Functionalization of Multi-Walled Carbon Nanotubes

Article Preview

Abstract:

In order to alter the physical/chemical characteristics of multi-walled carbon nanotubes (MWNTs) we modified them by different organic reactions (Diels-Alder and Sand-Meyer reaction, oxidation) and their d properties were characterized by thermogravimetry/mass spectrometry, photoelectron spealterectroscopy, and nuclear magnetic resonance spectroscopy, as well as by dispersion. The results proved that, depending on the groups built in the MWNTs, the modified carbon nanotubes are more dispersible either in polar or apolar solvents and the suspensions are stable for long time. The presence of the substituents in the MWNTs was proved by methods listed above, e.g. high concentration of sulfur was detected when SO3H groups were inserted onto the MWNTs. The enhanced thermal stability of the modified carbon nanotubes allows their further application.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 537-538)

Pages:

623-630

Citation:

Online since:

February 2007

Export:

Price:

[1] S. Iijima: Nature Vol. 354 (1991) pp.56-58.

Google Scholar

[2] M.S. Dresselhaus, G. Dresselhaus: Adv. Phys. Vol. 51 (2002) pp.1-186; R. Saito, G. Dresselhaus, M. Dresselhaus, Physical Properties of Nanotubes; Imperial College Press: London, (1998).

DOI: 10.1016/s0921-5107(00)00444-x

Google Scholar

[3] H. Sachs, P. Hansen, M. Zheng: Commun. Math. Chem. (MATCH) Vol. 33 (1996) pp.169-241;. I. Lukovits, A. Graovac, E. Kálmán, Gy. Kaptay, P. Nagy, S. Nikolić, J. Sytchev, N. Trinajstić: J. Chem. Inf. Comput. Sci. Vol. 43 (2003) pp.609-614.

DOI: 10.1021/ci020059k

Google Scholar

[4] R. Krupke, F. Hennrich, H. von Lohneysen, M. M. Kappes: Science Vol. 301 (2003) pp.344-347.

Google Scholar

[5] M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, N. G. Tassi, Nature Mater. Vol. 2 (2003) pp.338-342.

DOI: 10.1038/nmat877

Google Scholar

[6] S. Iijima, T. Ichihashi, Nature Vol. 363 (1993) pp.603-605.

Google Scholar

[7] Z. Kónya, I. Vesselényi, K. Niesz, A. Kukovecz, A. Demortier, A. Fonseca, J. Delhalle, Z. Mekhalif, J.B. Nagy, A.A. Koós, Z. Osváth, A. Kocsonya, L.P. Biró, I. Kiricsi, Chem. Phys. Lett. Vol. 360 (2002) pp.429-435.

DOI: 10.1016/s0009-2614(02)00900-4

Google Scholar

[8] H.L. Pan, L.Q. Lin, Z.X. Geo, L.M. Dai, F.S. Zhang, D.B. Zhu, R. Czern, D.L. Conell, Nanoletters Vol. 3 (1) (2003) pp.29-32.

Google Scholar

[9] L. Cai, J.L. Bahr, Y.X. Yao, J.M. Tour, Chemistry of Materials Vol. 14 (10) (2002) pp.4235-4241.

Google Scholar

[10] E.T. Mickelson, I.W. Chiang, J.L. Zimmerman, P.J. Boul, J. Lozano, J. Liu, R.E. Smalley, R.H. Hauge, J.L. Margrave, J. Phys. Chem. B Vol. 103 (21) (1999) pp.4318-4322.

DOI: 10.1021/jp9845524

Google Scholar

[11] M.T. Beck, J. Szépvölgyi, P. Szabó, E. Jakab, Carbon Vol. 39 (1) (2001) pp.147-149.

Google Scholar

[12] J.L. Bahr, J.P. Yang, D.V. Kosynkin, M.J. Bronikowski, R.E. Smalley, J.M. Tour, J. Am. Chem. Soc. Vol. 123 (27) (2001) pp.6536-6542.

DOI: 10.1021/ja010462s

Google Scholar

[13] C.A. Dyke, M.P. Stewart, F. Maya, J.M. Tour, Synlett Vol. 1 (2004) pp.0155-0160.

Google Scholar

[14] Know-how CRC-HAS, KH 2005/02/01, Patent application is in progress.

Google Scholar

[15] C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, J.W. Allison, C. J. Powell, J.R. Rumble Jr., NIST X-ray Photoelectron Spectroscopy Database, Version 3. 4, National Institute of Standards and Technology, 2003 http: /srdata. nist. gov/xps.

DOI: 10.6028/nist.tn.1289

Google Scholar

[16] T.I.T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, N.M.D. Brown, Carbon Vol. 43 (2005) pp.153-161.

Google Scholar