Preparation and Properties of CoFe2O4 Synthesized by the Modified Citrate-Gel Method

Article Preview

Abstract:

In this work, the synthesis of CoFe2O4 via sol-gel auto-combustion method, using iron nitrate, cobalt nitrate and citric acid, with subsequent heat treatment in air was studied. The effects of the molar ratio of the metal nitrates to citric acid and the heat treatment temperatures on the magnetic properties have been investigated. The X-ray diffraction patterns showed peaks consistent with cubic spinel-type structure. The average crystallite sizes were determined from the (311) peak of the diffraction pattern using Scherrer equation. Particle sizes in the range of 18-44 nm were obtained. The crystallite size increases with annealing temperature. Magnetic properties, such as saturation magnetization (Ms), remanent magnetization (Mr) and coercivity field (Hc) were measured at room temperature using a vibrating sample magnetometer. Saturation magnetization was found to increase with particle size, whereas coercivity was found to reduce exponentially as the particle size was increased, apart from the Hc of the sample treated at 300 °C. The present work shows that magnetic properties vary over a wide range by changing the synthesis conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-42

Citation:

Online since:

March 2010

Export:

Price:

[1] D.H. Kim, S.H. Lee, K.N. Kim, K.M. Kim, I.B. Shim and Y.K. Lee: J. Magn. Magn. Mater. 293 (2005) 287-292.

Google Scholar

[2] S. Somiya, S. Aldinger, N. Claussen, R.M. Uchino, K. Koumoto, M. Kaneno in: Handbook of Advanced Ceramics Vol II. Processing and their applications. Edited by Elsevier Academic Press. (2003) p.394.

DOI: 10.1016/b978-012654640-8/50000-6

Google Scholar

[3] R. Sato Turtelli, G.V. Duong, W. Nunes, R. Grössinger, M. Knobel: J. Magn. Magn. Mater. 320 (2008) 339-342.

Google Scholar

[4] D.H. Kim, S.H. Lee, K.N. Kim, K.M. Kim, I.B. Shim and Y.K. Lee: J. Magn. Magn. Mater. 293 (2005) 320-327.

Google Scholar

[5] E.K. Mooney, J.A. Nelson, M.J. Wagner: Chem. Mater. 16 (2004) 3155.

Google Scholar

[6] D.R. Cornejo, A. Medina-Boudri, H.R. Bertorello, J. Matutes-Aquino: J. Magn. Magn. Mater. 242 (2002) 194.

DOI: 10.1016/s0304-8853(01)01169-6

Google Scholar

[7] M. Rajendran, R.C. Pulla, A.K. Bhattacharya, D. Das, S.N. Chintalapudi, C.K. Majumdar: J. Magn. Magn. Mater. 232 (2001)71.

Google Scholar

[8] L.A. García, V.A. Torres, J.A. Matutes, O.E. Ayala: J. Alloy. Compd. 369 (2004) 148-151.

Google Scholar

[9] G. Baldi, D. Bonacchi, C. Innocenti, G. Lorenzi, C. Sangregorio: J. Magn. Magn. Mater. 311 (2007) 10-16.

Google Scholar

[10] S.M. Montemayor, L.A. García, J.R. Torres, O.S. Rodríguez: J Sol-Gel Sci. Techn. (2007) 42: 181-186.

Google Scholar

[11] A. Franco, E.C. de Oliveira, M.A. Novak, P.R. Wells Jr.: J. Magn. Magn. Mater. 308 (2007) 198-202.

Google Scholar

[12] P.C. Rajath, R. Sekhar, D. Banerjee, M. Raama , K.G. Suresh, A.K. Nigam: J. Alloy Compd. 453 (2008) 298-303.

Google Scholar

[13] R. Betancourt, O. Ayala, L.A. García, O. Rodríguez, J. Matutes, G. Ramos, H. Yee: J. Magn. Magn. Mater. 294 (2005) 33-36.

Google Scholar

[14] B.G. Toksha, S.E. Shirsath, S.M. Patange, K.M. Jadhav: Solid State Commun. 147 (2008) 479- 483.

DOI: 10.1016/j.ssc.2008.06.040

Google Scholar

[15] JCPDS International Centre for Diffraction Data. Mineral Powder Diffraction File. Data Book. USA (1990).

Google Scholar

[16] B.D. Cullity, S.R. Stock in: Elements of X-Ray Diffraction. Third Edition. Edited by Prentice Hall, New Jersey, (2001) pp.167-171.

Google Scholar

[17] T.P. Raming, A.J.A. Winnubst, C.M. Van Kats, P. Philipse: J. Colloid Interf. Sci. 249 (2002) 346.

Google Scholar

[18] J. Gwang Lee, H. Min Lee, C. Sung Kim, Y. Jei Oh: J. Appl. Phys. 84 (5) (1998) 2801.

Google Scholar

[19] T. Atsumia, B. Jeyadevanb, Y. Satob, K. Tohjib: J. Magn. Magn. Mater 310 (2007) 2841-2843.

Google Scholar