Cold Wall CVD Graphene-Based Transparent Electrode for Solar Cells

Article Preview

Abstract:

In this paper, we report on synthesis of graphene film on Cu foil by cold wall CVD and successfully transferred to a photovoltaic cell. The obtained sample was covered with an ultra-thin layer of Ni, of about 4 nm, using a sputtering technique. The optical and electrical properties of graphene/Ni-based films showed superior performance (transmittance =65%, sheet resistance=250 Ω/sq; EQE=40%) compared to films made of ITO/nickel, described in literature, of greater thickness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

310-315

Citation:

Online since:

July 2019

Export:

Price:

* - Corresponding Author

[1] R.R Nair, P. Blake, A.N Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine Structure Constant Defines Visual Transparency of Graphene, Science 320 (2008) 1308.

DOI: 10.1126/science.1156965

Google Scholar

[2] K.S. Novoselov, V.I. Fal'ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A Roadmap for Graphene, Nature 490 (2012) 192-200.

DOI: 10.1038/nature11458

Google Scholar

[3] T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, M. Miyahara, S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, D. Hobara, Production of a 100-m-long High-Quality Graphene Transparent Conductive Film by Roll-to-Roll Chemical Vapor Deposition and Transfer Process, Appl. Phys. Lett. 102 (2013) 023112.

DOI: 10.1063/1.4776707

Google Scholar

[4] T.H. Bointon, M.D. Barnes, S. Russo, M.F. Craciun, High Quality Monolayer Graphene Synthesized by Resistive Heating Cold Wall Chemical Vapor Deposition, Adv. Mater. 27 (2015) 4200-4206.

DOI: 10.1002/adma.201501600

Google Scholar

[5] M. Sarno, G. Rossi, C. Cirillo, L. Incarnato, Cold Wall Chemical Vapor Deposition Graphene-Based Conductive Tunable Film Barrier, Ind. Eng. Chem. Res. 57 (2018) 4895-4906.

DOI: 10.1021/acs.iecr.7b05281

Google Scholar

[6] G. Zhang, A.G. Güell, P.M. Kirkman, R.A. Lazenby, T.S. Miller, P.R. Unwin, Versatile Polymer-Free Graphene Transfer Method and Applications, ACS Appl. Mater. Interfaces 8 (2016) 8008-8016.

DOI: 10.1021/acsami.6b00681

Google Scholar

[7] C. Mattevi, H. Kim, M. Chhowalla, A review of chemical vapour deposition of graphene on copper, J. Mater. Chem. 21 (2011) 3324-3334.

DOI: 10.1039/c0jm02126a

Google Scholar

[8] D.W. Chang, H.J. Choi, A. Filer, J.-B. Baek, Graphene in photovoltaic applications: organic photovoltaic cells (OPVs) and dye sensitized solar cells (DSSCs), J. Mater. Chem. 2 (2014) 12136-12149.

DOI: 10.1039/c4ta01047g

Google Scholar

[9] R. Kumar, B.R. Mehta, M. Bhatnagar, S. Mahapatra, S. Salkalachen, P. Jhawar, Graphene as a transparent conducting and surface field layer in planar Si solar cells, Nanoscale Res. Lett. 9 (2014) 349.

DOI: 10.1186/1556-276x-9-349

Google Scholar

[10] Choi, Y.Y., et al., Multilayer graphene films as transparent electrodes for organic photovoltaic devices, Sol. Energy Mater. Sol. Cells. 96 (2012) 281-285.

DOI: 10.1016/j.solmat.2011.09.031

Google Scholar

[11] J.H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, M. Ishigami, Charge Impurity scattering in graphene, Nat. Phys. 4 (2008) 377-381.

DOI: 10.1038/nphys935

Google Scholar

[12] G. Giovannetti, P.A. Khomyakov, G. Brocks, V.M. Karpan, J. van den Brink, P.J. Kelly, Doping graphene with metal contacts, Phys. Rev. Lett. 101 (2008) 026803.

DOI: 10.1103/physrevlett.101.026803

Google Scholar

[13] M. Sarno, C. Cirillo, R. Piscitelli, P. Ciambelli, A Study of the Key Parameters, Including the Crucial Role of H2 for Uniform Graphene Growth on Ni Foil, J. Mol. Catal. A: Chem. 366 (2013) 303-314.

DOI: 10.1016/j.molcata.2012.10.009

Google Scholar

[14] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscane, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett. 97 (2006) 187401.

DOI: 10.1103/physrevlett.97.187401

Google Scholar

[15] L.V. Mercaldo, I. Usatii, P. Delli Veneri, Advances in thin-film Si solar cells by means of SiOx alloys, Energies 9 (2016) 218.

DOI: 10.3390/en9030218

Google Scholar

[16] D. S. Ghosh, Ultrathin Metal Transparent Electrodes for the Optoelectronics Industry, Springer Theses, Springer International Publishing Switzerland, (2013).

DOI: 10.1007/978-3-319-00348-1

Google Scholar

[17] S.E. Zhu, S. Yuan, G.C.A.M. Janssen, Optical transmittance of multilayer graphene, EPL 108 (2014) 17007.

DOI: 10.1209/0295-5075/108/17007

Google Scholar

[18] H.J. Yun, M.M. D. Kumar, Y.C. Park, J. Kim, Transparent conductors with an ultrathin nickel layer for high-performance photoelectric device applications, Mater. Sci. Semicond. Process. 21 (2015) 334-339.

DOI: 10.1016/j.mssp.2014.12.018

Google Scholar

[19] M. Melvin, D. Kumar, H. Kim,Y. C.Park, J. Kim, Enhanced optical and electrical properties of Ni inserted ITO/Ni/AZO tri-layer stucture for photoelectric applications, Mater. Sci. Eng., B 195 (2015) 84-89.

DOI: 10.1016/j.mseb.2015.02.006

Google Scholar

[20] A. H. Alia, A. Shuhaimi, Z. Hassan, Structural, optical and electrical characteruization of ITO, ITO/Ag and ITO/Ni transparent conductive electrodes, App. Surf. Sci. 288 (2014) 599-603.

DOI: 10.1016/j.apsusc.2013.10.079

Google Scholar