Synthesis of Poly(Ethylene 2,5-Furanoate): I. Kinetics of 2,5-Dimethyl Ester of Furandicarboxylic Acid Transesterification

Article Preview

Abstract:

The kinetics of the 2,5-dimethyl ester of furandicarboxylic acid transesterification in the presence of various catalysts at different temperatures was investigated. It was shown that the catalytic activity follows the order: Mn (OAc)2 < Co (OAc)2 < Zn (OAc)2 < Ti (OBu)4. The transesterification catalyzed by Ti (OBu)4 leads to the formation of the polymers with the higher molecular weight compared to Me (OAc)2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

311-316

Citation:

Online since:

May 2020

Export:

Price:

* - Corresponding Author

[1] A. Gandini, Green Chem. 13 (2011) 1061.

Google Scholar

[2] M.A.R. Meier, J.O. Metzger, U.S. Schubert, Chem. Soc. Rev. 36 (2007) 1788.

Google Scholar

[3] C. Vilela, A.F. Sousa, A.C. Fonseca, A.C. Serra, J.F.J. Coelho, C.S.R. Freire, and A.J.D Silvestre, Polym. Chem. 5 (2014) 3119.

Google Scholar

[4] J. Saeng-On, D. Aht-ong, Polymers from Renewable Resources. 3 (2017) 91.

Google Scholar

[5] A. Gandini, T.M. Lacerda, Prog. Polym. Sci. 48 (2015) 1.

Google Scholar

[6] I. Delidovich, P.J.C. Hausoul, L. Deng, R. Pfützenreuter, M. Rose, and R. Palkovits, Chem. Rev. 116 (2016) 1540.

DOI: 10.1021/acs.chemrev.5b00354

Google Scholar

[7] J.J. Bozell and G.R. Petersen, Green Chem. 12 (2010) 539.

Google Scholar

[8] J. J. E. Eerhart, A. P. C. Faaij, and M. K. Patel, Energy Environ. Sci. 5 (2012) 6407.

Google Scholar

[9] E. De Jong, M.A. Dam, L. Sipos, and G.-J.M. Gruter, ACS Symp. Ser. 1 (2012) 1105.

Google Scholar

[10] A.F. Sousa, C. Vilela, A.C. Fonseca, M. Matos, C.S.R. Freire, G.-J.M. Gruter, J.F.J. Coelho, and A.J.D. Silvestre, Polym. Chem. 6 (2015) 5961.

Google Scholar

[11] G.Z. Papageorgiou, D.G. Papageorgiou, Z. Terzopoulou, and D.N. Bikiaris, Eur. Polym. J. 83 (2016) 202.

Google Scholar

[12] S.K. Burgess, J.E. Leisen, B.E. Kraftschik, Ch.R. Mubarak, R. M. Kriegel, and W.J. Koros, Macromolecules. 47 (2014) 1383.

DOI: 10.1021/ma5000199

Google Scholar

[13] E. de Jong, A. Higson, P. Walsh, and M. Wellisch, Biofuels, Bioprod. Bioref. 6 (2012) 606.

DOI: 10.1002/bbb.1360

Google Scholar

[14] V.M. Chernyshev, O.A. Kravchenko and V.P. Ananikov, Russ. Chem. Rev. 86 (2017) 357.

Google Scholar

[15] D.V. Chernysheva, V.A. Klushin, A.F. Zubenko, L.S. Pudova, O.A. Kravchenko, and N.V. Smirnova., Mend. Commun. (in press).

Google Scholar

[16] K. Pang, R. Kotek, A. Tonelli, Prog. Polym. Sci. 31 (2006) 1009.

Google Scholar

[17] R.J.I. Knoop, W. Vogelzang, J. van Haveren, and D.S. van Es. J. Polym. Sci. Part A: Polym. Chem. 51 (2013) 4191.

DOI: 10.1002/pola.26833

Google Scholar

[18] J. Ma, X .Yu, J. Xu, Y., Polymer. 53 (2012) 4145.

Google Scholar

[19] Z. Terzopoulou, E. Karakatsianopoulou, N. Kasmi, V. Tsanaktsis, N. Nikolaidis, M. Kostoglou, G. Z. Papageorgiou, D. A. Lambropoulou, and D. N. Bikiaris, Polym. Chem. 8 (2017) 6895.

DOI: 10.1039/c7py01171g

Google Scholar

[20] K. Tomita and H. Ida, Polymer. 14 (1973) 55.

Google Scholar

[21] B. Saha, M. Streat, Reactive & Functional Polymers. 40 (1999) 13.

Google Scholar

[22] E. Santacesaria, F. Trulli, L. Minervini, M. Di Serio, R. Tesser, and S. Contessa, J. Appl. Polym. Sci. 54 (1994) 1371.

DOI: 10.1002/app.1994.070540919

Google Scholar

[23] F. Pilati, P. Manaresi, B. Fortunate, A. Munari and P. Monari, Polymer. 24 (1983) 1479.

Google Scholar

[24] J. Otton, S. Ratton, V.A. Vasnev, G.D. Markova, K.M. Nametov, V.I. Bakhmutov, L.I. Komarova, S.V. Vinogradova, and V.V. Korshak, J. Polym. Sci., Part A. 26 (1988) 2199.

DOI: 10.1002/pola.1988.080260816

Google Scholar

[25] G.D. Lei and K.Y. Choi, Industrial & engineering chemistry research. 31 (1992) 769.

Google Scholar