Atomic Assembly of Thin Film Materials

Article Preview

Abstract:

The atomic-scale structures and properties of thin films are critically determined by the various kinetic processes activated during their atomic assembly. Molecular dynamics simulations of growth allow these kinetic processes to be realistically addressed at a timescale that is difficult to reach using ab initio calculations. The newest approaches have begun to enable the growth simulation to be applied for a wide range of materials. Embedded atom method potentials can be successfully used to simulate the growth of closely packed metal multilayers. Modified charge transfer ionic + embedded atom method potentials are transferable between metallic and ionic materials and have been used to simulate the growth of metal oxides on metals. New analytical bond order potentials are now enabling significantly improved molecular dynamics simulations of semiconductor growth. Selected simulations are used to demonstrate the insights that can be gained about growth processes at surfaces.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

3528-3533

Citation:

Online since:

March 2007

Export:

Price:

[1] G. A. Prinz: Science Vol. 282, (1998), p.1660.

Google Scholar

[2] R. S. Beech, J. Anderson, J. Daughton, B. A. Everitt and D. Wang: IEEE Trans. Magn. Vol. 32, (1996), p.4713.

DOI: 10.1109/20.539127

Google Scholar

[3] M. Durlam, P. J. Naji, A. Omair, M. DeHerrera, J. Calder, J. M. Slaughter, B. N. Engel, N. D. Rizzo, G. Grynkewich, B. Butcher, C. Tracy, K. Smith, K. W. Kyler, J. J. Ren, J. A. Molla, W. A. Feil, R. G. Williams and S. Tehrani: IEEE J. Sol. State Cir. Vol. 38, (2003).

DOI: 10.1109/jssc.2003.810048

Google Scholar

[4] Properties of Gallium Arsenide, edited by M. R. Brozel and G. E. Stillman, Vol. 16, 3rd ed. (INSPEC, London, 1996).

Google Scholar

[5] S. Strite and H. Morkoc: J. Vac. Sci. Technol. B Vol. 10 (1992), p.1237.

Google Scholar

[6] S. J. Pearton, J. C. Zolper, R. J. Shul and F. Ren: J. Appl. Phys. Vol. 86, (1999), p.1.

Google Scholar

[7] I. Akasaki: IPAP Conf. Series Vol. 1 (2000), p.1.

Google Scholar

[8] M. S. Daw and M. I. Baskes: Phys. Rev. B Vol. 29, (1984), p.6443.

Google Scholar

[9] X. W. Zhou, R. A. Johnson and H. N. G. Wadley: Phys. Rev. B. Vol. 69, (2004), p.144113.

Google Scholar

[10] X. W. Zhou, H. N. G. Wadley, R. A. Johnson, D. J. Larson, N. Tabat, A. Cerezo, A. K. Petford-Long, G. D. W. Smith, P. H. Clifton, R. L. Martens and T. F. Kelly: Acta Mater. Vol. 49, (2001), p.4005.

DOI: 10.1016/s1359-6454(01)00287-7

Google Scholar

[11] X. W. Zhou and H. N. G. Wadley: J. Appl. Phys. Vol. 84, (1998), p.2301.

Google Scholar

[12] W. Zou, H. N. G. Wadley, X. W. Zhou, R. A. Johnson and D. Brownell: Phys. Rev. B Vol. 64, (2001), p.174418.

Google Scholar

[13] J. C. S. Kools: J. Appl. Phys. Vol. 77, (1995), p.2993.

Google Scholar

[14] S. Schmeusser, G. Rupp and A. Hubert: J. Magn. Magn. Mater. Vol. 166, (1997), p.267.

Google Scholar

[15] T. L. Hylton, K. R. Coffey, M. A. Parker and J. K. Howard: J. Appl. Phys. Vol. 75, (1994), p.7058.

Google Scholar

[16] A. K. Rappe and W. A. Goddard: J. Phys. Chem. Vol. 95, (1991), p.3358.

Google Scholar

[17] F. H. Streitz and J. W. Mintmire: Phys. Rev. B Vol. 50, (1994), p.11996.

Google Scholar

[18] X. W. Zhou, H. N. G. Wadley, J. -S. Filhol and M. N. Neurock: Phys. Rev. B. Vol. 69, (2004), p.35402.

Google Scholar

[19] X. W. Zhou and H. N. G. Wadley: J. Phys.: Condens. Matter Vol. 17, (2005), p.3619.

Google Scholar

[20] X. W. Zhou and H. N. G. Wadley: Phys. Rev. B Vol. 71, (2005), p.54418.

Google Scholar

[21] L. F. Li, X. Y. Liu and G. Xiao: J. Appl. Phys. Vol. 93, (2003), p.467.

Google Scholar

[22] W. Zhu, C. J. Hirschmugl, A. D. Laine, B. Sinkovic and S. S. P. Parkin: Appl. Phys. Lett. Vol. 78, (2001), p.3103.

Google Scholar

[23] J. S. Moodera, E. F. Gallagher, K. Robinson and J. Nowak: Appl. Phys. Lett. Vol. 70, (1997), p.3050.

Google Scholar

[24] J. H. Lee, H. D. Jeong, H. Kyung, C. S. Yoon, C. K. Kim, B. G. Park and T. D. Lee: J. Appl. Phys. Vol. 91, (2002), p.217.

Google Scholar

[25] D. A. Murdick, X. W. Zhou and H. N. G. Wadley: Phys. Rev. B Vol. 72, (2005), p.205340.

Google Scholar

[26] D. G. Pettifor, M. W. Finnis, D. Nguyen-Manh, D. A. Murdick, X. W. Zhou and H. N. G. Wadley: Mater. Sci. Eng. A Vol. 365, (2004), p.2.

Google Scholar

[27] D. G. Pettifor, M. W. Finnis, D. Nguyen-Manh, D. A. Murdick, X. W. Zhou and H. N. G. Wadley: Mater. Sci. Eng. A Vol. 365, (2004), p.2.

Google Scholar

[28] D. A. Murdick, X. W. Zhou, H. N. G. Wadley, D. Nguyen-Manh, R. Drautz and D. G. Pettifor: submitted to Phys. Rev. B (2005).

Google Scholar

[29] D. A. Murdick, X. W. Zhou and H. N. G. Wadley: submitted to Phys. Rev. B (2005).

Google Scholar

[30] C. T. Foxon and B. A. Joyce: Surf. Sci. Vol. 64, (1977), p.293.

Google Scholar

[31] M. Pristovsek, S. Tsukamoto, A. Ohtake, N. Koguchi, B. G. Orr, W. G. Schmidt and J. Bernholc: Phys. Status Solidi B Vol. 240, (2003), p.91.

DOI: 10.1002/pssb.200301885

Google Scholar

[32] J. R. Arthur: J. Appl. Phys. Vol. 39, (1968), p.4032.

Google Scholar

[33] J. R. Arthur: Surf. Sci. Vol. 43, (1974), p.449.

Google Scholar

[34] K. Mahalingam, N. Otsuka, M. R. Melloch, J. M. Woodall and A. C. Warren: J. Vac. Sci. Technol. B Vol. 9, (1991), p.2328.

Google Scholar

[35] E. S. Tok, J. H. Heave, J. Zhang, B. A. Joyce and T. S. Jones: Surf. Sci. Vol. 374, (1997), p.397.

Google Scholar

[36] M. Kaminska, E. R. Weber, Z. Liliental-Weber, R. Leon and Z. U. Rek: J. Vac. Sci. Technol. B Vol. 7, (1989), p.710.

Google Scholar

[37] A. Suda and N. Otsuka: Surf. Sci. Vol. 458, (2000), p.162.

Google Scholar

[38] M. Missous and S. O'Hagan: J. Appl. Phys. Vol. 75, (1994), p.3396.

Google Scholar

[39] V. Avrutin, D. Humienik, S. Frank, A. Koeder, W. Schoch, W. Limmer, R. Sauer and A. Waag: J. Appl. Phys. Vol. 98, (2005), p.23909.

DOI: 10.1063/1.1991971

Google Scholar