Growth and Magnetic Properties of Three-Dimensional Firtree-Like Cobalt Microcrystals with Hierarchical Dendritic Superstructures

Article Preview

Abstract:

Novel ordered three-dimensional (3D) firtree-like hexagonal cobalt microcrystals with hierarchical dendritic superstructures have been obtained by using cobalt bis (4-pyridine carboxylate) tetrahydrate as the precursor of Co. The 3D dendrite has a main axis and the leaves arrange layer by layer in parallel along the axis, which exhibit the radiate hexagonal arrangement from the axis in a layer. The main axis of the dendrite grows along the [001] direction of hexagonal Co and the leaves grow parallel to the (001) plane. The hysteresis loop of the sample shows a ferromagnetic behavior with the saturation magnetization of 134.0 emu/g and the coercivity of 184.9 Oe. It is noted that the coercivity is relatively low compared with that of the cobalt dendritic crystallites reported previously, which may result from the lower total morphology anisotropy of our sample.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 645-646)

Pages:

104-109

Citation:

Online since:

May 2015

Export:

Price:

* - Corresponding Author

[1] V.F. Puntes, D. Zanchet, C.K. Erdonmez, and A.P. Alivisatos, Synthesis of hcp-Co Nanodisks, J. Am. Chem. Soc. 124 (2002) 12874-12880.

DOI: 10.1021/ja027262g

Google Scholar

[2] A.K. Srivastava, S. Madhavi, T.J. White, and R.V. Ramanujan, Template assisted assembly of cobalt nanobowl arrays, J. Mater. Chem. 15 (2005) 4424-4428.

DOI: 10.1039/b506799e

Google Scholar

[3] Z.Q. Liu, H. Hashimoto, E. Sukedai, M. Song, K. Mitsuishi, and K. Furuya, In situ observation of the formation of Fe3O4 in Fe4N (001) due to electron irradiation, Phys. ReV. Lett. 90 (2003) 25504.

Google Scholar

[4] Y.L. Hou, H. Kondoh, and T. Ohta, Self-Assembly of Co Nanoplatelets into Spheres: Synthesis and Characterization, Chem. Mater. 17 (2005) 3994-3996.

DOI: 10.1021/cm050409t

Google Scholar

[5] V.F. Puntes, K.M. Krishnan, and A.P. Alivisatos, Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt, Science 291 (2001) 2115-2117.

DOI: 10.1126/science.1058495

Google Scholar

[6] Q. Xie, Y.T. Qian, S.Y. Zhang, S.Q. Fu, and W.C. Yu, A Hydrothermal Reduction Route to Single-Crystalline Hexagonal Cobalt Nanowires, Eur. J. Inorg. Chem. 12 (2006) 2454-2459.

DOI: 10.1002/ejic.200600061

Google Scholar

[7] Q. Xie, Z. Dai, W.W. Huang, J.B. Liang, C.L. Jiang, and Y.T. Qian, Synthesis of ferromagnetic single-crystalline cobalt nanobelts via a surfactant-assisted hydrothermal reduction process, Nanotechnology 16 (2005) 2958-2962.

DOI: 10.1088/0957-4484/16/12/039

Google Scholar

[8] L.P. Zhu, W.D. Zhang, H.M. Xiao, Y. Yang, and S.Y. Fu, Facile Synthesis of Metallic Co Hierarchical Nanostructured Microspheres by a Simple Solvothermal Process, J. Phys. Chem. C 112 (2008) 10073-10078.

DOI: 10.1021/jp8019182

Google Scholar

[9] Y.J. Zhang, Q. Yao, Y. Zhang, T.Y. Cui, D. Li, W. Liu, W. Lawrence, and Z.D. Zhang, Solvothermal Synthesis of Magnetic Chains Self-Assembled by Flowerlike Cobalt Submicrospheres, Cryst. Growth & Des. 8 (2008) 3206-3212.

DOI: 10.1021/cg7010452

Google Scholar

[10] X. M. Liu, W.L. Gao, S.B. Miao, and B.M. Ji, Versatile fabrication of dendritic cobalt microstructures using CTAB in high alkali media, J. Phys. Chem. Solids 69 (2008) 2665-2669.

DOI: 10.1016/j.jpcs.2008.05.023

Google Scholar

[11] R. Qiu, X.L. Zhang, R. Qiao, Y. Li, Y.I. Kim, and Y.S. Kang, CuNi Dendritic Material: Synthesis, Mechanism Discussion, and Application as Glucose Sensor, Chem. Mater. 19 (2007) 4174-4180.

DOI: 10.1021/cm070638a

Google Scholar

[12] Y.C. Zhu, H.G. Zheng, Q. Yang, A.L. Pan, Z.P. Yang, and Y.T. Qian, Growth of dendritic cobalt nanocrystals at room temperature, J. Cryst. Growth 260 (2004) 427-434.

DOI: 10.1016/j.jcrysgro.2003.08.037

Google Scholar

[13] X.H. Liu, R. Yi, Y.T. Wang, G.Z. Qiu, N. Zhang, and X.G. Li, Highly ordered snowflakelike metallic cobalt microcrystals, J. Phys. Chem. C 111 (2007) 163-167.

DOI: 10.1021/jp0643597

Google Scholar

[14] L.P. Zhu, H.M. Xiao, W.D. Zhang, Y. Yang, and S.Y. Fu, Synthesis and Characterization of Novel Three-Dimensional Metallic Co Dendritic Superstructures by a Simple Hydrothermal Reduction Route, Cryst. Growth & Des. 8 (2008) 1113-1118.

DOI: 10.1021/cg701036k

Google Scholar

[15] Y.L. Li, J.Z. Zhao, Y.C. Zhu, D.C. Ma, Y. Zhao, S.N. Hou, F. Yan and Z.C. Wang, Controlled synthesis of rice ear-like cobalt microcrystals at room temperature, Colloids Surf. A: Physicochem. Eng. Aspects 356 (2010) 156-161.

DOI: 10.1016/j.colsurfa.2010.01.016

Google Scholar

[16] H.Y. Chen, R.H. Zhou, C.J. Xu, Y.Q. Liu, G.Z. Zhao, Cobalt microtrees assembled by dendrites: Hydrothermal synthesis and their enhanced magnetic properties, Mater. Lett. 99 (2013) 1-4.

DOI: 10.1016/j.matlet.2013.02.063

Google Scholar

[17] Y.J. Zhang, S.W. Or, Z.D. Zhang, Hydrothermal self-assembly of hierarchical cobalt hyperbranches by a sodium tartrate-assisted route, RSC Advances 1 (2011) 1287-1293.

DOI: 10.1039/c1ra00387a

Google Scholar

[18] R.H. Wang, J.S. Jiang, M. Hu, Metallic cobalt microcrystals with flowerlike architectures: Synthesis, growth mechanism and magnetic properties, Mater. Res. Bull. 44 (2009) 1468-1473.

DOI: 10.1016/j.materresbull.2009.02.016

Google Scholar

[19] C. Wang, X.J. Han, X.L. Zhang, S.R. Hu, T. Zhang, J.Y. Wang, Y.C. Du, X.H. Wang, P. Xu, Controlled synthesis and morphology-dependent electromagnetic properties of hierarchical cobalt assemblies, J. Phys. Chem. C 114 (2010) 14826-14830.

DOI: 10.1021/jp1050386

Google Scholar

[20] R. Qiu, P. Wang, D. Zhang, J.J. Wu, One-step preparation of hierarchical cobalt structure with inborn superhydrophobic effect, Colloids Surf. A: Physicochem. Eng. Aspects 377 (2011) 144-149.

DOI: 10.1016/j.colsurfa.2010.12.045

Google Scholar

[21] T.R. Zhang, W.J. Dong, M.K. Brewer, S. Konar, R.N. Njabon, and Z.R. Tian, Site-Specific Nucleation and Growth Kinetics in Hierarchical Nanosyntheses of Branched ZnO Crystallites, J. Am. Chem. Soc. 128 (2006) 10960-10968.

DOI: 10.1021/ja0631596

Google Scholar

[22] Y.H. Tong, Y.C. Liu, C.L. Shao, R.X. Mu, Structural and optical properties of ZnO nanotower bundles, Appl. Phys. Lett. 88 (2006) 123111.

DOI: 10.1063/1.2188386

Google Scholar

[23] A. Taubert, C. Kubel, D.C. Martin, Polymer-Induced Microstructure Variation in Zinc Oxide Crystals Precipitated from Aqueous Solution, J. Phys. Chem. B 107 (2003) 2660-2666.

DOI: 10.1021/jp020569h

Google Scholar

[24] Y. Tang, and Q.W. Chen, A Simple and Practical Method for the Preparation of Magnetite Nanowires, Chem. Lett. 36 (2007) 840-841.

DOI: 10.1246/cl.2007.840

Google Scholar

[25] T.C. Halsey, B. Duplantier, and K. Honda, Multifractal Dimensions and Their Fluctuations in Diffusion-Limited Aggregation, Phys. ReV. Lett. 78 (1997) 1719-1722.

DOI: 10.1103/physrevlett.78.1719

Google Scholar

[26] H.L. Niu, Q.W. Chen, H.F. Zhu, Y.S. Lin, and X. Zhang, Magnetic field-induced growth and self-assembly of cobalt nanocrystallites, J. Mater. Chem. 13 (2003) 1803-1805.

DOI: 10.1039/b303024e

Google Scholar

[27] X.M. Ni, D.G. Li, Y.F. Zhang, and H.G. Zheng, Complexant-assisted Fabrication of Flowery Assembly of Hexagonal Close-packed Cobalt Nanoplatelets, Chem. Lett. 36 (2007) 908-909.

DOI: 10.1246/cl.2007.908

Google Scholar

[28] J.G. Li, Y. Qin, X.L. Kou, H.Y. He, and D.K. Song, Structure and magnetic properties of cobalt nanoplatelets, Mater. Lett. 58 (2004) 2506-2509.

DOI: 10.1016/j.matlet.2004.03.026

Google Scholar

[29] D.L. LesliePelecky, and R.D. Rieke, Magnetic properties of nanostructured materials, Chem. Mater. 8 (1996) 1770-1783.

Google Scholar