Synthesis and Characterization of Graphene Sheets from Graphite through Electrochemical Exfoliation and Microwave Reduction

Article Preview

Abstract:

Graphene as a wonder material has received great attention and importance due to its fascinating properties. Here in this study, we also demonstrate a simple two step process to prepare graphene sheets (GSs) from the electrochemical exfoliated graphene oxide (EE-GO) followed by microwave irradiation reduction. The properties and structure of the resulted product samples were studied by Ultraviolet spectroscopy (UV), Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy-dispersive X-ray (EDX or EDS), Raman spectroscopy and Atomic force microscopy (AFM) for validation of their distinguishing characteristics. UV spectra of microwave irradiation reduced graphene oxide (MI-RGO) and EE-GO exhibited an intense and sharp absorption peak concentrated at wavelengths of 236 and 266nm, respectively. The elimination of oxygen functionalities present in the EE-GO plane was illustrated by FTIR as a result of microwave irradiation treatment. The relative layer structures of MI-RGO and EE-GO were confirmed by XRD. Similarly, the Raman spectra revealed the difference in between the EE-GO and MI-RGO characteristic reflection bands. The thin, crumpled and curved type morphology of the obtained graphene sheets (GSs) was also displayed by SEM while the composition of a few layer graphene sheets with atomic mass percents of carbon (75%) and oxygen (25%) was established by EDX. The Synthesis procedure is simple, rapid and eco-friendly with high yield.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-137

Citation:

Online since:

February 2021

Export:

Price:

* - Corresponding Author

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[2] A. Arjunan, V. Balasubramanian, N. Vaiyapuri, Heteroatom doped multi-layered graphene material for hydrogen storage application, Graphene 5 (2016) 39-50.

DOI: 10.4236/graphene.2016.52005

Google Scholar

[3] F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347 (2015) 1246501-1246501.

DOI: 10.1126/science.1246501

Google Scholar

[4] Z. Guo, A. Shao, W.H. Zhu, Long wavelength AIEgen of quinoline-malononitrile. J. Mat. Chem. C 4 (2016) 2640-2646.

DOI: 10.1039/c5tc03369a

Google Scholar

[5] H. Shen, L. Zhang, M. Liu, Z. Zhang, Biomedical Applications of Graphene. Theranostics 2 (2012) 283-294.

Google Scholar

[6] S. Navalon, J.R. Herance, M. Alvaro, H. Garcia, Covalently Modified Graphenes in Catalysis, Electrocatalysis and Photoresponsive Mat. Chem. A European Journal 23 (2017) 15244-15275.

DOI: 10.1002/chem.201701028

Google Scholar

[7] Y. Song, S. Chang, S. Gradecak, J. Kong, Visibly-Transparent Organic Solar Cells on Flexible Substrates with All-Graphene Electrodes, Adv. Energy Mat. 6 (2016) 1600847.

DOI: 10.1002/aenm.201600847

Google Scholar

[8] Q. Zhang, S,. Chen, S. Zhang, W. Shang, L. Liu, M. Wang, W. Huang, Negative differential resistance and hysteresis in graphene-based organic light-emitting devices, J. Mat. Chem. C 6 (2018) 1926-1932.

Google Scholar

[9] F.Withers, T.H. Bointon, M.F. Craciun, S. Russo, All-Graphene Photodetectors. ACS Nano 7 (2013) 5052-5057.

DOI: 10.1021/nn4005704

Google Scholar

[10] S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S Kim, B.O. Zyilmaz, J.H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotech. 5 (2010) 574-578.

DOI: 10.1038/nnano.2010.132

Google Scholar

[11] M. Drogeler, L. Banszerus, F. Volmer, T. Taniguchi, K. Watanabe, B. Beschoten, C. Stampfer, Dry-transferred CVD graphene for inverted spin valve devices, App. Phy. Lett. 111 (2017) 152402.

DOI: 10.1063/1.5000545

Google Scholar

[12] F. Wang. Two-dimensional materials for ultrafast lasers, Chinese Phy. B 26 (2017) 034202.

Google Scholar

[13] M. El Achaby, F.Z. Arrakhiz, S. Vaudreuil, E.M. Essassi, A. Qaiss, Piezoelectric β-polymorph formation and properties enhancement in graphene oxide-PVDF nanocomposite films, App. Surface Sci. 258 (2012) 7668-7677.

DOI: 10.1016/j.apsusc.2012.04.118

Google Scholar

[14] P.W. Sutter, J.I. Flege, E.A. Sutter, Epitaxial graphene on ruthenium., Nature Mater. 7 (2008) 406-411.

DOI: 10.1038/nmat2166

Google Scholar

[15] C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-Based Supercapacitor with an Ultrahigh Energy Density, Nano Lett. 10 (2010) 4863-4868.

DOI: 10.1021/nl102661q

Google Scholar

[16] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved Synthesis of Graphene Oxide, ACS Nano 4 (2010) 4806-4814.

DOI: 10.1021/nn1006368

Google Scholar

[17] M. Cai, D. Thorpe, D.H. Adamson, H.C. Schniepp, Methods of graphite exfoliation, Journal of Mat. Chem. 22 (2012) 24992-25002.

DOI: 10.1039/c2jm34517j

Google Scholar

[18] R. Narayan, J. Lim, T. Jeon, D.J. Li, S.O. Kim, Perylene tetracarboxylate surfactant assisted liquid phase exfoliation of graphite into graphene nanosheets with facile re-dispersibility in aqueous/organic polar solvents, Carbon 119 (2017)555-568.

DOI: 10.1016/j.carbon.2017.04.071

Google Scholar

[19] J. Xu, Y. Dou, Z. Wei, J. Ma, Y. Deng, Y. Li, H. Liu, S. Dou, Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)-Ion Batteries, Adv. Sci. 4 (2017) 1700146.

DOI: 10.1002/advs.201700146

Google Scholar

[20] T. Wang, M.D.J. Quinn, S.M. Notley, Enhanced electrical, mechanical and thermal properties by exfoliating graphene platelets of larger lateral dimensions, Carbon 129 (2018) 191-198.

DOI: 10.1016/j.carbon.2017.12.034

Google Scholar

[21] H. Wang, C. Wei, K. Zhu, Y. Zhang, C. Gong, J. Guo, J. Zhang, L. Yu, J. Zhang, Preparation of Graphene Sheets by Electrochemical Exfoliation of Graphite in Confined Space and Their Application in Transparent Conductive Films, ACS App. Mat. & Inter. 9 (2017) 34456-34466.

DOI: 10.1021/acsami.7b09891

Google Scholar

[22] M. Coros, F. Pogacean, M.C. Rosu, C. Socaci, G. Borodi, L. Mageruşan, R. Alexandru, A.R. Biris, S. Pruneanu, Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods, RSC Advances 6 (2016) 2651-2661.

DOI: 10.1039/c5ra19277c

Google Scholar

[23] A. Ambrosi, M. Pumera, Electrochemically Exfoliated Graphene and Graphene Oxide for Energy Storage and Electrochemistry Applications, Chem.-A European Journal 22 (2015) 153-159.

DOI: 10.1002/chem.201503110

Google Scholar

[24] K. Parvez, Z.S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Mullen, Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts, J. Am. Chem. Soc. 136 (2014) 6083-6091.

DOI: 10.1021/ja5017156

Google Scholar

[25] M.A. Anwar, A.K. Zainal, T. Kurniawan, Y.P. Asmara, W.S.W. Harun, G. Priyadonko, K. Saptaji, Electrochemical Exfoliation of Pencil Graphite Core by Salt Electrolyte, IOP Conference Series: Mat. Sci. Eng. 469 (2019) 012105.

DOI: 10.1088/1757-899x/469/1/012105

Google Scholar

[26] A.G. Krivenko, R.A. Manzhos, A.S. Kotkin, V.K Kochergin, N.P. Piven, A.P. Manzhos, Production of few-layer graphene structures in different modes of electrochemical exfoliation of graphite by voltage pulses, Instr. Sci. Tech. (2019) 1-10.

DOI: 10.1080/10739149.2019.1607750

Google Scholar

[27] W. Chen, L. Yan, P.R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves, Carbon 48 (2010) 1146-1152.

DOI: 10.1016/j.carbon.2009.11.037

Google Scholar

[28] S. Park, S. Kim, Preparation and Capacitive Property of Graphene Nanosheets Prepared by Using an Electrostatic Method, Journal of Nanosci. and Nanotech. 14 (2014)7784-7787.

DOI: 10.1166/jnn.2014.9455

Google Scholar

[29] Y. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, R.S. Ruoff, Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors, Carbon 48 (2010) 2118-2122.

DOI: 10.1016/j.carbon.2010.02.001

Google Scholar

[30] J. Yan, J. Liu, Z. Fan, T. Wei, L. Zhang, High-performance supercapacitor electrodes based on highly corrugated graphene sheets, Carbon 50 (2012) 2179-2188.

DOI: 10.1016/j.carbon.2012.01.028

Google Scholar

[31] D. Kumar, K. Singh, V. Verma, H.S. Bhatti, Microwave assisted synthesis and characterization of graphene nanoplatelets, App. Nanosci. 6 (2015) 97-103.

DOI: 10.1007/s13204-015-0415-9

Google Scholar

[32] Y. Sun, Q. Wu, G. Shi, Graphene based new energy materials, Energy & Environmental Science 4 (2011) 1113-1132.

Google Scholar

[33] S.A. El-Khodary, G.M. El-Enany, M. El-Okr, M. Ibrahim, Preparation and Characterization of Microwave Reduced Graphite Oxide for High-Performance Supercapacitors, Electrochimica Acta 150 (2014) 269-278.

DOI: 10.1016/j.electacta.2014.10.134

Google Scholar

[34] M.J. Fernandez-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J.M.D. Tascon, Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions, The J. Phy. Chem. C 114 (2010) 6426-6432.

DOI: 10.1021/jp100603h

Google Scholar

[35] H.W. Arshad, W.K. Imran, Synthesis of Graphene Nano Sheets by the Rapid Reduction of Electrochemically Exfoliated Graphene Oxide Induced by Microwaves, J. Chem. Soc. Pak. 38 (2016) 11-16.

Google Scholar

[36] W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, J. Amer. Chem. Soc. 80 (1958) 1339-1339.

DOI: 10.1021/ja01539a017

Google Scholar

[37] M. Wojtoniszak, X. Chen, R.J. Kalenczuk, A. Wajda, J. Łapczuk, M. Kurzewski, M. Drozdzik, P.K. Chu, E. Borowiak-Palen, Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide, Coll. Surfaces B: Biointerfaces 89 (2012) 79-85.

DOI: 10.1016/j.colsurfb.2011.08.026

Google Scholar

[38] X. Zhu, Q. Liu, Z. Xiaohua, C. Li, M. Xu, Y. Liang, Reduction of Graphene Oxide Via Ascorbic Acid and Its Application for Simultaneous Detection of Dopamine And Ascorbic Acid, Int. J. Electr. Sci. 7 (2012) 5172-5184.

Google Scholar

[39] F.T. Johra, J. Lee, W.G. Jung, Facile and safe graphene preparation on solution based platform, J. of Ind. Eng. Chem. 20 (2014) 2883-2887.

DOI: 10.1016/j.jiec.2013.11.022

Google Scholar

[40] R. Schonfelder, M.H. Rümmeli, W. Gruner, M. Loffler, J. Acker, V. Hoffmann, T. Gemming, B. Buchner, T. Pichler, Purification-induced sidewall functionalization of magnetically pure single-walled carbon nanotubes, Nanotech. 18 (2007) 375601.

DOI: 10.1088/0957-4484/18/37/375601

Google Scholar

[41] F. Tuinstra, J.L. Koenig, Raman Spectrum of Graphite, The J. of Chem. Phy. 53 (1970) 1126-1130.

Google Scholar

[42] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman Spectrum of Graphene and Graphene Layers, Phy. Rev. Lett. 97 (2006) 187401.

DOI: 10.1103/physrevlett.97.187401

Google Scholar

[43] I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Reduced graphene oxide by chemical graphitization, Nature Comm. 73 (2010) 1-6.

Google Scholar

[44] X. Xie, Y. Zhou, K. Huang. Advances in Microwave-Assisted Production of Reduced Graphene Oxide. Frontiers in Chemistry 7 (2019) 355.

Google Scholar

[45] H. Wang, J.T. Robinson, X. Li, H. Dai, Solvothermal Reduction of Chemically Exfoliated Graphene Sheets, J. Amer. Chem. Soc. 131 (2009) 9910-9911.

DOI: 10.1021/ja904251p

Google Scholar

[46] G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nature Nanotech. 3 (2008) 270-274.

DOI: 10.1038/nnano.2008.83

Google Scholar

[47] K.A. Worsley, P. Ramesh, S.K. Mandal, S. Niyogi, M.E. Itkis, R.C. Haddon, Soluble graphene derived from graphite fluoride, Chem. Phy. Lett. 445 (2007) 51-56.

DOI: 10.1016/j.cplett.2007.07.059

Google Scholar

[48] E.A. Obraztsova, A.V. Osadchy, E.D. Obraztsova, S. Lefrant, I.V. Yaminsky, Statistical analysis of atomic force microscopy and Raman spectroscopy data for estimation of graphene layer numbers, Phys. Stat. Sol. (b) 245 (2008) 2055-2059.

DOI: 10.1002/pssb.200879657

Google Scholar

[49] M.J. Lee, J.S. Choi, J.S. Kim, I.S. Byun, D.H. Lee, S. Ryu, C. Lee, B.H. Park, Characteristics and effects of diffused water between graphene and a SiO2 substrate, Nano Res. 5 (2012) 710-717.

DOI: 10.1007/s12274-012-0255-9

Google Scholar

[50] H. Ghorbanfekr-Kalashami, K.S. Vasu, R.R. Nair, F.M. Peeters, M. Neek-Amal, Dependence of the shape of graphene nanobubbles on trapped substance, Nat. Comm. 8 (2017) 15844.

DOI: 10.1038/ncomms15844

Google Scholar