Investigation of the Morphological, Atomic and Electronic Structural Changes CuOx Nanoparticles and CNT in a Nanocomposite CuOx/CNT: SEM and X-Ray Spectroscopic Studies

Article Preview

Abstract:

Morphology, atomic and electronic structure of CuOx/CNT nanocomposite synthesized by electrochemical method were investigated using methods scanning electron microscopy (SEM), X-ray absorption spectroscopy (XANES and NEXAFS) and X-ray photoelectron spectroscopy (XPS). It has been shown that by the formation of a nanocomposite changes in morphology, oxidation state and phase composition of CuOx nanoparticles in comparison with the initial particles were observed. The initial oxidation of carbon nanotube (CNT) surface leads to reduction ability of the formation of chemical bonds between the nanoparticles and tubes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

215-220

Citation:

Online since:

February 2016

Export:

Price:

* - Corresponding Author

[1] P. Pannopard, P. Khongpracha, M. Probst , J. Limtrakul, Gas sensing properties of platinum derivatives of single-walled carbon nanotubes: A DFT analysis, J. Mol. Graphics Modell. 28 (2009) 62-69.

DOI: 10.1016/j.jmgm.2009.04.005

Google Scholar

[2] K.D. Shitole, R. K. Nainani, and P. Thakur, Preparation, Characterisation and Photocatalytic Applications of TiO2 -MWCNTs Composite, Defence Science Journal 63, 4 (2013) 435-441.

DOI: 10.14429/dsj.63.4870

Google Scholar

[3] K.E. Drexler, Nanosystems: Molecular Machinery, Manufacturing, and Computation, Wiley & Sons, New York, (1992).

Google Scholar

[4] L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, S. Gross, C. Maragno, E. Tondello, Recent trends on nanocomposites based on Cu, Ag and Au clusters: A closer look, Coord. Chem. Rev. 250 (2006) 1294-1314.

DOI: 10.1016/j.ccr.2005.12.003

Google Scholar

[5] W. Fergus, A review of electrolyte and electrode materials for high temperature electrochemical CO2 and SO2 gas sensors, Sens. Actuators, B 134 (2008) 1034-1041.

DOI: 10.1016/j.snb.2008.07.005

Google Scholar

[6] Y.S. Kim, I.S. Hwang, S.J. Kim, C.Y. Lee, J.H. Lee, CuO nanowire gas sensors for air quality control in automotive cabin, Sens. Actuators, B 135, 1 (2008) 298-303.

DOI: 10.1016/j.snb.2008.08.026

Google Scholar

[7] X. Wang, F. Zhang, B. Xia, X. Zhu, J. Chen, S. Qiu, P. Zhang, J. Li, Controlled modification of multi-walled carbon nanotubes with CuO, Cu2O and Cu nanoparticles, Solid State Sci. 11 (2009) 655-659.

DOI: 10.1016/j.solidstatesciences.2008.10.009

Google Scholar

[8] M.N. I. Andersen, A. Serov, P. Atanassov, Metal oxides/CNT nano-composite catalysts for oxygenreduction/oxygen evolution in alkaline media, Appl. Catal., B 163 (2015) 623-627.

DOI: 10.1016/j.apcatb.2014.08.033

Google Scholar

[9] D. Großmanna, A. Dreierb, C.W. Lehmannb, W. Grünerta, Encapsulation of copper and zinc oxide nanoparticles inside small diameter carbon nanotubes, Microporous Mesoporous Mater. 202 (2015) 189-197.

DOI: 10.1016/j.micromeso.2014.09.057

Google Scholar

[10] A. Bianconi, Surface X-ray Absorption Spectroscopy: Surface EXAFS and Surface XANES, Appl. Surf. Sci. 6 (1980) 392-418.

DOI: 10.1016/0378-5963(80)90024-0

Google Scholar

[11] D.V. Leontyeva, I.N. Leontyev, M.V. Avramenko, Yu.I. Yuzyuk, Yu.A. Kukushkina, N.V. Smirnova, Electrochemical dispergation as a simple and effective technique toward preparation of NiO based nanocomposite for supercapacitor application, Electrochim. Acta 114 (2013).

DOI: 10.1016/j.electacta.2013.10.031

Google Scholar

[12] J.E. Cloud, T.S. Yoder, N.K. Harvey, K. Snow, Y. Yang, A simple and generic approach for synthesizing colloidal metal and metal oxide nanocrystals, Nanoscale 5 (2013) 7368-7378.

DOI: 10.1039/c3nr02404k

Google Scholar

[13] W. Gudat, C. Kunz, Close similarity between photoelectric yield and photoabsorption spectra in the soft-X-ray range, Phys. Rev. Lett 29 (1972) 169-172.

DOI: 10.1103/physrevlett.29.169

Google Scholar

[14] B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat. 12 (2005) 537-541.

DOI: 10.1107/s0909049505012719

Google Scholar

[15] A.N. Mansour, A. Marcelli, G. Cibin, G. Yalovega, T. Sevastyanova , A. V. Soldatov, Amorphous Al90FexCe10-x Alloys: X-ray Absorption Analysis of the Al, Fe, and Ce Local Atomic and Electronic Structures, Phys. Rev. B, 65 (2002) 134207(8).

DOI: 10.1107/s0909049500016770

Google Scholar

[16] G. Silversmit, H. Poelman, V. Balcaen, P. M. Heynderickx, M. Olea, S. Nikitenko, W. Bras, P. F. Smeta, D. Poelman, R. D. Gryse, M. F Reniers, G. B. Marin, In-situ XAS study on the Cu and Ce local structural changes in a CuO–CeO2/Al2O3 catalyst under propane reduction and re-oxidation, J. Phys. Chem. Solids 70, 9 (2009).

DOI: 10.1016/j.jpcs.2009.07.008

Google Scholar

[17] W.S. Lim, Y.Y. Kim, H. Kim, S. Jang, N. Kwon, B.J. Park, J. -H. Ahn, J. Chung, B.H. Hong, G.Y. Yeom, Atomic layer etching of graphene for full graphene device fabrication, Carbon 50 (2012) 429-435.

DOI: 10.1016/j.carbon.2011.08.058

Google Scholar

[18] H.K. Jeong, H. J. Noh, J. Y. Kim, M.H. Jin, C.Y. Park, Y.H. Lee, X-ray absorption spectroscopy of graphite oxide, Europhys. Lett. 82, 6 (2008) 67004(5).

DOI: 10.1209/0295-5075/82/67004

Google Scholar

[19] M. Brzhezinskaya, V. Shmatko, G. Yalovega, A. Krestinin, I. Bashkin, E. Bogoslavskaja, Electronic Structure of Hydrogenated Carbon Nanotubes Studied by Core Level Spectroscopy, J. Electron. Spectrosc. Relat. Phenom. 196 (2014) 99-103.

DOI: 10.1016/j.elspec.2013.12.013

Google Scholar

[20] V.N. Sivkov, A.M. Ob"edkov, O.V. Petrova, S.V. Nekipelov, K.V. Kremlev, B.S. Kaverin, S.A. Gusev, X-ray and synchrotron investigations of heterogeneous systems based on multiwalled carbon nanotubes, Phys. of the Sol. State 57, 1 (2015) 197-204.

DOI: 10.1134/s1063783415010291

Google Scholar