Precipitation Kinetics of Aluminium Nitride in Austenite in Microalloyed HSLA Steels

Article Preview

Abstract:

In this work, the thermodynamic information on aluminium nitride formation and experimental precipitation kinetics data are reviewed. A revised expression for the Gibbs energy of AlN is developed with special emphasis on microalloyed steel. Using the software package MatCalc, computer simulations of AlN precipitation kinetics are performed and compared to several independent experimental results from literature. To mimic the geometrical arrangement of AlN precipitates along austenite grain boundaries, a new model for precipitation at grain boundaries is used, which takes into account fast short-circuit diffusion along grain boundaries as well as the slower bulk diffusion of atoms from inside the grain to the grain boundaries. This is essential for the calculation of AlN precipitation in austenite where nucleation occurs predominantly on grain boundaries. By studying the AlN precipitation at grain boundaries numerically, and by comparison with experimental data, it is demonstrated that the precipitation kinetics of AlN differs significantly from the simulated precipitation kinetics of randomly distributed precipitates assuming spherical diffusion fields.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 636-637)

Pages:

605-611

Citation:

Online since:

January 2010

Export:

Price:

[1] B. Mintz, J.R. Wilcox and D.N. Crowther: Mater. Sci. Technol. Vol. 2 (1986), p.589.

Google Scholar

[2] R. Abushosha, S. Ayyad and B. Mintz: Mater. Sci. Technol. Vol. 14 (1998), p.346.

Google Scholar

[3] L.A. Erasmus: J. Iron Steel Inst. 202 (1964), 32.

Google Scholar

[4] V. Massardier, V. Guétaz, J. Merlin and M. Solar: Mater. Sci. Forum Vol. 426-432 (2003), p.1267.

Google Scholar

[5] F.G. Wilson and T. Gladman: Int. Mater. Rev. Vol. 33(5) (1988), p.221.

Google Scholar

[6] E.T. Turkdogan, Causes and Effects of Nitride and Carbonitride Precipitation During Continous Casting, in: Trans. of the ISS (1987).

Google Scholar

[7] B. Mintz, S. Yue and J.J. Jonas: Int. Mater. Rev. Vol. 36(5) (1991), p.187.

Google Scholar

[8] K.E. Höner and S. Baliktay: Gießerei-Forschung Vol. 30(2) (1978), p.53.

Google Scholar

[9] F.K. Naumann und H. Erich: Stahl und Eisen Vol. 82 (1962), p.612.

Google Scholar

[10] K. Roesch und K. Zimmermann in: Stahlguss, in: Band 17 aus der Reihe Stahleisen-Bücher, Verlag Stahleisen M.B.H., Düsseldorf, (1966).

Google Scholar

[11] K. Schwerdtfeger in: Rißanfälligkeit von Stählen beim Stranggießen und Warmumformen, Verlag Stahleisen mbH, Düsseldorf, (1994).

DOI: 10.1002/maco.19950461211

Google Scholar

[12] T. Gladman and F.B. Pickering: J. Iron Steel Inst. Vol. 205 (1967), p.653.

Google Scholar

[13] K.J. Irvine, F.B. Pickering and T. Gladman: J. Iron Steel Inst. (1967), p.161.

Google Scholar

[14] A. Brahmi and R. Borelli: Acta Mater. Vol. 45(5) (1997), p.1889.

Google Scholar

[15] T. Ichiyama, I. Yoshida, M. Ejima and O. Matsumura: Trans. ISIJ 15 (1975).

Google Scholar

[16] G.A. Duit, A. Hurkmans, J.J.F. Scheffer and T.M. Hoogendoorn: A Model for the kinetics of Aluminium-Nitride Precipitation, in: Proc. Thermec Vol. 88 (1988), p.114.

Google Scholar

[17] V. Massardier, V. Guétaz, J. Merlin and M. Solar: Mat. Sci. Eng. Vol. A355 (2003), p.299.

Google Scholar

[18] N. Y. Zolotorevsky, V. P. Pletenev and Y. F. Titovets: Model. Simul. Mater. Sci. Eng. Vol. 6 (1998), p.383.

Google Scholar

[19] V. Guetaz, V. Massardier, J. Merlin, D. Ravaine and M. Solar: Steel Research Vol. 72(7) (2001), p.245.

Google Scholar

[20] T. Ototani, Y. Kataura, and T. Fukuda: Trans. ISIJ 11 (1971).

Google Scholar

[21] R. Ogawa, T. Fukutsuka and Y. Yagi: Trans. ISIJ 12 (1972).

Google Scholar

[22] I. Biron, R. Borrelly, P. Delaneau and B.J. Thomas: Mémoires et Études Scientifiques Revue de Métallurgie (1991).

Google Scholar

[23] M.P. Sidey: Iron and Steel Vol. 40 (1967), p.168.

Google Scholar

[24] E.L. Brown and A.J. DeArdo: Aluminium Nitride Precipitation in C-Mn-Si and microalloyed steels, in: Thermomechanical Processing of microalloyed Austenite, ed. By A.J. DeArdo, G.A. Ratz and P.J. Wray, The Metallurical Society of AIME, Warrendale, PA (1982).

Google Scholar

[25] F. Vodopivec: J. Iron Steel Inst. (1973), p.664.

Google Scholar

[26] W.C. Leslie, R.L. Rickett, C. L. Dotson and C.S. Walton: Trans ASM 46 (1954).

Google Scholar

[27] P. König, W. Scholz and H. Ulmer: Arch. Eisenhüttenwesen Vol. 32 (8) (1961), p.541.

Google Scholar

[28] M. Mayrhofer: Berg. Hüttenmänn. Monatshefte Vol. 120(7) (1975), p.312.

Google Scholar

[29] L.M. Cheng, E.B. Hawbolt and T.R. Meadowcroft: Met. Mater. Trans. Vol. A 31A (2000), p. (1907).

Google Scholar

[30] L.M. Cheng, E.B. Hawbolt and T.R. Meadowcroft: Scripta Mater. Vol. 41(6) (1999), p.673.

Google Scholar

[31] L.M. Cheng, E.B. Hawbolt and T.R. Meadowcroft: Canadian Metallurgical Quaterly Vol. 39(1) (2000), p.73.

Google Scholar

[32] J. Svoboda, F.D. Fischer, P. Fratzl and E. Kozeschnik: Mater. Sci. Eng. Vol. A385 (2004), p.166.

Google Scholar

[33] E. Kozeschnik, J. Svoboda, P. Fratzl and F.D. Fischer: Mater. Sci. Eng. Vol. A385 (2004), p.157.

Google Scholar

[34] E. Kozeschnik, J. Svoboda and F.D. Fischer: CALPHAD, Vol. 28(4) (2005), p.379.

Google Scholar

[35] E. Kozeschnik, J. Svoboda, R. Radis and F.D. Fischer: (2009), unpublished research.

Google Scholar

[36] Thermodynamic Database mc_steel, version 1. 50, Institute of Materials Science and Technology, Vienna University of Technology.

Google Scholar

[37] M. Hillert and S. Jonsson: Metal. Trans. Vol. A 23 (1992), p.3141.

Google Scholar

[38] Ö. Dogan, G. Michal and H. Kwon: Metal. Trans. Vol. A 23A (1992), p.2121.

Google Scholar

[39] T. Shimose and K. Narita: J. Iron Steel Inst. Jpn, Vol. 40 (1954), p.242.

Google Scholar

[40] Y. Kang, H. Yu, J. Fu, K. Wang and Z. Wang: Mat. Sci. Eng. Vol. A351 (2003), p.265.

Google Scholar

[41] Thermodynamic Database TCFE3, version 3, ThermoCalc AB, Stockholm.

Google Scholar

[42] Thermodynamic Database Fe-Data, version 6, Thermotech, Ltd., Surrey, United Kingdom.

Google Scholar

[43] B. Sundman, H.L. Lukas and S.G. Fries: Computational Thermodynamics: The Calphad Method, Cambridge, UK: Cambridge University Press, (2007).

DOI: 10.1017/cbo9780511804137

Google Scholar

[44] R. Balluffi: Metal. Trans. Vol. A 13A (1982), p. (2069).

Google Scholar

[45] R. Kampmann and R. Wagner: Acta Scripta Metal. series (1984), p.91.

Google Scholar

[46] K.G.F. Janssens, D. Raabe, E. Kozeschnik, M.A. Miodownik and B. Nestler: Computational Materials Engineering - An Introduction to Microstructure Evolution,. Oxford: Elsevier Academic Press, (2007).

Google Scholar

[47] K. Russell: Adv Colloid Sci. Vol. 13 (1980), p.205.

Google Scholar

[48] B. Sonderegger and E. Kozeschnik: Metall. Mater. Trans. Vol. 40A (2009), p.499.

Google Scholar

[49] B. Sonderegger and E. Kozeschnik: Scripta Mater. Vol. 60(8) (2009), p.635.

Google Scholar