Preparation and Characterization of a Micro-Supercapacitor with Three-Dimensional Microelectrode Arrays

Article Preview

Abstract:

With the development of the MEMS technology and the more widely-used micro-systems, micro-power devices are developed for portable consumer electronics. [ The MEMS supercapacitor is one of the most important parts for micro-powers. In this paper, a micro-supercapacitor was designed and fabricated with three-dimensional microelectrode arrays configuration. It has been tested by scanning electron microscopy, Cyclic Voltammeter, Galvanostatical charge/discharge curve and electrochemical impedance spectroscopy. These posts were 50 μm in diameter and 100 μm tall; with foot print area of 2×2mm2. The capacitance is 89.52mF/cm2. The biggest feature in this paper is that the two plates of the supercapacitor are both three-dimensional microelectrode arrays which are shown to offer significant advantages.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 562-565)

Pages:

1196-1202

Citation:

Online since:

July 2013

Export:

Price:

[1] Saadon,S.; Sidek,O. ENERG CONVERS MANAGE, 2011, 52 (1) ,500.

Google Scholar

[2] R. Kotz, M. Carlen, Electrochim. Acta 45 (2000) 2483.

Google Scholar

[3] A. Bruke, J. Power Sources 91 (1) (2000) 37.

Google Scholar

[4] E. Faggioli, P. Rena, V. Danel, X. Andrieu, R. Mallant, H. Kaheln, J. Power Sources 84 (1999) 261.

DOI: 10.1016/s0378-7753(99)00326-2

Google Scholar

[5] Majid Beidaghi, Chunlei Wang. Electrochimica Acta 56 (2011) 9508– 9514

Google Scholar

[6] M. Beidaghi, W. Chen, C. Wang, J. Power Sources 196 (2011) 2403.

Google Scholar

[7] J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Science 328 (2010) 480.

DOI: 10.1126/science.1184126

Google Scholar

[8] M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Nano Lett. 9 (2009) 1872.

Google Scholar

[9] D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna,P. Simon, Nat. Nanotechnol. 5 (2010) 651.

DOI: 10.1038/nnano.2010.162

Google Scholar

[10] D. Pech, M. Brunet, P.-L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V.Conédéra, H. Durou, J. Power Sources 195 (2010) 1266.

DOI: 10.1016/j.jpowsour.2009.08.085

Google Scholar

[11] Yang J J, Huang J J, Jiang Zi Y, Supercapacitance of MnO2 Thin Film Electrodes Prepared Using Jet Printing Method. Acta Phys. Chim. Sin., 2007, 23(9): 1365-1369(in Chinese)

Google Scholar

[12] Pech D, Brunet M, Taberna P L, et al. Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J. Power Sources, 2009, 195(4): 1266-1269

DOI: 10.1016/j.jpowsour.2009.08.085

Google Scholar

[13] Miller L M, Ho C C, Shafer P C, et al. Integration of a low frequency, tunable MEMS piezoelectric energy harvester and a thick film micro capacitor as a power supply system for wireless sensor nodes. 2009 IEEE Energy Conversion Congress and Exposition, ECCE 2009, San Jose, CA, USA, 2009: 2627-2634

DOI: 10.1109/ecce.2009.5316243

Google Scholar

[14] Jiang Y, Wang P, Zhang J, et al. 3D supercapacitor using nickel electroplated vertical aligned carbon nanotube array electrode. Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd International Conference on Digital Object Identifier, 2010: 1171-1174

DOI: 10.1109/memsys.2010.5442420

Google Scholar

[15] Pech D, Brunet M, Durou H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol., 2010, 5:651-654

DOI: 10.1038/nnano.2010.162

Google Scholar

[16] Sun W, Zheng R, Chen X. Symmetric redox supercapacitor based on micro-fabrication with three-dimensional polypyrrole electrodes. J Power Sources, 2010(20): 7120-7125

DOI: 10.1016/j.jpowsour.2010.05.012

Google Scholar

[17] Wen C M, Wen Z Y, You Z, et al. Based on SU-8 photoresist of MEMS supercapacitor manganese dioxide electrode preparation and electrochemical characteristics. Proceedings of the 11th Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, PowerMEMS 2011, Seoul, Korea, Cell Bench Research Center, KAIST, 2011: 395-398

Google Scholar

[18] Chen W, Beidaghi M, Penmatsa V, et al. Integration of Carbon Nanotubes to C-MEMS for On-chip Supercapacitors. IEEE Trans. Nanotechnol., 2010, 9(6): 734-740

DOI: 10.1109/tnano.2010.2049500

Google Scholar

[19] Cui X, Hu F, Wei W, et al. Dense and long carbon nanotube arrays decorated with Mn3O4 nanoparticles for electrodes of electrochemical supercapacitors. Carbon , 2010, 49(4):1225-1234

DOI: 10.1016/j.carbon.2010.11.039

Google Scholar

[20] Liu C C, Tsai D S, Susanti D, et al. Planar ultracapacitors of miniature interdigital electrode loaded with hydrous RuO2 and RuO2 nanorods. Electrochim. Acta, 2010, 55(20): 5768-5774

DOI: 10.1016/j.electacta.2010.05.015

Google Scholar

[21] Lin C C, Lin P Y. Capacitance Measurements of MnO(x) Films Deposited by Reactive Sputtering of a Mn Target. Electrochem., 2011, 79(6): 458-463

DOI: 10.5796/electrochemistry.79.458

Google Scholar

[22] Ji H, Mei Y, Schmidt O G. Swiss roll nanomembranes with controlled proton diffusion as redox micro-supercapacitors , Chem. Commun, 2010, 46: 3881-3883

DOI: 10.1039/c003215h

Google Scholar

[23] Bufon C C B, Gonzlez J D C, Thurmer D J, et al. Self-Assembled Ultra-Compact Energy Storage Elements Based on Hybrid Nanomembranes. Nano Lett., 2010, 10(7): 2506-2510

DOI: 10.1021/nl1010367

Google Scholar

[24] D. Pech, M. Brunet, P.L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conédéra, H. Durou, J. Power Sources 195 (2010) 1266-1269.

DOI: 10.1016/j.jpowsour.2009.08.085

Google Scholar

[25] Sun, W.; Chen, X.; ("Preparation and characterization of polypyrrole films for three-dimensional micro super capacitor,") J. Power Sources, 2009, 193, 924.

DOI: 10.1016/j.jpowsour.2009.04.063

Google Scholar

[26] Majid Beidaghi.; Chunlei Wang, ("On-chip micro-power: Three dimensional structures for microbatteries and micro- super capacitors"), Proc, SPIE 76791G (2010)

Google Scholar

[27] Chunlei Wang, Lili Taherabadi, Guangyao Jia, Marc Madou, Yuting Yeh, and Bruce Dunn., "C-MEMS for the Manufacture of 3D Microbatteries", Electrochemical and Solid-State Letters, 7(11) A435-A438 (2004)

DOI: 10.1149/1.1798151

Google Scholar

[28] A. Cornell and D. Simonsson, J. Electrochem. Sot. 140 (1993) 3123.

Google Scholar

[29] Q.X. Jia and W.A. Anderson, IEEE Trans. on Components, Hybrids and Manufacturing Technology 15 (1992) 121.

Google Scholar

[30] S.D. Bernstein, T.Y. Wong, Y. Kisler and R.W. Tustison, J.Mater. Res. 8 (1993) 12.

Google Scholar

[31] D.P. Vijay and S.B. Desu, J. Electrochem. Sot. 140 (1993) 2640.

Google Scholar

[32] G.Q Zhang, Y.Q. Zhao, F Tao, H.L Li, Journal of Power Sources 161(2006)725

Google Scholar

[33] Y.R. Nian and H.S. Teng. Journal of Electroanalytical Chemistry., 540 (2003), p.119.

Google Scholar

[34] T.L. Momma, X. Osaka, T. Ushio and Y. Sawada. Journal of Power Sources, 60 (1996), p.249.

Google Scholar

[35] P.L. Taberna, P. Simon and J.F. Fauvarque. J. Electrochem. Soc., 150(2003), p.292.

Google Scholar