Optimization of Glass Forming Ability of Al-Ni-Si Alloys by a Thermodynamic and Kinetic Approach

Article Preview

Abstract:

This study reports the glass forming ability (GFA) of Al-Ni-Si alloys with selected compositions based on atomic packing efficiency and driving force criteria. Higher GFA was observed in the Al-rich lower liquidus temperature regions of the Al-Ni-Si system indicating that these compositions exhibit a lower driving force for crystallization. Five glassy alloys that were calculated to consist of densely packed atomic short-range ordering were found to retain an amorphous structure upon copper mould casting. The result of GFA in the Al-Ni-Si system provides a novel approach to develop new metallic glasses considering both the thermodynamic stability and sluggish crystallisation kinetics through efficient packing.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 773-774)

Pages:

466-470

Citation:

Online since:

November 2013

Export:

Price:

[1] Tsai, A.-P., A. Inoue, and T. Masumoto, Ductile Al-Cu-V amorphous alloys without metalloid. Metallurgical and Materials Transactions A, 1988. 19(2): pp.391-393.

DOI: 10.1007/bf02652554

Google Scholar

[2] Masumoto, T., Recent progress in amorphous metallic materials in Japan. Materials Science and Engineering: A, 1994. 179-180(Part 1): pp.8-16.

DOI: 10.1016/0921-5093(94)90155-4

Google Scholar

[3] He, Y., S.J. Poon, and G.J. Shiflet, Synthesis and Properties of Metallic Glasses that Contain Aluminum. Science, 1988. 241(4873): pp.1640-1640.

DOI: 10.1126/science.241.4873.1640

Google Scholar

[4] Yang, H.W., M.J. Tan, and R.V. Ramanujan, Strain hardening at elevated temperatures induced by dynamic crystallization of an Al88Ni4Y8 amorphous alloy. Scripta Materialia, 2012. 66(6): pp.382-385.

DOI: 10.1016/j.scriptamat.2011.11.038

Google Scholar

[5] Zhuo, L.-C. and et al., Ductile bulk aluminum-based alloy with good glass-forming ability and high strength. Chinese Physics Letters, 2009. 26(6): p.066402.

DOI: 10.1088/0256-307x/26/6/066402

Google Scholar

[6] Chen, Z.P., et al., Role of rare-earth elements in glass formation of Al–Ca–Ni amorphous alloys. Journal of Alloys and Compounds, 2012. 513(0): pp.387-392.

DOI: 10.1016/j.jallcom.2011.10.054

Google Scholar

[7] Aliaga, L.C.R., et al., Topological instability and glass forming ability of Al–Ni–Sm alloys. Journal of Alloys and Compounds, 2011. 509, Supplement 1(0): p. S141-S144.

DOI: 10.1016/j.jallcom.2011.01.026

Google Scholar

[8] Legresy, J.M., M. Audier, and P. Guyot, Characterization and kinetics of the crystallization of Al-Ni-Si amorphous alloys. Materials Science and Engineering, 1988. 97(0): pp.385-390.

DOI: 10.1016/0025-5416(88)90079-1

Google Scholar

[9] Wang, S.H., W. Wang, and Q.D. Wang, Relation between medium-range order and crystallization in Al-Ni based metallic glass. The Open Materials Science Journal, 2011. 5: pp.40-44.

DOI: 10.2174/1874088x01105010040

Google Scholar

[10] He, Y., et al., Unique metallic glass formability and ultra-high tensile strength in Al-Ni-Fe-Gd alloys. Acta Metallurgica et Materialia, 1993. 41(2): pp.337-343.

DOI: 10.1016/0956-7151(93)90064-y

Google Scholar

[11] Yang, B.J., et al., Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength. Scripta Materialia, 2009. 61(4): pp.423-426.

DOI: 10.1016/j.scriptamat.2009.04.035

Google Scholar

[12] Miracle, D.B., W.S. Sanders, and O.N. Senkov, The influence of efficient atomic packing on the constitution of metallic glasses. Philosophical Magazine, 2003. 83(20): pp.2409-2428.

DOI: 10.1080/1478643031000098828

Google Scholar

[13] Kim, D., B.-J. Lee, and N.J. Kim, Prediction of composition dependency of glass forming ability of Mg-Cu-Y alloys by thermodynamic approach. Scripta Materialia, 2005. 52(10): pp.969-972.

DOI: 10.1016/j.scriptamat.2005.01.038

Google Scholar

[14] Raghavan, V., Al-Ni-Si (Aluminum-Nickel-Silicon). Journal of Phase Equilibria and Diffusion, 2005. 26(3): pp.262-267.

DOI: 10.1361/15477030523643

Google Scholar

[15] Laws, K., et al., Prediction of Glass-Forming Compositions in Metallic Systems: Copper-Based Bulk Metallic Glasses in the Cu-Mg-Ca System. Metallurgical and Materials Transactions A, 2010. 41(7): pp.1699-1705.

DOI: 10.1007/s11661-010-0274-7

Google Scholar

[16] Miracle, D.B., E.A. Lord, and S. Ranganathan, Candidate atomic cluster configurations in metallic glass structures. Materials Transactions, JIM, 2006. 47(7): pp.1737-1742.

DOI: 10.2320/matertrans.47.1737

Google Scholar

[17] Miracle, D.B., Efficient local packing in metallic glasses. Journal of Non-Crystalline Solids, 2004. 342(1'Äì3): pp.89-96.

DOI: 10.1016/j.jnoncrysol.2004.05.017

Google Scholar

[18] Busch, R., J. Schroers, and W.H. Wang, Thermodynamics and kinetics of bulk metallic glass. MRS Bulletin, 2007. 32: pp.620-623.

DOI: 10.1557/mrs2007.122

Google Scholar