Magnetic Nanoparticles as Drug Carriers: Review

Article Preview

Abstract:

Magnetic nanoparticles are made up of magnetic elements such as iron, nickel, cobalt and their oxides. Their unique physical and chemical properties, biocompatibility and their ability to be manipulated by external magnetic fields have made them as popular drug carriers in recent years. They offer various advantages such as ability to carry drugs to the desired areas in the body, and the ability to release the drugs in a controlled manner which in turn help in reducing side effects to other organs and in providing correct dosage of drugs. However, the complexity of the drug delivery system is a challenge in further improving the efficiency of magnetic nanoparticle drug delivery. In order to overcome this challenge, computational tools help in understanding the complexity of the drug delivery process and to design magnetic nanoparticles which are more efficient in drug delivery. In this chapter we propose to review various properties of magnetic nanoparticles, applications of magnetic nanoparticles as drug carriers, challenges in using them for drug delivery, various computational tools which aid in modeling magnetic nanoparticle drug delivery and in designing magnetic nanoparticles for efficient targeted drug delivery.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-12

Citation:

Online since:

November 2014

Export:

Price:

* - Corresponding Author

[1] V. Wagner, A. Dullaart, A-K. Boch and A. Zweck, The emerging nanomedicine landscape, Nature Biotechnology, 24(10), (2006), 1211-1217.

DOI: 10.1038/nbt1006-1211

Google Scholar

[2] J. H. Park, G. Saravanakumar, K. Kim and I. C. Kwon, Targeted delivery of low molecular drugs using chitosan and its derivatives, Advanced Drug Delivery Reviews, 62(10), (2010), 28-41.

DOI: 10.1016/j.addr.2009.10.003

Google Scholar

[3] J. Dobson, Magnetic nanoparticles for drug delivery, Drug Development Research, 67, (2006), 55-60.

Google Scholar

[4] M. Arruebo, R. F. Pacheco, M. R. Ibarra and J. Santamaria, Magnetic nanoparticles for drug delivery, Nanotoday, 2(3), (2007), 22-32.

Google Scholar

[5] A. Z. Wilczewska, K. Niemirowicz, K. H. Markrewicz and H. Car, Nanoparticles as drug delivery systems, Pharmacological Reports, 64, (2012), 1020-1037.

DOI: 10.1016/s1734-1140(12)70901-5

Google Scholar

[6] S. M. Musa (Ed. ), Computational Nanotechnology Modeling and Applications with MATLAB, CRC Press, (2012).

Google Scholar

[7] S. Tamar, Molecular Modeling and Simulation: An Interdisciplinary Guide, Springer: New York, (2002).

Google Scholar

[8] C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feeney, Experimental and computational approaches to estimate stability and permeability in drug discovery and development settings, Advanced Drug Delivery Reviews, 46, (2001), 3-26.

DOI: 10.1016/j.addr.2012.09.019

Google Scholar

[9] N. Haddish-Berhane, J. L. Rickus, and K. Haghighi, The role of multiscale computational approaches for rational design of conventional and nanoparticle oral drug delivery Systems, International Journal of Nanomedicine, 2, (2007), 315-331.

Google Scholar

[10] L. Huynh, C. Neale, R. Pomes and C. Allen, Computational approaches to the rational design of nanoemulsions, polymeric micelles and dendrimers for drug delivery, Nanomedicine, 8, (2012), 20-26.

DOI: 10.1016/j.nano.2011.05.006

Google Scholar

[11] J. Panyam and V. Labhasehvar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue, Advanced Drug Delivery Reviews, 55, (2003), 329-347.

DOI: 10.1016/s0169-409x(02)00228-4

Google Scholar

[12] V. J. Mohanraj and Y. Chen, Nanoparticles - a review, Tropical Journal of Pharmaceutical Research, 5(1), (2006), 561-573.

Google Scholar

[13] H. M. Redhead, S. S. Davis and L. Illum, drug delivery in poly (lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterization and in vivo evaluation, Journal of Controlled Release, 70, (2001).

DOI: 10.1016/s0168-3659(00)00367-9

Google Scholar

[14] A. K. Gupta and A. S. G. Curtis, Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture, Journal of Materials Science: Materials in Medicine, 15, (2004), 493-496.

DOI: 10.1023/b:jmsm.0000021126.32934.20

Google Scholar

[15] A. J. Cole, V. C. Yang, and A. E. David, Cancer theranostics: the rise of targeted magnetic nanoparticles, Trends in Biotechnology. 29, (2011), 323-332.

DOI: 10.1016/j.tibtech.2011.03.001

Google Scholar

[16] L. Grislain, P. Couvreur, V. Lenaerts, M. Ronald, D. Deprez-Decampeneere and P. Speiser, Pharmacokinetics and distribution of a biodegradable drug-carrier, International Journal of Pharmaceutics, 15, (1983), 335-345.

DOI: 10.1016/0378-5173(83)90166-7

Google Scholar

[17] Y. Geng, P. Dalhaimer, S. S. Cai, R. Tsai, M. Tewari, T. Minko and D. E. Discher, Shape effects of filaments versus spherical particles in flow and drug delivery, Nature Nanotechnology, 2, (2007), 249-255.

DOI: 10.1038/nnano.2007.70

Google Scholar

[18] C. Chouly, D. Pouliquen, I. Lucet, J. J. Jeune and P. Jallet, Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution, Journal of Microencapsulation, 13, (1996), 245-255.

DOI: 10.3109/02652049609026013

Google Scholar

[19] S. P. Gubin, (Ed. ), Magnetic nanoparticles, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, (2009).

Google Scholar

[20] V. V. Mody, A. Cox, S. Shah, A. Singh, W. Bevins and H. Parihar, Magnetic nanoparticle drug delivery systems for targeting tumor, Applied Nanoscience, 4, (2014), 385-392.

DOI: 10.1007/s13204-013-0216-y

Google Scholar

[21] S. Bucak, B. Yavuzturk and A. D. Sezer, Magnetic nanoparticles: synthesis, surface modifications and application in drug delivery, Recent Advances in Novel Drug Carrier Systems, (2012).

DOI: 10.5772/52115

Google Scholar

[22] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst and R. N. Muller, Magnetic iron nanoparticles: synthesis, stabilization, vectorization, physiochemical characterizations and biological applications, Chemical Reviews, 108, (2008).

DOI: 10.1021/cr068445e

Google Scholar

[23] O. Veiseh, J. W. Gunn and M. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging, Advanced Drug Delivery Reviews, 62(3), (2010), 284-304.

DOI: 10.1016/j.addr.2009.11.002

Google Scholar

[24] M. Mahmoudi, A. Simohi, M. Imani and M. A. Shokrgozer, A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles, Colloids and Surfaces B: Biointerfaces, 75, (2010), 300-309.

DOI: 10.1016/j.colsurfb.2009.08.044

Google Scholar

[25] S. Bamrungsap, Z. Zhao, T. Chen, L. Wang, C. Li, T. Fu and W. Tan, Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system, Nanomedicine, 7(8), (2012), 123-1271.

DOI: 10.2217/nnm.12.87

Google Scholar

[26] T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann and B. von Rechenberg, Superpara-magnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system, Journal of Magnetism and Magnetic Materials, 293, (2005).

DOI: 10.1016/j.jmmm.2005.01.064

Google Scholar

[27] A. S. Lubbe, C. Bergemann, J. Brock and D. G. McClure, Physiological aspects in magnetic drug-targeting, Journal of Magnetism and Magnetic Materials, 194, (1999), 149-155.

DOI: 10.1016/s0304-8853(98)00574-5

Google Scholar

[28] Q. A. Pankhurst, J. Cannolly, S. K. Jones and J. Dobson, Applications of magnetic nanoparticles in biomedicine, Journal of Physics D: Applied Physics, 36, (2003), R167-181.

DOI: 10.1088/0022-3727/36/13/201

Google Scholar

[29] A. Jordan, R. Scholz, P. Wust, H. Fahling, J. Krause, W. Wlodarczyk, B. Sander, T. Vogl and R. Felix, Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo, International Journal Hyperthermia, 13, (1997), 587-605.

DOI: 10.3109/02656739709023559

Google Scholar

[30] A. Jordan, R. Scholz, P. Wust, H. Fahling and R. Felix, Magnetic fluid Hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles, Journal of Magnetism and Magnetic Materials, 201, (1999).

DOI: 10.1016/s0304-8853(99)00088-8

Google Scholar

[31] J. L. Arias, M. Lopez-Viota, A. V. Delgado and M. A. Rceiz, Iron/ethylcellulose (core/ shell) nanoplatform loaded with 5-flurouracil for cancer targeting, Colloids and Surfaces B: Biointerfaces, 77, (2010), 111-116.

DOI: 10.1016/j.colsurfb.2010.01.030

Google Scholar

[32] A. K. Bajpai, and R. Gupta, Magnetically mediated release of ciprofloracin from polyvinyl alcohol based superparamagnetic nanocomposites, Journals of Materials Science: Materials in Medicine, 22, (2011), 357-369.

DOI: 10.1007/s10856-010-4214-2

Google Scholar

[33] M. Y. Hua, H. L. Liu, H. W. Yang, P. Y. Chen, R. Y. Tsai, C. Y. Huang, I. C. Tseng, L. A. Lyu, C. C. Ma, H. J. Tang, T. C. Yen and K. C. Wei, 'The effectiveness of a magnetic nanoparticle based system for BCNU in the treatment of gliomas, Biomaterials, 32, (2011).

DOI: 10.1016/j.biomaterials.2010.09.065

Google Scholar

[34] C. Jingting, L. Huining and Z. Yi, Preparation and characterization of magnetic nanoparticles containing Fe3O4-dextran-anti-β-human chronic gonadotropin, a new generation choriocarcinoma specific gene vector, International journal of Nanomedicine, 6, (2011).

DOI: 10.2147/ijn.s13410

Google Scholar

[35] H. Kempe and M. Kempe, The use of magnetic nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy, Biomaterials, 31, (2010), 9499-9510.

DOI: 10.1016/j.biomaterials.2010.07.107

Google Scholar

[36] D. Losic, Y. Yu, M. S. Aw, S. Simovic, B. Thierry and J. Addai-Mensah, Surface functionalization of diatoms with dopamine modified iron-oxide nanoparticles toward magnetically guided drug microcarriers with biologically derived morphologies, Chemical Communications, 46, (2010).

DOI: 10.1039/c0cc01305f

Google Scholar

[37] W. Wu, B. Chen, J. Cheng, J. Wang, W. Xu, L. Liu, G. Xia, H. Wei, X. Wang, M. Yang, L. Yang, Y. Zhang, C. Xu and J. Li, Biocompatibility of Fe3O4/ DNR magnetic nanoparticles in the treatment of hematologic malignancies, International Journal of Nanomedicine, 5, (2010).

DOI: 10.2147/ijn.s15660

Google Scholar

[38] J. Yang, S. B. Park, H. G. Yoon, Y. H. Huh and S. Ham, Preparation of poly epsilon-caprolactone nanoparticles containing magnetite for magnetic drug carrier, International Journal of Pharmaceutics, 324(2), (2006), 185-190.

DOI: 10.1016/j.ijpharm.2006.06.029

Google Scholar

[39] T. K. Jain, M. M. Torres, S. K. Sahoo, D. L. Pelecky and V. Labhasetwar, Iron oxide nanoparticles for sustained delivery of anticancer agents, Molecular Pharmaceutics, 2(3), (2005), 194-205.

DOI: 10.1021/mp0500014

Google Scholar

[40] B. Chertok. A. E. David and V. C. Yang, Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration, Biomaterials, 31(24), (2010), 6317-6324.

DOI: 10.1016/j.biomaterials.2010.04.043

Google Scholar

[41] C. Alexiou, R. Jurgons, C. Seliger, O. Brunke, H. Iro and S. Odenbach, Delivery of superparamagnetic nanoparticles for local chemotherapy after intraarterial infusion and magnetic drug targeting, Anticancer Research, 27, (2007), 2019-(2022).

Google Scholar

[42] M. J. Maheed, Q. Lu, W. Yan, Z. Li, J. Hussain, Highly water-soluble magnetic iron oxide (Fe3O4) nanoparticles for drug delivery: enhanced in vitro therapeutic efficacy of doxorubicin and MION conjugates, Journal of Materials Chemistry B, 1(22), (2013).

DOI: 10.1039/c3tb20322k

Google Scholar

[43] N. Schleich, P. Sibret, P. Danhier, B. Ucakar, S. Laurent, R. N. Muller, C. Jerome, B. Gallez, V. Preat and F. Danhier, Dual anticancer drug/ superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging, International Journal of Pharmaceutics, 447, (2013).

DOI: 10.1016/j.ijpharm.2013.02.042

Google Scholar

[44] S. Kayal and R. V. Ramanujam, Anti-cancer drug loaded iron-gold core-shell nanoparticles (Fe@Au) for magnetic drug targeting, Journal of Nanoscience and Nanotechnology, 10, (2010), 1-13.

DOI: 10.1166/jnn.2010.2461

Google Scholar

[45] Y. Liu, S. Shah and J. Tan, Computational modeling of nanoparticle targeted drug delivery, Reviews in Nanoscience and Nanotechnology, 1, (2012), 66-83.

DOI: 10.1166/rnn.2012.1014

Google Scholar

[46] J. Tan, S. Wang, J. Yang and Y. Liu, Coupled particulate and continuum model for nanoparticle targeted delivery, Computers and Structures, 122, (2013), 128-134.

DOI: 10.1016/j.compstruc.2012.12.019

Google Scholar

[47] T. J. Chung, Computational fluid dynamics, Cambridge University Press, (2002).

Google Scholar

[48] X. Cao, X. Han and L. Li, Numerical analysis of magnetic nanoparticle transport in microfluidic systems under the influence of permanent magnets, Journal of Physics D: Applied Physics, 45, (2012).

DOI: 10.1088/0022-3727/45/46/465001

Google Scholar

[49] M. Babincova and P. Babinec, Magnetic drug delivery and targeting: principles and applications, Biomed Pap Med fac Univ Palacky Olomouc Czech republic, 153(4), (2009), 243-250.

DOI: 10.5507/bp.2009.042

Google Scholar

[50] J. M. S. L. Paulo Costa, Modeling and comparison of dissolution profiles, European Journal of Pharmaceutical Sciences, 13(2), (2001), 123-133.

Google Scholar

[51] T. Hoare, B. P. Timko, J. Santamaria, G. F. Goya, S. Lau, C. F. Stefanescu, D. Lin, R. Langer and D. S. Kohane, Magnetically-triggered nanocomposite membranes: a versatile platform for triggered drug release, Nano Letters, 11(3), (2011).

DOI: 10.1021/nl200494t

Google Scholar

[52] R. Guenin, P. C. Clapp, Y. Zhao and J. A. Rifkin, Transformation of toughening in nial observed via monte-carlo simulations, Materials Science and Engineering B: Solid-state Materials for Advanced Technology, 37, (1996), 193-196.

DOI: 10.1016/0921-5107(95)01485-3

Google Scholar

[53] T. Puzyn, J. Leszczynski and M. T. Cronin (Eds. ), Recent Advances in QSAR Studies: Methods and Applications, (2009).

Google Scholar

[54] T. Puzyn, D. Leszczynska and J. Leszczynski, Toward the development of nano-QSARs,: advances and challenges, Small, 5(2), (2009), 2494-2509.

DOI: 10.1002/smll.200900179

Google Scholar

[55] S. Wang, Y. Zhou, J. Tan, J. Xu, J. Yang and Y. Liu, Computational modeling of magnetic nanoparticle targeting to stent surface under high gradient field, Computational Mechanics, 53, (2014), 493-412.

DOI: 10.1007/s00466-013-0968-y

Google Scholar

[56] S. Kayal, D. Bandyopadhyay, T. K. Mandal and R. V. Ramanujam, The flow of magnetic nanoparticles in magnetic drug targeting, RSC Advances, 1, (2011), 238-246.

DOI: 10.1039/c1ra00023c

Google Scholar

[57] L. Han-dan, X. Wei, W. Shi-gang, K. Zun-ji, Hydrodynamic modeling of ferrofluid flow in magnetic targeting drug delivery, Applied Mathematics and Mechanics (English Edition), 29(10), (2008), 1341-1349.

DOI: 10.1007/s10483-008-1009-y

Google Scholar

[58] A. Nacev, C. Beni, O. Rbuno and B. Shapiro, Magnetic nanoparticle transport within flowing blood and into surrounding tissue, Nanomedicine, 5(9), (2010), 1459-1466.

DOI: 10.2217/nnm.10.104

Google Scholar

[59] S. Shah, Y. Liu, W. Hu and J. Gao, Modeling particle shape-dependent dynamics in nanomedicine, Journal of Nanoscience and Nanotechnology, 11(2), (2011), 919-928.

DOI: 10.1166/jnn.2011.3536

Google Scholar

[60] M. Mahmoudi, M. A. Shokrgozer, A. Simchi, M. Imami, A. S. Milani, P. Stroeve, H. Vali, V. O. Hafeli and S. Bonakdar, Multiphysics flow modeling and in vitro toxicity of iron oxide nanoparticles coated with poly(vinyl alcohol), Journal of Physical Chemistry C, 113, (2009).

DOI: 10.1021/jp904884y

Google Scholar