Properties and Characterization of Chitosan/Collagen/PMMA Composites Containing Hydroxyapatite

Article Preview

Abstract:

In this paper several properties of new materials based on polymer blends were studied. The properties of composites made of the blends of chitosan and collagen with addition of poly (methyl methacrylate) and hydroxyapatite were investigated. Mechanical properties, thermal analysis, FTIR spectra and SEM images were obtained for different blends of chitosan/collagen in weight ratios 75/25, 50/50, 25/75. Poly (methyl methacrylate) was used in ratios 15, 50 and 85 wt% based on chitosan. The influence of the addition of hydroxyapatite to the polymer blends on their properties was tested. The results showed that the amount of components can influence on the mechanical properties observed for obtained materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

247-256

Citation:

Online since:

January 2016

Export:

Price:

[1] N. Majeti, R. Kumar, A review of chitin and chitosan applications, React. Funct. Polym. 46 (2000) 1-27.

Google Scholar

[2] M. Rinaudo, Chitin and chitosan: Properties and applications, Prog. Polym. Sci. 31 (2006) 603-632.

Google Scholar

[3] A. Sionkowska, New Materials Based on the Blends of Collagen and other Polymers, In R. K. Bregg. Current Topics in Polymer Research, NOVA Publishers, New York, 2005, pp.145-168.

Google Scholar

[4] S. Z. Rogovina, G. A. Vikhoreva, Polysaccharide-based polymer blends: Methods of their production, Glycoconjugate J. 23 (2006) 611-618.

DOI: 10.1007/s10719-006-8768-7

Google Scholar

[5] T. Hesselberg, Biomimetics and the case of the remarkable ragworms, Naturwissenschaften, 94 (2007) 613-621.

DOI: 10.1007/s00114-006-0212-0

Google Scholar

[6] K. von der Mark, J. Park, S. Bauer, P. Schmuki, Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix, Cell Tissue Res. 339 (2010) 131-153.

DOI: 10.1007/s00441-009-0896-5

Google Scholar

[7] R. L. Reis, Biomimetics, Curr. Opin. Solid St. M. 7 (2003) 263-264.

Google Scholar

[8] D. R. Brothwell, Digging up bones, third ed., Cornell University Press, New York, (1981).

Google Scholar

[9] A. Sionkowska, J. Kozłowska, Characterization of collagen/hydroxyapatite composite sponges as a potential bone substitute, Int. J. Biol. Macromol. 47 (2010) 483-487.

DOI: 10.1016/j.ijbiomac.2010.07.002

Google Scholar

[10] S. Padareni, S. Terzi, L. Amendola, Major bone defect treatment with an osteoconductive bone substitute, Musculoskeletal Surgery 93 (2009) 89-96.

DOI: 10.1007/s12306-009-0028-0

Google Scholar

[11] P. Sponer, M. Strnadova, K. Urban, In vivo behaviour of low-temperature calcium-deficient hydroxyapatite: comparison with deproteinised bovine bone, Int. Orthopaed. 35 (2011) 1553-1560.

DOI: 10.1007/s00264-010-1113-6

Google Scholar

[12] X. Pang, I. Zhitomirsky, Electrodeposition of composite hydroxyapatite-chitosan films, Mater. Chem. Phys. 94 (2005) 245-251.

DOI: 10.1016/j.matchemphys.2005.04.040

Google Scholar

[13] A. Sionkowska, T. Wess, Mechanical properties of UV irradiated rat tail tendon (RTT) collagen, Int. J. Biol. Macromol. 34 (2004) 9-12.

DOI: 10.1016/j.ijbiomac.2003.10.001

Google Scholar

[14] J. Lotz, T. Gaertner, M. Hahn, W. Prellwitz, Collagen type I metabolism after bone surgery, Arch. Orthop. Traum. Su. 119 (1999) 212-216.

DOI: 10.1007/s004020050393

Google Scholar

[15] T. Mitra, G. Sailakshmi, A. Gnanamani, Preparation and characterization of malinic acid cross-linked chitosan and collagen 3D scaffolds: an approach on non-covalent interactions, Mater. Sci. Mater. Med. 23 (2012) 1309-1321.

DOI: 10.1007/s10856-012-4586-6

Google Scholar

[16] Y. Zhu, T. Liu, K. Song, B. Jiang, X. Ma, Z. Cui, Collagen-chitosan polymer as a scaffold for the proliferation of human adipose tissue-derived stem cells, Mater. Sci. Mater. Med. 20 (2009) 799-808.

DOI: 10.1007/s10856-008-3636-6

Google Scholar

[17] Z. Chen, X. Mo, C. He, H. Wang, Intermolecular interactions in electrospun collagen-chitosan complex nanofibers, Carbohyd. Polym. 72 (2008) 410-418.

DOI: 10.1016/j.carbpol.2007.09.018

Google Scholar

[18] L. Ma, C. Gao, Z. Mao, J. Zhou, J. Shen, Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering, Biomaterials 24 (2003) 4833-4841.

DOI: 10.1016/s0142-9612(03)00374-0

Google Scholar

[19] A. Sionkowska, Current research on the blends of natural and synthetic polymers as new biomaterials: Review, Prog. Polym Sci. 36 (2011) 1254-1276.

DOI: 10.1016/j.progpolymsci.2011.05.003

Google Scholar

[20] K. Tuzlakoglu, R. L. Reis, Formation of bone-like apatite layer on chitosan fiber mesh scaffolds by a biomimetic spraying process, J. Mater. Sci. Mater. Med. 18 (2007) 1279-1286.

DOI: 10.1007/s10856-006-0063-4

Google Scholar

[21] L. M. R. Vasconcellos, M. V. Oliveira, M. L. A. Graca, L. G. O. Vasconcellos, C. A. A. Cairo, Y. R. Carvalho, Design of dental implants: influence on the osteogenesis and fixation, J. Mater. Sci. Mater. Med. 19 (2007) 2851-2857.

DOI: 10.1007/s10856-008-3421-6

Google Scholar

[22] A. Sionkowska, M. Wisniewski, J. Skopinska, C. J. Kennedy, T. J. Wess, Molecular interactions in collagen and chitosan blends, Biomaterials 25 (2004) 795-801.

DOI: 10.1016/s0142-9612(03)00595-7

Google Scholar

[23] A. J. Salgado, J. E. Figueiredo, O. P. Coutinho, R. L. Reis, Biological response to pre-mineralized starch based scaffolds for bone tissue engineering, J. Mater. Sci. Mater. Med. 16 (2005) 267-275.

DOI: 10.1007/s10856-005-6689-9

Google Scholar

[24] W. U. Qisheng, C. Futao, W. Wuji, Study on the mechanical and biological property of PMMA bone cement modified with ultra-fine glass fibers and nano-hydroxyapatite, Front. Mater. Sci. 3 (2007) 247-251.

DOI: 10.1007/s11706-007-0044-7

Google Scholar

[25] W. A. J. Higgs, P. Luckasanasombool, R. J. E. D. Higgs, M. V. Swain, Comparison of the material properties of PMMA and glass-ionomer based cements for use in orthopaedic surgery, J. Mater. Sci. Mater. Med. 12 (2001) 453-460.

Google Scholar

[26] R. Ormsby, T. McNally, C. Mitchell, N Dunne, Influence on multiwall carbon nanotube functionality and loading on mechanical properties of PMMA/MWCNT, J. Mater. Sci. Mater. Med. 21 (2010) 2287-2292.

DOI: 10.1007/s10856-009-3960-5

Google Scholar

[27] B. Long, C. Zheng, H. Yunyu, S. Yang, Y. Long, Y. Bo, M. Jihong, H. Zhaosong, H. Yisheng, Effects of different cross-linking conditions on the properties of genipin-cross-linked chitosan/ collagen scaffolds for cartilage tissue engineering, J. Mater. Sci. Mater. Med. 22 (2011).

DOI: 10.1007/s10856-010-4177-3

Google Scholar

[28] M. Hasegawa, A. Sudo, V. S. Komlev, S. M. Barinov, A. Uchida, High release of antibiotic from a novel hydroxyapatite with bimodal pore size distribution, J. Biomed. Mater. Res. -A 70 (2004) 332-339.

DOI: 10.1002/jbm.b.30047

Google Scholar

[29] M. Itokazu, W. Yang, T. Aoki, A. Ohara, N. Kato, Synthesis of antibiotic – loaded interporous hydroxyapatite blocks by vacuum method and in vitro drug release testing, Biomaterials 19 (1998) 817-819.

DOI: 10.1016/s0142-9612(97)00237-8

Google Scholar

[30] V. C. A. Martins, G. Goissis, A. C. Riberio, E. M. Jr, M. R. Bet, The controlled release of antibiotic by hydroxyapatite: anionic collagen composites, Artifi. Organs 22 (1998) 215-221.

DOI: 10.1046/j.1525-1594.1998.06004.x

Google Scholar

[31] X. Ye, Y. Zhou, J. Chen, Y. Sun, Synthesis of infrared emissivity study of collagen-g-PMMA/Ag @ TiO2 composite, Mater. Chem. Phys. 106 (2007) 447-451.

DOI: 10.1016/j.matchemphys.2007.06.056

Google Scholar

[32] H. B. Ravikumar, C. Ranganathaiah, G. N. Kumaraswamy, Influence of free volume on the mechanical properties of epoxy/poly(methylmetacryalte) blends, J. Mater. Sci. 40 (2005) 6523-6527.

DOI: 10.1007/s10853-005-1707-3

Google Scholar

[33] A. Sionkowska, M. Wisniewski, J. Skopinska, G. F. Poggi, E. Marsano, C. A. Maxwell, T. J. Wess, Thermal and mechanical properties of UV irradiated collagen/chitosan thin films, Polym. Degrad. Stab. 91 (2006) 3026-3032.

DOI: 10.1016/j.polymdegradstab.2006.08.009

Google Scholar

[34] K. Lewandowska, The miscibility of poly(vinyl alcohol)/poly(N-vinylpyrrolidone) blends investigated in dilute solutions and solids, Eur. Polym. J. 41 (2005) 55-64.

DOI: 10.1016/j.eurpolymj.2004.08.016

Google Scholar

[35] K. Lewandowska, Miscibility and thermal stability of poly(vinyl alcohol)/chitosan mixtures, Thermochimica Acta 493 (2009) 42-48.

DOI: 10.1016/j.tca.2009.04.003

Google Scholar