Sonochemical Synthesis of Silica Coated Super Paramagnetic Iron Oxide Nanoparticles

Article Preview

Abstract:

Superparamagnetic iron oxide nanoparticles (SPION) of sizes 5 to10 nm were synthesized by the co-precipitation method. They are coated with silica nanoparticles using sonication method. The SPION was produced under the optimum pH of 10, peptized in acidic medium and redispersed in water. The silica nanoparticles were produced through the Stöbermethod. Sonochemical coating of silica nanoparticle on the SPION was successfulat a pH value lower than 5. Otherwise, at higher pH value (but lower than point zero charge (PZC)), the SPION were found to be unstable. Fast hydrolysis of triethoxyvinylsilane(TEVS) shows that silica forms its own particles without coating onto the surfaces of the SPION. Under optimized experimental condition, sonochemical method of coating silica nanoparticles onto the SPION can be considered as an alternative for effective and prompt method that rely mainly on pH of the suspension.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

74-79

Citation:

Online since:

May 2013

Export:

Price:

[1] H. Lee, E. Lee, Do Kyung Kim, N.K. Jang, Y.Y. Jeong, S. Jon, Journal of the American Chemical Society, 128 (2006) 7383-7389.

Google Scholar

[2] C. Sun, J.S.H. Lee, M. Zhang, Advanced Drug Delivery Reviews, 60 (2008) 1252-1265.

Google Scholar

[3] P. Alivisatos, Nature biotechnology, 22 (2003) 47-52.

Google Scholar

[4] A.S. Arbab, L.A. Bashaw, B.R. Miller, E.K. Jordan, B.K. Lewis, H. Kalish, J.A. Frank, Radiology, 229 (2003) 838-846.

DOI: 10.1148/radiol.2293021215

Google Scholar

[5] J.A. Frank, B.R. Miller, A.S. Arbab, H.A. Zywicke, E.K. Jordan, B.K. Lewis, L.H. Bryant Jr, J.W.M. Bulte, Radiology, 228 (2003) 480-487.

DOI: 10.1148/radiol.2281020638

Google Scholar

[6] F.-Y. Cheng, C.-H. Su, Y.-S. Yang, C.-S. Yeh, C.-Y. Tsai, C.-L. Wu, M.-T. Wu, D.-B. Shieh, Biomaterials, 26 (2005) 729-738.

Google Scholar

[7] M. Yamaura, R. Camilo, L. Sampaio, M. Macedo, M. Nakamura, H. Toma, Journal of Magnetism and Magnetic Materials, 279 (2004) 210-217.

DOI: 10.1016/j.jmmm.2004.01.094

Google Scholar

[8] M. Răcuciu, D. Creangă, A. Airinei, The European Physical Journal E: Soft Matter and Biological Physics, 21 (2006) 117-121.

Google Scholar

[9] C. Vogt, M.S. Toprak, M. Muhammed, S. Laurent, J.L. Bridot, R.N. Müller, Journal of nanoparticle research, 12 (2010) 1137-1147.

DOI: 10.1007/s11051-009-9661-7

Google Scholar

[10] A.K. Gupta, M. Gupta, Biomaterials, 26 (2005) 3995-4021.

Google Scholar

[11] X. Huang, J. Zhuang, D. Chen, H. Liu, F. Tang, X. Yan, X. Meng, L. Zhang, J. Ren, Langmuir, 25 (2009) 11657-11663.

DOI: 10.1021/la901258p

Google Scholar

[12] A. Kros, M. Gerritsen, V.S.I. Sprakel, N.A.J.M. Sommerdijk, J.A. Jansen, R.J.M. Nolte, Sensors and Actuators B: Chemical, 81 (2001) 68-75.

DOI: 10.1016/s0925-4005(01)00933-9

Google Scholar

[13] A. Bumb, M. Brechbiel, P. Choyke, L. Fugger, A. Eggeman, D. Prabhakaran, J. Hutchinson, P. Dobson, Nanotechnology, 19 (2008) 335601.

DOI: 10.1088/0957-4484/19/33/335601

Google Scholar

[14] R.Y. Hong, J.H. Li, S.Z. Zhang, H.Z. Li, Y. Zheng, J. Ding, D.G. Wei, Applied Surface Science, 255 (2009) 3485-3492.

Google Scholar

[15] A.L. Morel, S.I. Nikitenko, K. Gionnet, A. Wattiaux, J. Lai-Kee-Him, C. Labrugere, B. Chevalier, G. Deleris, C. Petibois, A. Brisson, Acs Nano, 2 (2008) 847-856.

DOI: 10.1021/nn800091q

Google Scholar

[16] S. Santra, R. Tapec, N. Theodoropoulou, J. Dobson, A. Hebard, W. Tan, Langmuir, 17 (2001) 2900-2906.

DOI: 10.1021/la0008636

Google Scholar

[17] J. Lee, Y. Lee, J.K. Youn, H.B. Na, T. Yu, H. Kim, S.-M. Lee, Y.-M. Koo, J.H. Kwak, H.G. Park, H.N. Chang, M. Hwang, J.-G. Park, J. Kim, T. Hyeon, Small, 4 (2008) 143-152.

DOI: 10.1002/smll.200700456

Google Scholar

[18] M. Zhang, B.L. Cushing, C.J. O'Connor, Nanotechnology, 19 (2008) 085601.

Google Scholar

[19] M. Ammar, F. Mazaleyrat, J.P. Bonnet, P. Audebert, A. Brosseau, G. Wang, Y. Champion, Nanotechnology, 18 (2007) 285606.

DOI: 10.1088/0957-4484/18/28/285606

Google Scholar

[20] M. Gao, W. Li, J. Dong, Z. Zhang, B. Yang, World Journal of Condensed Matter Physics, 1 (2011) 49-54.

Google Scholar

[21] R. Massart, Magnetics, IEEE Transactions on, 17 (1981) 1247-1248.

Google Scholar

[22] W. Stöber, A. Fink, E. Bohn, Journal of colloid and interface science, 26 (1968) 62-69.

Google Scholar

[23] H. El Ghandoor, H. Zidan, M.M.H. Khalil, M. Ismail, Int. J. Electrochem. Sci, 7 (2012) 5734-5745.

Google Scholar

[24] E. Tombacz, A. Majzik, Z. Horvat, E. Illes, Romanian Reports in physics, 58 (2006) 281.

Google Scholar

[25] I.T. Lucas, S. Durand-Vidal, E. Dubois, J. Chevalet, P. Turq, The Journal of Physical Chemistry C, 111 (2007) 18568-18576.

DOI: 10.1021/jp0743119

Google Scholar

[26] D. Grigoriev, R. Miller, D. Shchukin, H. Möhwald, Small, 3 (2007) 665-671.

Google Scholar

[27] C. Yang, G. Wang, Z. Lu, J. Sun, J. Zhuang, W. Yang, Journal of Materials Chemistry, 15 (2005) 4252-4257.

Google Scholar

[28] K. Park, G. Liang, X. Ji, Z.P. Luo, C. Li, M.C. Croft, J.T. Markert, The Journal of Physical Chemistry C, 111 (2007) 18512-18519.

Google Scholar