Preparation, Characterization and Photocatalytic Application of Carbonate Modified Titania

Article Preview

Abstract:

Carbonate is a common pollutant in water and wastewater. A study to understand its influence on the photodegradation rates is necessary especially when TiO2/UV technique is emerging as an advanced technology for pollution abatement. In the present investigation, we report surface modification of titanium dioxide using carbonate ions, characterization of carbonate modified titanium dioxide (CMT) and photocatalytic application of carbonate modified TiO2. Titanium dioxide from two different sources namely BDH, Mumbai and Degussa AG, Germany was used as photocatalyst. The CMT catalysts were characterized using potentiometry, FT-IR and XPS. Approximately, 18.9 mg CO3/g CMT(BDH) and 8.13 mg CO3/g CMT(Degussa) was found loaded as determined by potentiometry. The C 1s and O 1s binding energies observed at 289.2 and 531.3 eV, respectively were attributed to surface carbonate species. The adsorption and photodegradation of Acid Blue I dye examined using neat TiO2 as well as CMT catalysts revealed that carbonate inhibits catalytic activity for color and Chemical Oxygen Demand (COD) removal. The photo degradation rate constant (k, s-1) decreases gradually with increasing concentration of carbonate. Thus, in the absence of carbonate kdye is 5.45 × 10-4 s-1 (R2 = 0.97) and kCOD is 3.50 × 10-5 s-1 (R2 = 0.97). At 100 mg/L CO32-, kdye is 0.16 × 10-4 s-1 (R2 = 0.96) and kCOD is 2.66 × 10-5 s-1 (R2 = 0.98). In addition, the carbonate spiking studies revealed the onset of inhibition soon after the addition of carbonate into reacting suspensions of TiO2. The results suggest that carbonate inhibits catalytic activity through formation of strong surface complex under suitable pH by displacing OH2+ and OH groups from TiO2 surface. This results not only in fewer (OH)surface groups available for h+ trapping for oxidation into OH radicals but also in non-availability of adsorption sites for the dye molecules. A pretreatment to remove carbonate from (waste) water appears necessary prior to application of TiO2/UV technique

You might also be interested in these eBooks

Info:

Periodical:

Pages:

219-235

Citation:

Online since:

July 2013

Export:

Price:

[1] M. R. Hoffman, S. T. Martin, W. Choi, D. W. Bahneman, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.

Google Scholar

[2] D. F. Ollis, H. Al-Ekabi, Photocatalytic Purification and Treatment of Water and Air, Elsevier Science Publishers, Amsterdam, 1993.

Google Scholar

[3] NATO, In NATO Advanced Research Workshop on Homogeneous and Heterogenous Photocatalysis, Maratea, Italy, 1985; NATO; 1985, p.721.

Google Scholar

[4] O. Legrini, E. Oliveros, A. M. Braun, Photochemical processes for water treatment, Chem. Rev. 93 (1993) 671-698.

DOI: 10.1021/cr00018a003

Google Scholar

[5] R. W. Matthews, Titanium dioxide and the solar purification of water, Sun World 9 (1985) 3-5.

Google Scholar

[6] J-M. Herrmann, C. Guillard, J. Disdier, C. Lehaut , S. Malato, J. Blanco, New industrial titania photocatalysts for the solar detoxification of water containing various pollutants, Appl. Catal. B:Environ. 35 (2002) 281-294.

DOI: 10.1016/s0926-3373(01)00265-x

Google Scholar

[7] R. S. Dhodapkar , N. N. Rao, S.P. Pande, S. N. Kaul, Photocatalytic destruction of organic pollutants in water, In Advances in Wastewater Treatment, Tech. Sci. Publ. India, 1999, p pp.453-466.

Google Scholar

[8] R. W. Matthews, Photocatalytic oxidation of organic contaminant in water: an aid to environmental preservation, Pure Appl. Chem. 64 (1992) 1285-1290.

DOI: 10.1351/pac199264091285

Google Scholar

[9] S. Malato, J. Blanco, A. Vidal, C. Richter, Photocatalysis with solar energy at a pilot plant scale: an over view, Appl. Catal. B: Environ. 37 (2002) 1-15.

DOI: 10.1016/s0926-3373(01)00315-0

Google Scholar

[10] C. S. Turchi, M. S. Mehos, "In Chemical Oxidation: Technology for the Nineties" (W. W. Eckenfelder, A. R. Bowers and J. A. Roth, eds.) (1992), Vol. 2, p.301.

Google Scholar

[11] D. F. Ollis, C. Turchi, Heterogeneous photocatalysts for water purification: contaminant mineralization kinetics and elementary reactor analysis, Environ. Prog. 9 (1990) 229-235

DOI: 10.1002/ep.670090417

Google Scholar

[12] H. C. Yatmaz, C. R. Howarth, C. Wallis, In Proceedings of First International conference on TiO2 Photocatalytic purification and treatment of water and air (D. F. Ollis and H-Al Ekabi, eds.), Elsevier, Amsterdam, 1993.

Google Scholar

[13] Y. Zhang, J. C. Crittenden, D. W. Hand, D. L. Perram, Fixed-bed photocatalysts for solar decontamination of water, Environ. Sci. Tech. 28 (1994) 435-442.

DOI: 10.1021/es00052a015

Google Scholar

[14] D. Y. Goswami, A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection processes. J. Sol. ENERG-T ASME 119 (1997) 101-107.

DOI: 10.1115/1.2887886

Google Scholar

[15] N. N. Rao, S. Dubey, TiO2-catalyzed photodegradation of reactive orange 84 and alizarin red S biological stain, Ind. J. Chem. Tech. 4 (1997) 1-6.

Google Scholar

[16] N. N. Rao, S. Dubey, Photocatalytic degradation of Reactive Orange 84 (RO 84) in dye-house effluent using single-pass reactor, Studies in Surf. Sci. and Catal. 113 (1998) 1045-1050.

DOI: 10.1016/s0167-2991(98)80394-7

Google Scholar

[17] R. S. Dhodapkar, N N Rao, S. P. Pande, S. N. Kaul, Photocatalytic route for reduction of color and chemical oxygen demand from dye containing wastewater, Environmental Conservation Journal, 1 (2000) 13-20.

DOI: 10.36953/ecj.2000.010103

Google Scholar

[18] NEERI, Feasibility Report, Basic engineering package for CETP for textile units at Pali, Rajasthan, India, 1993.

Google Scholar

[19] C. Korman, D. W. Bahnemann, M. R. Hoffman, Photolysis of chloroform and other organic molecules in aqueous TiO2 suspensions, Environ. Sci., Tech. 25, (1991) 494-500.

DOI: 10.1021/es00015a018

Google Scholar

[20] D. C. Schmelling, K. A. Gray, P. V. Kamat, The influence of solution matrix on the photocatalytic degradation of TNT in TiO2 suspensions, Wat. Res. 31, (1997) 1447-1454.

DOI: 10.1016/s0043-1354(96)00358-2

Google Scholar

[21] R. A. Burns, J. C. Crittenden, W. D. Hand, V. H. Selzer, L. L. Sutter, S. R. Salman, Effect of inorganic ions in heterogeneous photocatalysis of TCE, J. Environ. Engg. 125 (1999) 77-85

DOI: 10.1061/(asce)0733-9372(1999)125:1(77)

Google Scholar

[22] B. N. Lee, W.D. Liaw, J. C. Lou, Photocatalytic decolourization of Methylene Blue in aqueous TiO2 suspension, Environ. Engg. Sci. 16 (1999) 165-175.

Google Scholar

[23] A. Haarstrick, M. K. Oemer, H. Elmar, TiO2-assisted degradation of environmentally relevant organic compounds in wastewater using a novel fluidized bed photoreactor, Environ. Sci. Tech. 30 (1996) 817-824.

DOI: 10.1021/es9502278

Google Scholar

[24] M. Beckbolet, I. Balaioglu, Photocatalytic oxidation and subsequent adsorption characteristics of Humic acids, Wat. Sci. Tech. 34 (1996) 73-80.

Google Scholar

[25] APHA-AWWA-WPCF, Standard Methods for the Examination Water and Wastweater, 19th Edition, American Public Health Association, Washington D.C. 1995.

Google Scholar

[26] G. B. Hoflund, A. L. Grogan, D. A. Asbury, An ISS, AES and ESCA study of the oxidative and reductive properties of platinized titania, J. Catal., 109 (1988) 226-231.

DOI: 10.1016/0021-9517(88)90203-5

Google Scholar

[27] M. W. Roberts, Chemisorption and reaction pathways at metal surfaces: the role of surface oxygen, Chem. Soc. Rev. 18 (1989) 451-475.

DOI: 10.1039/cs9891800451

Google Scholar

[28] J. S. Hammond, S. W. Gaarenstroom, N. Winograd, X-ray photoelectron spectroscopic studies of cadmium-and silver-oxygen surfaces, Anal. Chem., 47, (1975) 2193-2199.

DOI: 10.1021/ac60363a019

Google Scholar

[29] T. E. Felter , W. H. Weinberg, W. H. Ya Lastushkina, A. I. Boronin, P. A. Zhdan, G. E. Boreskov, J. Hrbek J, An XPS and UPS study of the kinetics of carbon monoxide oxidation over Ag(111), Surface Science, 118 (1982) 369-386.

DOI: 10.1016/0039-6028(82)90194-7

Google Scholar

[30] K. Nakamoto, "Infrared Spectra of Inorganic and Coordination Compounds" Wiley, New York, 1970.

Google Scholar

[31] K. Aika, H. Midorikawa, A. Ozaki, Infrared-active nitrogen adsorbed on alumina, magnesia or calcium oxide both with and without ruthenium, J. Catal. 78 (1982) 147-154.

DOI: 10.1016/0021-9517(82)90294-9

Google Scholar

[32] D.S. Muggli, L. Ding, Photocatalytic performance of sulfated TiO2 and Degussa P-25 TiO2 during oxidation of organics, Appl. Catal. B: Environ. 32 (2001) 181-194.

DOI: 10.1016/s0926-3373(01)00137-0

Google Scholar

[33] G. Colon, M. C. Hidalgo, J A. Navio, Photocatalytic behaviour of sulphated TiO2 for phenol degradation, Appl. Catal. B: Environ. 45 (2003) 39-50.

Google Scholar

[34] N. Serpone, D. Lawless, R. Terzian, D. Meisel, Redox mechanisms in heterogeneous photocatalysis. The case of holes versus OH. Radical oxidation and free versus surface bound OH. Radical oxidation processes In 'Electrochemistry in Colloids and Dispersions' (Eds. R. A. Mackay and J. Texter), VCH Publishers, Inc., New York, 1992, pp.399-416.

Google Scholar

[35] V. Alexyev, Quantitative Analysis (Eng. Translation), MIR Publishers, Moscow, 1979, p.477.

Google Scholar

[36] R. W. Matthews, Hydroxylation reactions induced by near-ultraviolet photolysis of aqueous titanium dioxide suspensions, J. Chem. Soc. Faraday Trans. I, 80 (1984) 457-471.

DOI: 10.1039/f19848000457

Google Scholar