamdan, J.C.H. Lai, M. Jawaid F.A.M. Yusof, Physicomechanical, thermal and morphologicalproperties of furfurylalcohol/2-ethylhexyl methacrylate/halloysite nanoclay woodpolymer nanocomposites (WPNCs), Heliyon 3 (2017) e00342.

DOI: 10.1016/j.heliyon.2017.e00342

Google Scholar

[31] Z. Liu, Z. Jiang, B. Fei, X. Liu, Thermal Decomposition Characteristics of Chinese Fir, BioResources 8 (2013) 5014–5024.

DOI: 10.15376/biores.8.4.5014-5024

Google Scholar

[32] N. Guigo, A. Mija, R. Zavaglia, L. Vincent, N. Sbirrazzuoli, New insights on the thermal degradation pathways of net poly(farfural alcohol) and poly(farfural alcohol)/SiO2 hybrid materials, Polymer Degradation and Stability 96 (2009) 908- 913.

DOI: 10.1016/j.polymdegradstab.2009.03.008

Google Scholar

[33] H.S. Kim, S. Kim, H.J. Kim, H. S. Yang, Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content, ThermochimicaActa 451 (2006) 181–188.

DOI: 10.1016/j.tca.2006.09.013

Google Scholar

[34] H.Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel 86 (2007) 1781–1788.

DOI: 10.1016/j.fuel.2006.12.013

Google Scholar

[35] M. García, J. Hidalgo, I. Garmendia, J. García-Jaca, Wood-plastics composites with better fire retardancy and durability performance, Composites Part A: Applied Science and Manufacturing 40 (2009) 1772–1776.

DOI: 10.1016/j.compositesa.2009.08.010

Google Scholar

[36] P.E. Sanchez-Jimenez, L.A. Perez-Maqueda, . J.E Crespo-Amoros, J.Lopez, A.C.J.M. Perejon, Nanoclay Nucleation Effect in the Thermal Stabilization of a Polymer Nanocomposite: A Kinetic Mechanism Change, The journal of physical chemistry 116 (2012) 11797–11807.

DOI: 10.1021/jp302466p

Google Scholar