Effects of Metal Material Stent Design Parameters on Longitudinal Stent Strength

Article Preview

Abstract:

The longitudinal stent deformation (LSD) was usually caused by the external force in the blood vessel. The effects of metal material stent design parameters on the longitudinal stent strength (LSS) were studied using finite element method (FEA). A longitudinal stent compression model was developed and a rigid surface was used to compress the stent after stent deployment in coronary arteries. Results showed that the connector length, the strut amplitude and the curvature radius at the crown junctions influenced the LSS hardly. However, the number of connector played the most significant role in the LSS, and increasing the number of connectors can substantially improve the LSS, and the LSS of stent with four connectors was nearly three times than that of the stent with two connectors. For the shape of connector, the LSS of the S-stent, M-stent and L-stent were successively increased. With regard to the L-stent, increasing the width of connector can improve the LSS. Reasonably changing stent design parameters can effectively strengthen the LSS. Conclusions obtained from this paper can help surgeons to select appropriate stents and designers to optimize the stent design to reduce the LSD.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

299-304

Citation:

Online since:

December 2016

Export:

Price:

* - Corresponding Author

[1] A. W. Martinez, E. L. Chaikof, Microfabrication and nanotechnology in stent design, Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology. 3 (2011) 256-268.

DOI: 10.1002/wnan.123

Google Scholar

[2] C. G. Hanratty, S. J. Walsh, Longitudinal compression: a new" complication with modern coronary stent platforms - time to think beyond deliverability, Eurointervention. 7 (2011) 872-877.

DOI: 10.4244/eijv7i7a135

Google Scholar

[3] P. D. Williams, M. A. Mamas, K. P. Morgan, M. El-Omar, B. Clarke, A. Bainbridge, F. Fath-Ordoubadi, D. G. Fraser, Longitudinal stent deformation: a retrospective analysis of frequency and mechanisms, Eurointervention. 8 (2012) 267-274.

DOI: 10.4244/eijv8i2a41

Google Scholar

[4] E. Janakiraman, V. Subban, S. M. Victor, A. S. Mullasari, Longitudinal deformation - price we pay for better deliverability of coronary stent platforms, Indian heart J. 64 (2012) 518-520.

DOI: 10.1016/j.ihj.2012.07.012

Google Scholar

[5] A. L. Bartorelli, D. Andreini, G. Pontone, D. Trabattoni, C. Ferrari, S. Mushtaq, J. A. Drmiston, Stent longitudinal distortion: strut separation (pseudo-fracture) and strut compression (concertina effect), EuroIntervention. 8 (2012) 290-291.

DOI: 10.4244/eijv8i2a44

Google Scholar

[6] H. M. Hsiao, Why similar stent designs cause new clinical issues, Jacc-Cardiovascular Interventions. 5 (2012) 362-362.

DOI: 10.1016/j.jcin.2012.01.010

Google Scholar

[7] P. Mortier, M. De Beule, Stent design back in the picture: an engineering perspective on longitudinal stent compression, Eurointervention. 7 (2011) 773-775.

DOI: 10.4244/eijv7i7a122

Google Scholar

[8] M. A. Mamas, P. D. Williams, Longitudinal stent deformation: insights on mechanisms, treatments and outcomes from the Food and Drug Administration Manufacturer and User Facility Device Experience database, Eurointervention. 8 (2012) 196-204.

DOI: 10.4244/eijv8i2a33

Google Scholar

[9] S. Cook, E. Ladich, G. Nakazawa, P. Eshtehardi, M. Neidhart, R. Vogel, M. Togni, P. Wenaweser, M. Billinger, C. Seiler, S. Gay, B. Meier, W. J. Pichler, P. Jueni, R. Virmani, S. Windecker, Correlation of Intravascular Ultrasound Findings With Histopathological Analysis of Thrombus Aspirates in Patients With Very Late Drug-Eluting Stent Thrombosis, Circulation. 120 (2009).

DOI: 10.1161/circulationaha.109.854398

Google Scholar

[10] J. A. Ormiston, B. Webber, M. W. I. Webster, Stent longitudinal integrity: bench insights into a clinical problem, Jacc-Cardiovascular Interventions. 4 (2011) 1310-1317.

DOI: 10.1016/j.jcin.2011.11.002

Google Scholar

[11] N. Foin, C. Di Mario, D. P. Francis, J. E. Davies, Stent flexibility versus concertina effect: Mechanism of an unpleasant trade-off in stent design and its implications for stent selection in the cath-lab, Int. J. Cardiol. 164 (2013) 259-261.

DOI: 10.1016/j.ijcard.2012.09.143

Google Scholar

[12] M. S. Chung, D. H. Yang, Y. H. Kim, J. H. Roh, J. Song, J. W. Kang, J. M. Ahn, D. W. Park, S. J. Kang, S. W. Lee, Stent fracture and longitudinal compression detected on coronary CT angiography in the first-and new-generation drug-eluting stents, Int. J. cardiovascular imaging. 32 (2015).

DOI: 10.1007/s10554-015-0798-4

Google Scholar

[13] D. Martin, F. Boyle, Finite element analysis of balloon‐expandable coronary stent deployment: Influence of angioplasty balloon configuration, Int. J. Num. Meth. Biomed. Eng. 29 (2013) 1161-1175.

DOI: 10.1002/cnm.2557

Google Scholar

[14] H. M. Hsiao, C. T. Yeh, C. Wang, L. H. Chao, D. R. Li, Effects of stent design on new clinical issue of longitudinal stent compression in interventional cardiology, Biomed. Microdevices. 16 (2014) 599-607.

DOI: 10.1007/s10544-014-9862-4

Google Scholar

[15] G. E. Ragkousis, N. Curzen, N. W. Bressloff, Simulation of longitudinal stent deformation in a patient-specific coronary artery, Med. Eng. Phys. 36 (2014) 467-476.

DOI: 10.1016/j.medengphy.2014.02.004

Google Scholar