Numerical Implementation and Finite Element Analysis of Anisotropic Hyperelastic Biomaterials - Influence of Fibers Orientation

Article Preview

Abstract:

Modeling anisotropic behavior of fiber reinforced rubberlike materials is actually of a great interest in many industrials sectors. Indeed, accurately description of the mechanical response and damage of such materials allows the increase of the lifecycle of these materials which generally evolve under several environment conditions. In this paper theoretical study and finite element analysis of anisotropic biomaterials is presented. The mechanical model adopted to achieve this study has been implemented into the finite element code Abaqus using an implicit scheme. This constitutive law has been utilized to perform some numerical simulations. The material parameters of the model have been determined by numerical calibration. One fiber family is considered in this work. Effects of the fiber orientation on the mechanical response and stiffness change of biomaterial is studied. Both the compressible and incompressible states have been taken into account. The results show firstly the capability of the model to reproduce the known results and that optimal fiber orientation can be found.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 554-557)

Pages:

2414-2423

Citation:

Online since:

June 2013

Export:

Price:

[1] R.M. Jones, Mechanics of Composite Materials, McGraw-Hill, Tokyo, 1975.

Google Scholar

[2] R.M. Christensen, Mechanics of Composite Materials, Wiley, New York, 1979.

Google Scholar

[3] R.F. Gibson, Principles of Composite Material Mechanics, McGraw-Hill, New York, 1994.

Google Scholar

[4] Dorfmann, A., Ogden, R.W., A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. Int. J.Solids Struct. 41(2004), 1855–1878.

DOI: 10.1016/j.ijsolstr.2003.11.014

Google Scholar

[5] K.-D. Klee, E. Stein, Discretization in nonlinear continuum mechanics and comparison of some finite element algorithms, in: Proceedings of the Pressure Vessels and Piping Conference, Orlando, 1982.

Google Scholar

[6] Rivlin, R.S., Saunders, D.W., Large elastic deformations of isotropic materials. Experiments on the deformation of rubber. Philos. Trans. Roy. Soc. A 243(1951) 251–288.

DOI: 10.1098/rsta.1951.0004

Google Scholar

[7] Hart-Smith, L.J., Elasticity parameters for finite deformations of rubber-like materials. J.Appl. Math. Phys. 17(1966) 608–625.

Google Scholar

[8] Ogden, R.W., Large deformation isotropic elasticity on the correlation of theory and experiment for incompressible rubber-like solids. Proc. Roy. Soc. Lond. A 326(1972) 565–584.

DOI: 10.1098/rspa.1972.0026

Google Scholar

[9] Lambert-Diani, J., Rey, C., New phenomenological behaviour laws for rubbers and thermoplastic elastomers. Eur. J. Mech. A/ Solids 18(1999) 1027–1043.

DOI: 10.1016/s0997-7538(99)00147-3

Google Scholar

[10] Boyce, M.C., Arruda, E.M., Constitutive models for rubber elasticity: a review. Rubber Chem. Technol. 73(2000) 504–523.

DOI: 10.5254/1.3547602

Google Scholar

[11] C.Truesdell, W.Noll, The nonlinear field theories, in: S. Flugge (Ed.), Handbuch der Physik, Band III/3, Springer, Berlin, 1965.

Google Scholar

[12] E.S. Suhubi, Thermoelastic solids, in: A.C. Eringen (Ed.), Continuum Physics II, Academic Press, New York.

Google Scholar

[13] A.I. Lurie, Nonlinear theory of elasticity, in: J.D. Achenbach et al. (Eds.), North-Holland Series in Applied Mathematics and Mechanics, North-Holland, Amsterdam, 1990.

DOI: 10.1016/b978-0-444-87439-9.50001-2

Google Scholar

[14] A.J.M. Spencer, Continuum theory of the mechanics of fibre-reinforced composites, CISM Courses and Lectures, No. 282,Springer, Wien, 1984.

Google Scholar

[15] J. Schroder, Theoretische und algorithmische Konzeptezur phanomenologischen Beschreibung anisotropen Materialverhaltens, Dissertation, Universitat Hannover, 1996.

Google Scholar

[16] J.A. Weiss, N.M. Bradley, S. Govindjee, Finite element implementation of incompressible, transversely isotropic hyperelasticity, Computer Methods in Applied Mechanics and Engineering 135 (1996) 107-128.

DOI: 10.1016/0045-7825(96)01035-3

Google Scholar

[17] Holzapfel G.A., Gasser T., A viscoelastic model for fibre-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput. Meth. Appl. Mech. Eng. 190(2001) 4379–4403.

DOI: 10.1016/s0045-7825(00)00323-6

Google Scholar

[18] Puso M.A., Weiss J., Finite element implementation of anisotropic quasilinear viscoelasticity. ASME J. Biomech. Eng. 120(1998) 162–170.

Google Scholar

[19] Johnson G., Livesay, G., Woo, S., Rajagopal, K., A single integral finite strain viscoelastic model of ligaments and tendons. ASME J. Biomech. Eng. 118(1996) 221–226.

DOI: 10.1115/1.2795963

Google Scholar

[20] Humphrey J., Mechanics of the arterial wall: review and directions. Crit. Rev. Biomed. Eng.23(1995)1–162.

DOI: 10.1615/critrevbiomedeng.v23.i1-2.10

Google Scholar

[21] Pinsky P., Datye V., A microstructurally-based finite element model of the incised human cornea.J.Biomech.10(1991)907–922.

DOI: 10.1016/0021-9290(91)90169-n

Google Scholar

[22] Hayes W.C., Mockros L.F., Viscoelastic constitutive relations for human articular cartilage. J. Appl. Physiol. 18(1971) 562–568.

Google Scholar

[23] Pickett A.K., Johnson A.F., Numerical simulation of the forming process in long fibre reinforced thermoplastics, Composite Mat.Thech., V(1996) 233-242

Google Scholar

[24] Kyriacou S.K., Schwab C., Humphrey J.D., Finite element analysis of nonlinear orthotropic hyperelastic membranes, Comput.Mech., 18(1996) 269-278

DOI: 10.1007/bf00364142

Google Scholar

[25] J. Diana, M. Brieu, P. Gilormini, Observation and modelling of the anisotropic visco-hyperelastic behavior of a rubberlike material, Int. J. Solids Struct. 43 (2006) 3044–3056.

DOI: 10.1016/j.ijsolstr.2005.06.045

Google Scholar

[26] A.E. Green, Large Elastic Deformations (Clarendon Press, Oxford, UK, 1970).

Google Scholar

[27] A.J.M. Spencer, Continuum Theory of the Mechanics of Fibre-Reinforced Composites (Springer-Verlag, New York, 1984).

Google Scholar

[28] J. Schröder, P. Neff, D. Balzani, A variational approach for materially stable anisotropic hyperelasticity, Int. J. Solids Struct. 42 (2005) 4352–4371.

DOI: 10.1016/j.ijsolstr.2004.11.021

Google Scholar

[29] Y.C. Fung, K. Fronek, P. Patitucci, Pseudoelasticity of arteries and the choice of its mathematical expression, Am. J. Physiol. 237 (1979)H620–H631.

DOI: 10.1152/ajpheart.1979.237.5.h620

Google Scholar

[30] G.A. Holzapfel, T.C. Gasser, R.W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elasticity 61 (2000) 1–48.

DOI: 10.1007/0-306-48389-0_1

Google Scholar

[31] T.C. Gasser, R.W. Ogden, G.A. Holzapfel, Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, J. R. Soc.Interface 3 (2006) 15–35.

DOI: 10.1098/rsif.2005.0073

Google Scholar

[32] J.A. Weiss, B.N. Maker, S. Govindjee, Finite element implementation of incompressible, transversely isotropic hyperelasticity, Comp. Meth. Appl. Mech. Engng. 135 (1996) 107–128.

DOI: 10.1016/0045-7825(96)01035-3

Google Scholar

[33] J.D. Humphrey, R.K. Strumph and F.C.P. Yin, Determination of a constitutive relation for passive myocardium, I. A new functional form, ASME J. Biomech. Engrg. 112 (1990) 333-339.

DOI: 10.1115/1.2891193

Google Scholar

[34] J.D. Humphrey and F.C.P. Yin, On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudostrain-energy approach, ASME J. Biomech. Engrg. 109 (1987) 298-304.

DOI: 10.1115/1.3138684

Google Scholar

[35] M. Kaliske A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains Comput. Methods Appl. Mech. Engrg. 185 (2000) 225-243

DOI: 10.1016/s0045-7825(99)00261-3

Google Scholar

[36] T.C. Doyle, J.L. Ericksen, Nonlinear elasticity, in: Advances in Applied Mechanics IV, Academic Press, New York, 1956.

Google Scholar

[37] Itskov M., and Aksel N., A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. International Journal of Solids and Structures,41(2004)3833-3848.

DOI: 10.1016/j.ijsolstr.2004.02.027

Google Scholar

[38] J.C. Simo, T.J.R. Hughes, Computational Inelasticity, Interdisciplinary Applied Mathematics 7, Springer, New York, 1998.

Google Scholar

[39] Weiss J., Maker B., Govindjee S., Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Meth. Appl. Mech. Eng. 135(1996) 107–128.

DOI: 10.1016/0045-7825(96)01035-3

Google Scholar

[40] M.Timmel, M.Kaliske, S.Kolling Phenomenological and Micromechanical Modelling of Anisotropic effects in hyperelastic Materials, procedings of the 6th LS-DYNA Forum, Franctanhal Germany (2007) D-II, 1-24

Google Scholar

[41] Gasser, T. C., G. A. Holzapfel, and R.W. Ogden,"Hyperelastic Modelling of Arterial Layers with Distributed Collagen Fibre Orientations," Journal of the Royal Society Interface,3(2006)15–35.

DOI: 10.1098/rsif.2005.0073

Google Scholar

[42] Holzapfel G. A., T. C. Gasser, and R. W. Ogden, "A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models," Journal of Elasticity, 61(2000)1–48.

DOI: 10.1007/0-306-48389-0_1

Google Scholar

[43] Holzapfel G.A., Gasser T., Stadler M., A structural model for the viscoelastic behaviour of arterial walls: continuum formulation and finite element analysis. Eur. J. Mech. A/Solids 21(2002) 441–463

DOI: 10.1016/s0997-7538(01)01206-2

Google Scholar