Biocompatible Tough Hydrogels via Micellar Copolymerization of NIPAM and Stearyl Acrylate: Synthesis and Characterization

Article Preview

Abstract:

Novel biocompatible tough hydrogels were prepared through free radical micellar polymerization of N-isopropylacrylamide (NIPAM) with ammonium persulphate (APS) as initiator, in which hydrophobic monomer stearyl acrylate (C18) underwent micellar polymerization in the presence of gelatin as emulsifier. FT-IR and DSC demonstrated the formation of co-polymer of NIPAM and C18. Swelling results indicated that hydrophobic polymer domains derived from C18 in aqueous medium acted as the physical crosslinking points by hydrophobic association. Uniaxial tensile test demonstrated the mechanical properties of hydrogels increased with increasing C18 and gelatin contents. The hydrogel exhibited low toxicity and promoted cell proliferation. The desirable toughness, low toxicity and the promoting effect of cell proliferation made the present hydrogels good candidates for tissue regeneration materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

96-102

Citation:

Online since:

August 2017

Export:

Price:

* - Corresponding Author

[1] T. R. Hoare, D. S. Kohane, Hydrogels in drug delivery: Progress and challenges, Polymer. 49 (2008) 1993-(2007).

DOI: 10.1016/j.polymer.2008.01.027

Google Scholar

[2] T. Billiet, M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, P. Dubruel, A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering, Biomaterials. 33 (2012) 6020-6041.

DOI: 10.1016/j.biomaterials.2012.04.050

Google Scholar

[3] P. Gupta, K. Vermani, S. Garg, Hydrogels: from controlled release to pH-responsive drug delivery, Drug Discovery Today. 7 (2002) 569-579.

DOI: 10.1016/s1359-6446(02)02255-9

Google Scholar

[4] J. Zhang, L. Y. Chu, Y. Li, Y. M. Lee, Dual thermo- and pH-sensitive poly(N-isopropylacrylamide-co-acrylicacid) hydrogels with rapid response behaviors, Polymer. 48 (2007) 1718-1728.

DOI: 10.1016/j.polymer.2007.01.055

Google Scholar

[5] Z. T. Zhang, Y. F. Gao, Z. Chen, J. Du, C. X. Cao, L. T. Kang, H. J. Luo, Thermochromic VO2 thin films: solution-based processing, improved optical properties, and lowered phase transformation temperature, Langmuir. 26 (2010) 10738-10744.

DOI: 10.1021/la100515k

Google Scholar

[6] J. Du, Y. F. Gao, H. J. Luo, L. T. Kang, Z. T. Zhang, Z. Chen, C. X. Cao, Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition, Solar Energy Materials and Solar Cells. 95 (2011) 469-475.

DOI: 10.1016/j.solmat.2010.08.035

Google Scholar

[7] J. Olijve, F. Mori, Y. Toda, Influence of the molecular-weight distribution of gelatin on emulsion stability, Journal of Colloid and Interface Science, 243 (2001) 476-482.

DOI: 10.1006/jcis.2001.7816

Google Scholar

[8] L. Lobo, Effect of gelatin on rupture and coalescence, Journal of Colloid and Interface Science, 254 (2002) 165-174.

DOI: 10.1016/s0021-9797(02)98561-9

Google Scholar

[9] Z. Cui, R. Cheng, J. Liu, Y. P. Wu, J. P. Deng, Hydrophobic association hydrogels based on nacryloyl-alanine and stearyl acrylate using gelatin as emulsifier, RSC Adv., 6 (2016) 38957.

DOI: 10.1039/c6ra04762a

Google Scholar

[10] J. J. Xue,Y. Z. Niu, M. Gong, R. Shi, D. F. Chen, L. Q. Zhang, Y. Lvov, Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection, ACS Nano, 9 (2015) 1600-1612.

DOI: 10.1021/nn506255e

Google Scholar

[11] J. J. Xue, R. Shi, Y. Z. Niu, M. Gong, P. Coates, A. Crawford, D. F. Chen, L.Q. Zhang, Fabrication of drug-loaded anti-infective guided tissue regeneration membrane with adjustable biodegradation property, Colloids and Surfaces B: Biointerfaces, 135 (2015).

DOI: 10.1016/j.colsurfb.2015.03.031

Google Scholar