Polyaniline Emeraldine Salt Molecules Coated on Polyethylene Board Using SILAR Technique

Article Preview

Abstract:

In this study, conducting polyaniline (PANI) Emeraldine salt molecules were coated on polyethylene (PE) board using successive ionic layer adsorption and reaction (SILAR) technique. The number of dipping cycles were varied and the surface conductivity of the samples were measured using four-point probe technique. Fourier Transform Infrared (FTIR) spectroscopy was also done to verify the identities of the coated samples. Results show that PANI Emeraldine salt was successfully coated on PE board as indicated by the peaks of FTIR spectra. Surface conductivity of the PANI Emeraldine salt coated PE board increases with increased number of dipping cycles due to increases interconnectivity of PANI molecules. The conductivity decreases after reaching an optimum point at 80 dipping cycles due to either hindrance of movement of charges or the breaking away of chunks of PANI molecules. These results opens up several applications such as memory devices and erasable circuit boards.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

311-316

Citation:

Online since:

August 2018

Export:

Price:

* - Corresponding Author

[1] J.K. Pamatmat, A.V. Gillado, M.U. Herrera, Embedding of polyaniline molecules on adhesive tape using successive ionic layer adsorption and reaction (SILAR) technique, Materials Science and Engineering Conference Series. 201 (2017) 012041.

DOI: 10.1088/1757-899x/201/1/012041

Google Scholar

[2] J. Stejskal, R. G. Gilbert, Polyaniline. Preparation of a conducting polymer (IUPAC technical report), Pure and Applied Chemistry. 74(5) (2002) 857-867.

DOI: 10.1351/pac200274050857

Google Scholar

[3] G. C. Marjanovic, Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications, Synthetic Metals. 177 (2013) 1-47.

DOI: 10.1016/j.synthmet.2013.06.004

Google Scholar

[4] R. Dubey, D. S. Bag, V.K. Varadan, D. Lal, G.N. Mathur, Polyaniline coating on glass and PMMA microspheres, In Reactive and Functional Polymers. 66(4) (2006) 441-445.

DOI: 10.1016/j.reactfunctpolym.2005.09.006

Google Scholar

[5] H. Wang, D. Liu, P. Du, P. Liu, Flexible and robust amino-functionalized glass fiber filter paper/polyaniline composite films as free-standing tensile-tolerant electrodes for high performance supercapacitors, In Electrochimica Acta. 228 (2017).

DOI: 10.1016/j.electacta.2017.01.017

Google Scholar

[6] R. M. Bandeira, J. Drunen, A. C. Garcia, G. T. Filho, Influence of the thickness and roughness of polyaniline coatings on corrosion protection of AA7075 aluminum alloy, In Electrochimica Acta. 240 (2017) 215-224.

DOI: 10.1016/j.electacta.2017.04.083

Google Scholar

[7] M. M. P. Parel, A. V. Gillado, M. U. Herrera, Morphology and electrical conductivity of polyaniline coating on acetate film, In Surfaces and Interfaces. 10 (2018) 74-77.

DOI: 10.1016/j.surfin.2017.12.001

Google Scholar

[8] Y. Wang, S. Xu, H. Cheng, W. Liu, F. Chen, X. Liu, J. Liu, S. Chen, C. Hu, Oriented growth of polyaniline nanofiber arrays onto the glass and flexible substrates using a facile method, In Applied Surface Science. 428 (2018) 315-321.

DOI: 10.1016/j.apsusc.2017.09.087

Google Scholar

[9] R. S. Andre, J. Chen, D. Kwak, D. S. Correa, L. H.C. Mattoso, Y. Lei, A flexible and disposable poly(sodium 4-styrenesulfonate)/polyaniline coated glass microfiber paper for sensitive and selective detection of ammonia at room temperature, In Synthetic Metals. 233 (2017).

DOI: 10.1016/j.synthmet.2017.08.005

Google Scholar

[10] L. He, B. Cui, J. Liu, Y. Song, M. Wang, D. Peng, Z. Zhang, Novel electrochemical biosensor based on core-shell nanostructured composite of hollow carbon spheres and polyaniline for sensitively detecting malathion, In Sensors and Actuators B: Chemical. (2017).

DOI: 10.1016/j.snb.2017.11.161

Google Scholar

[11] M. Jamdegni, S. K. Ghumaan, A. Kaur, Study of polyaniline and functionalized ZnO composite film linked through a binding agent for efficient and stable electrochromic applications, In Electrochimica Acta. 252 (2017) 578-588.

DOI: 10.1016/j.electacta.2017.08.144

Google Scholar

[12] K. Zarrini, A. A. Rahimi, F. Alihosseini, H. Fashandi, Highly efficient dye adsorbent based on polyaniline-coated nylon-6 nanofibers, In Journal of Cleaner Production. 142(4) (2017) 3645-3654.

DOI: 10.1016/j.jclepro.2016.10.103

Google Scholar

[13] A. Treu, S. Bardage, M. Johansson, S. Trey, Fungal durability of polyaniline modified wood and the impact of a low pulsed electric field, In International Biodeterioration & Biodegradation, 87 (2014) 26-33.

DOI: 10.1016/j.ibiod.2013.11.001

Google Scholar

[14] S. Sathiyanarayanan, S. S. Azim, G. Venkatachari, Corrosion protection coating containing polyaniline glass flake composite for steel, In Electrochimica Acta. 53(5) (2008) 2087-(2094).

DOI: 10.1016/j.electacta.2007.09.015

Google Scholar

[15] J. Stejskal, M. Mrlík, T. Plachý, M. Trchová, J. Kovářová, Y. Li, Molybdenum and tungsten disulfides surface-modified with a conducting polymer, polyaniline, for application in electrorheology, In Reactive and Functional Polymers. 120 (2017).

DOI: 10.1016/j.reactfunctpolym.2017.09.004

Google Scholar

[16] P. Bober, J. Stejskal, M. Trchová, J. Hromádková, J. Prokeš, Polyaniline-coated silver nanowires, In Reactive and Functional Polymers, 70(9) (2010) 656-662.

DOI: 10.1016/j.reactfunctpolym.2010.05.009

Google Scholar

[17] X. Zhou, Z. Zhang, X. Xu, X. Men, X. Zhu, Fabrication of super-repellent cotton textiles with rapid reversible wettability switching of diverse liquids, In Applied Surface Science. 276 (2013) 571-577.

DOI: 10.1016/j.apsusc.2013.03.135

Google Scholar

[18] F.X. Perrin, C. Oueiny, Polyaniline thermoset blends and composites, Reactive and Functional Polymers. 114 (2017) 86-103.

DOI: 10.1016/j.reactfunctpolym.2017.03.009

Google Scholar

[19] H.M. Pathan, C.D. Lokhande, Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method, Bull. Mater. Sci. 27(2) (2004) 85-111.

DOI: 10.1007/bf02708491

Google Scholar

[20] M. Trchová, J. Stejskal, Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report), Pure and Applied Chemistry. 83(10) (2011) 1803-1817.

DOI: 10.1351/pac-rep-10-02-01

Google Scholar

[21] J. Stejskal, I. Sapurina, M. Trchová, Polyaniline nanostructures and the role of aniline oligomers in their formation, In Progress in Polymer Science. 35(12) (2010) 1420-1481.

DOI: 10.1016/j.progpolymsci.2010.07.006

Google Scholar